A Better Understanding of Cannabis Chemistry to Aid in Vapor Phase Detection of Intoxication

Tara Lovestead, Ph.D.

Material Measurement Laboratory at NIST
Applied Chemicals and Materials Division, Boulder, CO
Collaborators

- Applied Chemicals and Materials Division
 - Tom Bruno
- Chemical Sciences Division
 - William MacCrehan
 - Mimy Young
 - D’Nisha Hamblin
 - Bruce Benner
 - Michele Schantz
- Florida International University
 - José Almirall
 - Sigalit Gura
Cannabis/Marijuana Decriminalization

• Medical marijuana – 22 states and Washington D.C.
• Recreational marijuana
 – Legal in Colorado, Washington, Alaska and Oregon
 – Voting today! CA, AZ, NV, MA and ME
• Feb 2014 - Congress enabled financial institutions to do business with legal sellers

➢ Made imperative the need to detect cannabis-induced intoxication for both law enforcement and workplace safety.
The Endocannabinoid System

• Cannabinoid receptor types (CB):
 • CB$_1$ – nerve cells in brain, spinal cord, eyes
 • CB$_2$ – immune system, spleen, peripheral nerves

• Endocannabinoid neurotransmitters
• Regulate fear, stress, memory, pain, inflammation, appetite, immune function, depression

• Phytocannabinoids
• Synthetic cannabinoids
Synthetic Cannabinoids

• Sprayed onto plant material, paper
• Sold as “potpourri” or “herbal incense”
• Innervate with the cannabinoid receptors
 – More potent than endo- or phyto-cannabinoids
 – Tremors and seizures, hallucinations, delusions, and violent behavior
• Active ingredients in constant flux

Spice
 K2
 Bliss
 Fake Weed
 Yucatan Fire
 Skunk
 Moon Rocks
 Genie
 Scooby Snacks

Poisons yield unpredictable results by Ben Wallace, theadvocate.com/csp/mediapool/sites/Advocate/assets/templates…
Cannabis Chemistry

- Made up of over 400 compounds
- 100+ **phyto**cannabinoids
 - cannabidiol (CBD)
 - Δ^9-tetrahydrocannabinol (Δ^9-THC)
 - Main psychoactive cannabinoid
 - Responsible for “high” feeling
 - Effects pain sensation, mood (euphoria/paranoia), memory, appetite, coordination
 - Innervate with CB$_1$ and CB$_2$
- Terpenes - aroma
- Challenge - Schedule I drug
Physiological Complexities

• \(\Delta^9\)-THC levels spike within minutes, drop rapidly
• Body mass index
• Detect 1-2 ng/ml THC in the blood
 – Chronic user – 2 days
 – Occasional user – 8 hours
• \(\Delta^9\)-THC detected depends on how consumed
 – Smoking, eating, tinctures, teas, vaporization, patch
Detecting Δ^9-THC

- Readily detect in blood, urine, hair, sweat, oral fluid (saliva), breath
- Δ^9-THC in blood
 - *Per se* limits: CO limit, 5 ng/mL
 - “zero tolerance” laws
- Does not correspond to intoxication

- Other chemical markers indicative of intoxication?
 - Synthetic cannabinoids
Breath Tests for Δ^9-THC

- Advantages
 - Non-invasive
 - Portable
 - Indicate recent use (0.5 – 2 hours)

- Challenges
 - Impairment may last longer than 2 hours
 - Passive exposure?
 - Does it determine degree of intoxication?

Our Approach

Fundamental Data
- Vapor pressures
- Molecular interactions
- Partition coefficients

“Breathalomics”
- Artificial breath
- Determine the chemical signature of intoxication
- Develop data analytics

Materials Development
- Material selection for adsorption
- Develop desorption techniques
- Begin with pure compounds and breath surrogates
Fundamental Data: Vapor Pressure

• Volatile substance - evaporates or sublimes readily at normal temperatures and pressures
 – Evaporation: liquid phase to gas phase
 – Sublimation: solid phase to gas phase
Characterization of Δ^9-THC & CBD

- Large molecules with low vapor pressures
- Reactive with oxygen, heat, light
- Unstable for long measurement times

Accurate measurements are especially challenging for mixtures!
Porous Layer Open Tubular (PLOT)-Cryoadsorption

A dynamic HS sampling technique

Robust, reusable, cheap, large temperature operability (less volatile solutes), and sorbent phases can be tailored for application.
PLOT – Cryoadsorption (PLOT-Cryo)

Sweep Gas

- **COLD!**
 - $T_{\text{cryostat}} = -20 \, ^\circ\text{C}$

- $T_{\text{oven}} = 60, 80, 100, 120 \& 140 \, ^\circ\text{C}$

Gas Chromatography – Mass Spectrometry
Quantitative, Sensitive Recovery of Δ⁹-THC

\[\ln\left(\frac{g}{L \times 10^7} \right) = 1000/T, \text{K}^{-1} \]

\[\Delta H = 91.0 \text{ kJ/mol} \]

A linear relationship provides enthalpy of interaction

\[T_{\text{oven}} = 140, 120, 100, 80, 60 ^\circ \text{C} \]
Vapor Pressure (Pa x 10^5) for Δ⁹-THC

\[PV = nRT \]
Vapor Pressure ($Pa \times 10^5$) for both Δ^9-THC and CBD
Breath Collection: PLOT – Cryo

A single PLOT capillary embedded in an epoxy wafer.

Tom Bruno demonstrating the hand piece and portable PLOT-Cryo.

Fundamental thermophysical properties data and adaptable technology for in-the-field sampling and pre-concentration.

Breath Collection: Capillary Microextraction of Volatiles (CMV)

CMV Device
- High sensitivity
- Low sampling time
- Ability for on-site sampling of VOC compounds

CMV Device Specifications
- 2 cm long open ended glass capillary tube
- Seven 2-mm wide by 2-cm long sorbent (PDMS) coated glass fiber strips
- Surface area 5000 times greater than SPME fiber
- Sampling time as low as 30 s
- Vacuum pump suction is 1L/min

Use CMV device for breath collection of cannabis-related metabolites.

Thermal Desorption: CMV

TD-CMV-GC/MS

Thermal Separation Probe (TSP)
“Breathalomics” - Artificial Breath Generator Breakthrough

Permeation Tube Vapor Generator

CMV Breakthrough Experiment

2,5-dimethylfuran
caryophyllene
tetradecane

<table>
<thead>
<tr>
<th>Gas Inlet</th>
<th>37.0°C</th>
<th>Chamber Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynacalibrator Model 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber Temp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeation Tubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Outlet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Permeation Tube Vapor Generator Diagram](image)

![CMV Breakthrough Experiment Chart](chart)

*Calculations based on SIM AUC (n=3)
Summary

Fundamental Data
- Vapor pressures
- Molecular interactions
- Partition coefficients

“Breathalomics”
- Artificial breath
- Determine the chemical signature of intoxication
- Develop data analytics

Materials Development
- Material selection for adsorption
- Develop desorption techniques
- Begin with pure compounds and breath surrogates
Funding – Special Programs Office

Thank you!