Human versus Machine Performance

Alice J. O’Toole
The University of Texas at Dallas
Acknowledgements

• In collaboration with
 – P. J. Phillips - NIST
 – Fang Jiang - Univ. of Texas at Dallas (UTD)
 – Nils Pénard - UTD
 – Janet Ayyad - UTD
 – Hervé Abdi - UTD

• Work supported by TSWG
Overview

- rationale
- Face Recognition Grand Challenge
- human-machine comparison
Problem

• Are face recognition algorithms *ready* for security applications?
 – enormous improvements over last decade
 – accuracy of algorithms tested intensively

• *How accurate do they have to be to be useful?*
 – meet or exceed human performance
Why?

• *humans are the competition!*
 – human-machine comparisons *virtually* never done

• putting algorithms in the field
 – security improved or put at greater risk?
How accurate are algorithms?
U.S. Government-sponsored Competitions

• standardize comparisons
 – test multiple algorithms
 – identical, LARGE sets of face image data

 – Face Recognition Grand Challenge
 • (2004-ongoing)
Present work

• purpose
 – extend standardization of FRGC to compare humans and algorithms on a challenging face recognition task
 – matching face identity across changes in illumination (FRGC Exp. 4)
Why Illumination Change?

• recognized to be difficult for:
 – **humans** (e.g., Braje et al., 2000; Troje & Bülthoff, 1998)
 – **algorithms** (e.g., Phillips et al. 2005; Gross et al. 2005)
Most Challenging FRGC Experiment

- controlled illumination experiment (Exp. 1)
 - match images with controlled illumination
 - 20 participating algorithms
 - median performance of
 - .91 verification rate
 - .001 false acceptance rate
• uncontrolled illumination (Exp. 4)
 – match images with controlled and uncontrolled illumination
 – 7 participating algorithms
 – median performance
 • .42 verification rate
 • .001 false acceptance rate
FRGC Uncontrolled Illumination Test

• Match identity in target and probe faces
 – *target* - controlled illumination
 – *probes* - uncontrolled illumination
Specifics

• similarity matrix
 – target \((n = 8014) \)
 – probe \((n = 16028) \)

 – \(s(i,j) = \text{similarity between the } i^{th} \text{ and } j^{th} \text{ faces} \)
 • 128,041,040 similarity scores
 • 407,352 of same people
 • remainder of different people
Results

• ROC
 – verification rate
 – false acceptance rate
Algorithm Performance

![Algorithm Performance Graph]

March 22, 2006
Evaluating Algorithms with Human Benchmarks - supported by TSWG
Comparing Humans and Algorithms

- **problem**
 - 128 million face pairs?

- **solution**
 - sample face pairs
 - most difficult
 - easiest
Sampling

- homogeneous
 - caucasian males/females 20-30 yrs
 - comparisons made on identity not
 - age, race, sex

- caution on the FRGC results
Easy and Difficult

- PCA Baseline Algorithm
 - scaled and aligned images (SAIC)
 - available and widely used since the 90’s
 - but not state-of-the-art
Match Pairs

- **“easy” match pairs**
 - 2 “similar” images of same person
 - Similarity scores > 2 sd above mean similarity of match pairs

- **“difficult” match pairs**
 - 2 “dissimilar” images of same person
 - Similarity scores < 2 sd below mean similarity of match pairs
No-Match Pairs

- “easy” no-match pairs
 - 2 “dissimilar” images of different people
 - similarity scores < 2 sd below mean similarity of no-match pairs

- “difficult” no-match pairs
 - 2 “similar” images of different person
 - similarity scores < 2 sd above mean similarity of no-match pairs
• Experiment 1
 – unlimited exposure time
 – male face pairs

• Experiment 2
 – 2 sec. exposure time
 – male and female face pairs

• Experiment 3
 – 500 msecs. exposure time
 – male and female face pairs
Methods

• Stimuli
 – 240 pairs of faces
 • 120 male pairs
 – 60 easy
 – 60 difficult
 • 120 female pairs
 – 60 easy
 – 60 difficult
Subjects

