Overview of biometric quality

Elham Tabassi – NIST
Biometric Consortium 2009

23 September 2009
Outline

- Why measure quality?
- What is meant by quality?
- What are they good for?
- How to assess quality of quality?
- What are the challenges in quality computation?
Why measure quality?
Push towards zero-error biometrics

- While recognition technologies are good at what they are being used, or contemplated for use, their performance drop in difficult operational scenarios and with imperfectly controlled data.

- Although only a small fraction of input data are of poor-quality, the bulk of recognition errors can be attributed to poor-quality samples.

- Improving quality either by sensor design, by user interface design, or by standards compliance, better performance can be realized.

- For those aspects of quality that cannot be designed-in, an ability to analyze the quality of a live sample is needed.
What is meant by quality?

Predictive of performance

Quality problem: “The Last 1%”
Or maybe “The Last 0.1% or 10%”

» Fraction of samples that should not be sent to the matcher

 – finger, iris scanners have been designed specifically for the task, face cameras (mostly) have not

 – providing constructive feedback only possible if cause of poor quality is known

character, e.g. scar

behavior, e.g. pose

environment, e.g. imaging, e.g. focus shadows

BCC September 23, 2009

elham.tabassi@nist.gov
What are the uses of quality?

 iniciating the reacquisition from a user

• Enrollment
 • for credential issuance (visa, passport, access card, PIV)
 • pruning the poorest quality samples (1.65% of dataset) reduced EER from .0047 to .0024

• Verification
 • of the samples just captured which one to send for matching?
 • or acquire still more?

• Identification
 • is the subject offering a poor sample deliberately?

Selective invocation of different processing methods

• Preprocessing phase
 • image restoration algorithms (e.g., contrast adjustment) or a different feature extraction

• Matching phase
 • invoke a slower but more powerful matching algorithm when low-quality samples are compared
 • sending poor quality (NFIQ=4,5) to a more accurate (but perhaps costly) matcher reduced FNMR from 0.0136 to 0.0078 at FMR=0.001

• Decision phase
 • quality directed fusion, dynamic threshold
 • performing quality based multi-algorithm contingent likelihood ratio fusion reduced FNMR from 0.0136 to 0.0068 at FMR=0.001

Sample replacement/Template update

• negate template aging

Quality monitoring

• are some biometric field locations giving low quality?
• only in the evening?
A biometric quality assessment method derives a numerical quality value from an input biometric sample. The quality value is related to the biometric error rates that are likely to be realized when the sample is matched.
Quality: rank statistic for performance

NFIQ::(fmr, fnmr) at fixed threshold
NIST fingerprint image quality

- NIST developed NFIQ in 2004
 - Open source

- Key innovation: quality as a rank statistic for performance

- NFIQ is a machine learning algorithm
 - Exploratory variables: image properties (minutiae, ridge density and clarity)
 - Response variable: separation of genuine and impostor comparison
NFIQ

- **feature extraction**: computes appropriate signal or image fidelity characteristics and results in an 11-dimensional feature vector.

- **neural network**: classifies feature vectors into five classes of quality based on various quantiles of the normalized match score distribution.

- **quality number**: an integer value between 1 (highest) and 5 (poorest).
Error rates per NFIQ level

Error per Quality Level
nfiq – Threshold @ fmr=0.001

False non-match rate

False match rate

September 17, 2009
elham.tabassi@nist.gov
Quality of quality

- Biometric quality shall be evaluated based on its ability to predict performance.
 - e.g. error vs. reject curves

- Comparison of quality algorithms shall compare their effectiveness in predicting performance.
Quality challenges

- Scalar vs vector
- Matcher dependency
- How many levels?
- Pair-wise quality
- Calibration
How many levels?

Statistically different level of performance
Pair-wise quality - 1

when the enrollment sample is of good quality and better than that of the authentication sample, the authentication sample’s quality is sufficient to predict performance.
pair-wise quality
Quality

WHAT AFFECTS QUALITY (IMAGE LEVEL)

- devise metrics for quantifying specific aspects of quality to
 - distinguish cause of poor quality (provide feedback)
 - Introduce tolerance (quality-by-design)

- design framework for assessing effect of quality
 - sensitivity analysis to each metric
 - statistical method for combining effects (neural net, svm, etc)

- perform analysis on large datasets of images
 - preferably on subset of images with specific defect (focus, pose, …)

WHAT IS THE EFFECT OF QUALITY (APPLICATION LEVEL)

- devise metrics for quantifying the dependence of the accuracy of the core algorithms on
 - the quality of biometric samples (error vs reject), and
 - systematic quality variation (quality summarization procedure)

- design framework for assessing effect of quality on accuracy and security
 - how quality of enrolled samples affects probability of false accept?
 - How about probability of false reject?

- perform analysis on large datasets of images
 - examine the role of quality in biometric zoo
Biometric Quality
The last 1% Biometric Quality Assessment for Error Suppression

September 2009

Homeland Security
Science and Technology
Thank You

Elham Tabassi
tabassi@nist.gov
301 975 5292
www.itl.nist.gov/iad/894.03/quality
Dependence on matcher

Each point corresponds to one algorithm.

BCC September 23, 2009

elham.tabassi@nist.gov
Quality score interpretation

Black Box Quality Algorithm

Another Black Box Quality Algorithm

BCC September 23, 2009
elham.tabassi@nist.gov
Calibration Curve: Error vs reject : NFIQ

Calibration Curve
Quality : nfiq Dataset : poe

False non-match rate

False match rate

BCC September 23, 2009
elham.tabassi@nist.gov