Face Recognition
Grand Challenge

Dr. P. Jonathon Phillips
NIST
Face Recognition Grand Challenge

Systematically pursue two methods (2D and 3D) to reduce the error rate in face recognition by an order of magnitude.
Verification - HCInt

![Graph showing verification rates for different systems with bars and lines indicating performance across different false accept rates (%).](image)

- Cognitec
- Eyematic
- Identix
- C-VIS
- Imagis
- Viisage
- VisionSphere
- Dream MIRH

Legend:
- Cognitec
- Eyematic
- Identix

Verification rate (%): 0.1 1 10

False accept rate (%): 0.0001 0.0010 0.0100 0.1000 1.000
Select Point to Measure

• Verification rate at:
 - False accept rate = 0.1%

• Current:
 - 20% error rate (80% verification rate)

• Goal:
 - 2% error rate (98% verification rate)
Measuring Accuracy w/Error Rate of 2%

- **Non-match scores:**
 - Sufficient

- **Match scores:**
 - Need to design collection for sufficient number

<table>
<thead>
<tr>
<th>Match Scores</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>~ 20</td>
</tr>
<tr>
<td>10,000</td>
<td>~ 200</td>
</tr>
<tr>
<td>50,000</td>
<td>~ 1,000</td>
</tr>
</tbody>
</table>

- Allows for error ellipses
- Minimal demographic analysis
Data Collection

Fall Semester
(Gallery)
15 Weeks

Spring Semester
(Probes)
15 Weeks

200 People

All match scores ~ 50,000

200 People
Modes Examined

Single Still

Multiple Stills

Outdoor/Uncontrolled

3D Single view

3D Full Face
Measure Progress on:

- Indoor cooperative face recognition
- Outdoor cooperative face recognition
- Comparison of still & 3D face recognition
- Effect of multiple images
- Effect of High Dynamic Range cameras on outdoor face recognition
- Comparison between human and machine performance
Programmatic

• **Series of Challenge Problems**
 - Facilitate development
 - Systematically measure progress

• **FR Challenge Grand Challenge Evaluation**
 - Independent measure
Experiment Design
FRVT 2002 versus Grand Challenge

<table>
<thead>
<tr>
<th>FRVT 2002</th>
<th>Grand Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat design</td>
<td>Combinatorial design</td>
</tr>
<tr>
<td>Process all data</td>
<td>Process subset of data</td>
</tr>
<tr>
<td>Blind data</td>
<td>Transparent data</td>
</tr>
<tr>
<td>Black box</td>
<td>Transparent box</td>
</tr>
<tr>
<td>Single mode</td>
<td>Multiple modes</td>
</tr>
<tr>
<td>Fixed design</td>
<td>Adaptive design</td>
</tr>
<tr>
<td>Central analysis</td>
<td>Distributed and central analysis</td>
</tr>
</tbody>
</table>
Grand Challenge Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug-Sep '05</td>
<td>Face Recognition Grand Challenge Evaluation</td>
</tr>
<tr>
<td>Sep '04</td>
<td>Release challenge problem v2.0</td>
</tr>
<tr>
<td>Aug-Sep '04</td>
<td>Baseline performance determination for v2.0</td>
</tr>
<tr>
<td>April '04</td>
<td>Release challenge problem v1.0</td>
</tr>
<tr>
<td>April '04</td>
<td>First challenge problem workshop</td>
</tr>
<tr>
<td></td>
<td>- Explain challenge problem in detail</td>
</tr>
</tbody>
</table>
Challenge Problem Infrastructure

- Based on HumanID gait challenge problem
 - Design set of experiments
 - Baseline algorithms
 - Infrastructure for running experiments

- Documented progress
 - Forced researchers to concentrate on a problem
BEE Architecture

- BEE-core
 - Algorithm/System
 - Analysis tools
 - Results

- Experimental Data sets
 - Training
 - Galleries
 - Probe sets

- Data sets
 - hbase
 - hbase lite
 - hbase superlite
BEE: Biometric Experimentation Environment

- **Flexible Framework for Biometric Algorithms**
 - Plug & play algorithms
 - Mix & match modular components
- **Provides Universal XML-Based Interfaces**
- **Facilitates Biometric Evaluations**
- **Uses a Non-Proprietary Open Source Design**
Experiments

- Evaluate single system using multiple datasets
- Evaluate multiple systems with uniform data
- Complete audit trail
- Audit trails are portable and can be used as inputs to subsequent runs
- Similarity matrices offer a portable representation of raw results
- Rerun trial using intermediate results
- View graphs/reports on experiments performance
- Supports independent advanced post analysis
Reproducibility via XML

Datasets (inputs)

Similarity Matrix (raw results)

Audit Trail (output)

<Signature>
 <Subject id="hgfR00001" />
 <Image file="img.jpg" />
 <Recording id="hgfR00001"/>
</Signature>

<Audit>
 <Target file="DataSet1.xml"/>
 <Query file="DataSet2.xml"/>
 <BioBox module="hFace 1.2"/>
</Audit>

<Audit>
 <Similarity file="Similarity.xml"/>
 <Target file="DataSet1.xml"/>
 <Query file="DataSet2.xml"/>
 <BioBox module="hFace 1.2"/>
</Audit>

...
Cross Institution Experimentation

- Execution of multiple algorithms at multiple institutions with a common experiment definition
- Transmission of raw results
- Uniform reporting of results
- Cross institutional analysis
Cross Institutional Experiment Replication

- Independent replication of results
- Transmission of experiment definitions
- Uniform reporting of results
Grand Challenge Evaluation Team

- **Jonathon Phillips—NIST**
 - Director Face Recognition Grand Challenge
- **Notre Dame (Prof. Kevin Bowyer and Prof. Patrick Flynn)**
 - Data collections
 - Baseline algorithms
- **SAIC (Dr. Todd Scruggs)**
 - Design and implement BEE
 - Maintain hBase
- **Mitre (Joe Marques)**
 - Analysis
 - Assist with Grand Challenge
- **University of Texas at Dallas (Prof. Alice O'Toole)**
 - Human performance
Conclusion

• **Face Recognition Grand Challenge**
 - Order of magnitude increase in performance
 - Systematically investigate still and 3D
 - Formulate series of challenge problems
 - Final Grand Challenge evaluation

• **Biometric Experimentation Environment (BEE)**
 - Infrastructure for Grand Challenge
 - Uniform structure for challenge problem