- 91 volunteers from UTD
 - Expt. 1
 - $n = 22$ (12 males; 10 females)
 - Expt. 2
 - $n = 49$ (24 males; 25 females)
 - Expt. 3
 - $n = 20$ (10 males; 10 females)
Procedure

• 2 faces appear side by side

• Human subject raters respond…
 – 1. sure they are the same person
 – 2. think they are the same person
 – 3. not sure
 – 4. think they are not the same person
 – 5. sure they are not the same person
Results

• **PCA predicts difficulty (d’ analysis)**
 – Experiment 1
 • $F(1,20) = 19.78, p < .002$
 – Experiment 2
 • $F(1,48) = 96.53, p < .0001$
 – Experiment 3
 • $F(1,18) = 62.65, p < .0001$
Experiment 2

![Graph of Human Face Matching]

- Blue line: difficult pairs
- Red line: easy face pairs

false accept rate

March 22, 2006
Evaluating Algorithms with Human Benchmarks - supported by TSWG
Experiment comparison

• Humans no more accurate with unlimited time than with 2 secs. presentations
 – $F(1,176) = 2.01, \text{ ns.}$

• Human accuracy declined with exposure times of 500 msecs.
 – $F(1,176) = 26.97, p < .0001$
Stability of human performance

• supports use of these data for benchmark comparisons with machines
Human-Machine Comparisons

• Seven state-of-the-art algorithms
 – 4 from industry
 – 3 from academic institutions

• Comparisons
 – 120 difficult face pairs
 – 120 easy face pairs
Results
Identity Matching for Difficult Face Pairs

False Accept Rate

NJIT
CMU
Viisage
Human Performance
Algorithm A
Algorithm B
Algorithm C
Algorithm D
Chance Performance
Results Summary

Difficult Face Pairs

• 3 algorithms surpass humans
 – NJIT (Liu, \textit{IEEE: PAMI, in press})
 – CMU (Xie et al., 2005)
 – Viisage (Husken et al., 2005)

• 4 less accurate than humans
Identity Matching for Easy Face Pairs

- CMU
- NJIT
- Algorithm B
- Algorithm D
- Viisage
- Algorithm C
- Algorithm A
- Human Performance
- Chance Performance
Results Summary
Easy Face Pairs

• 6 algorithms surpass humans!

• 7th less accurate than humans at high false acceptance rates
Human Attention

• Did attention waver during experiment?
 – no correlation between accuracy and trial
 • verification ($r = .07$, ns)
 • false acceptance rate ($r = -.04$, ns.)
Are human skills overrated?

• “familiar” versus “unfamiliar”

• unfamiliar matching
 – correct task for comparing “human” and machine security systems

• evidence that human expertise for faces may be limited to recognizing “familiar faces” (Hancock et al., 2001; O’Toole et al., 2003)
Familiarization

• Can we improve human performance?
• Experiment 4
 • select face pairs that generated errors in Exp. 2
 • familiarize subjects with people in pairs
 – 5 exposures to one face in pair
 • $n = 77$ subjects
• results
 – improvement, but not significant ($F(1,76)=1.3, p < .25$)
Human Performance with Familiarization

- Blue line: familiarized
- Red line: unfamiliarized

$p(false \text{ alarm})$

0 0.2 0.4 0.6 0.8 1
Conclusions

• Algorithms compete favorably with humans on the difficult task of matching faces across changes in illumination

 – some algorithms are *better* than humans on “difficult” face pairs
 – nearly all are *better* than humans on “easy” face pairs
Implications

• Algorithms may improve security in some situations
 – even if they perform poorly in absolute terms
Implications

• We accept on “face” value the need to test any algorithm that we put in the field for an important security application

• Tools available for testing humans
 – We rarely do!?
What next?

• Why?
 – Analysis of the variability of algorithms
 – Which face pairs separate algorithms?
 • Hybrid strengths & weaknesses