Static eye imitations

Eye models

Biometric image of the authentic iris

Foil and paper printouts

Biometric images of the artefacts

Paper printout

Printed contact lens

Prosthetic eye
1. **Static 2D images**
 - paper and foil printouts
 - images displayed on a screen (hypothetical)
 - simple but alarming: possible impersonation of a given eye

2. **Static 3D objects**
 - authentic eye + printed contact lens
 - prosthetic eyes
 - impersonation difficult or impossible; typical aim: disturbing an iris pattern to cause a false rejection
Countermeasures for static eye imitations

1. Passive measurement
 - 2D liveness features: frequency analysis, use of local binary patterns, use of thermal data
 - 3D liveness features: eyeball shape, iris tissue structure, Purkinje reflections

2. Active measurement
 - positions of stimulated NIR reflections
 - tissue absorption for different NIR wavelengths

Example thermal image of the eyes (left) and 3D structure of the iris (right)
1. **Deformable objects** with printed iris patterns
2. **Movies** displayed on a screen, off-line or on-line (hypothetical)
3. **Image capture under coercion**

Countermeasures for dynamic eye imitations

1. Passive measurement:
 analysis of involuntary activities of the eye
 - spontaneous oscillations of the pupil size
 - detection of spontaneous blinks

2. Active measurement:
 use of voluntary activities of the eye
 - gaze detection when following moving objects
 - eyeball dynamics (analysis of fixations and saccades)
 - pupil dynamics (modeling of pupil size variations when stimulated by visible light)
Modeling of pupil dynamics

Clynes-Kohn nonlinear model

Liveness features: channel gains \((K_i, K_r)\), time constants \((T_1, T_2, T_3)\) and delays \((\tau_1, \tau_2)\)

\[
\begin{align*}
 x & \quad \xrightarrow{-K_r s} \quad \frac{-K_r s}{(1 + s T_1)(1 + s T_2)} \\
 & \quad \xrightarrow{e^{-\tau_1 s}} \\
 & \quad \xrightarrow{-K_i} \quad \frac{-K_i}{(1 + s T_3)} \\
 & \quad \xrightarrow{e^{-\tau_2 s}} \\
 & \quad \xrightarrow{+} \\
 y & \quad \xrightarrow{x \text{- visible light intensity}} \\
 & \quad \xrightarrow{y \text{- pupil size}}
\end{align*}
\]
Liveness features: channel gains \((K_i, K_r)\),
time constants \((T_1, T_2, T_3)\) and delays \((\tau_1, \tau_2)\)

\[
\begin{align*}
x & \rightarrow \frac{-K_r s}{(1 + sT_1)(1 + sT_2)} \\
& \rightarrow e^{-\tau_1 s} \\
& \rightarrow \frac{-K_i}{(1 + sT_3)} \\
& \rightarrow e^{-\tau_2 s} \\
& \rightarrow y
\end{align*}
\]

\(x\) - visible light intensity
\(y\) - pupil size
Liveness features: channel gains (K_i, K_r),
time constants (T_1, T_2, T_3) and delays (τ_1, τ_2)

x - visible light intensity
y - pupil size
Modeling of pupil dynamics
Clynes-Kohn nonlinear model

Liveness features: channel gains \((K_i, K_r)\), time constants \((T_1, T_2, T_3)\) and delays \((\tau_1, \tau_2)\)
Modeling of pupil dynamics
Model identification (finding a best fit)

\[\hat{\phi} = \arg\min_{\phi \in \Phi} \sum_{i=1}^{N} (\hat{y}_{i;\phi} - y_i)^2 \]

where:

\(\phi = [K_r, K_i, T_1, T_2, T_3, \tau_1, \tau_2]^T \) – liveness features
\(\Phi \) – set of possible values of \(\phi \)
\(\hat{\phi} \) – identified liveness features
\(\hat{y}_{i;\phi} \) – model output given the liveness features \(\phi \)
\(y_i \) – actual (observed) change of the pupil size
\(N \) – length of the observed sequence
1. Classification
 - use of Support Vector Machine to classify samples in ϕ-space
 - SVM maximizes the gap between samples of different classes
 - SVM may solve linear and non-linear problems (use of ‘kernel trick’)

2. Goodness of fit
 - use of normalized root mean square error
 \[
 \text{GoF} = 1 - \frac{\| \hat{y}_{\phi} - y \|}{\| \hat{y}_{\phi} - \bar{y} \|}
 \]
 where \bar{y} is an average of y.

Question 1: How to simulate odd reactions of the eye?

- using static objects → we’re doomed to succeed
- simulation of the coerced use → not really feasible
Questions

Question 1: How to simulate odd reactions of the eye?
- using static objects → we’re doomed to succeed
- simulation of the coerced use → not really feasible

Question 2: Should we uncritically rely on classifier output?
- misclassifications always happen, so what about other metrics, e.g. goodness of fit?
Questions

Question 1: How to simulate odd reactions of the eye?
- using static objects → we’re doomed to succeed
- simulation of the coerced use → not really feasible

Question 2: Should we uncritically rely on classifier output?
- misclassifications always happen, so what about other metrics, e.g. goodness of fit?

Question 3: How long shall we observe the eye?
- larger times give better modeling, but decrease usability
Database of eye reactions to light changes
Re: Question 1 (How to simulate odd reactions of the eye?)

1. Collection of samples
 - involuntary pupil oscillations under no light changes
 - pupil reaction to positive and negative jumps in light intensity
 - $N = 25$ volunteers \times 2 eyes \times $K = 4$ samples $= 200$ samples

2. Representatives of actual and odd reactions
 - involuntary pupil oscillations as odd reactions
 - stimulated changes in pupil size as actual reactions
 - pupil modeled as a circle; pupil size $=$ circle radius

3. Division of dataset into training and testing subsets
 - leave-one-out cross-validation
 - ‘one’ relates to the person, not a single sequence
 - N divisions; in each division: $2(N - 1)K$ training samples and $2K$ testing samples
Database of eye reactions to light changes
Re: Question 1 (How to simulate odd reactions of the eye?)

[Images of eye reactions to light changes]

[pupil radius (pixels)]

[time (seconds)]
Classifier: linear SVM. Observation time: 5 sec.

- Correct reaction of the eye
- Odd (or no) reaction of the eye

Goodness of fit: normalized root mean square error (NRMSE)
Decisions of linear SVM + goodness of fit
Re: Question 2 (Should we uncritically rely on classifier output?)

Classifier: linear SVM. Observation time: 5 sec.

Correct reaction of the eye
Odd (or no) reaction of the eye

Goodness of fit: normalized root mean square error (NRMSE)
Modeling horizon (observation time)

Re: Question 3 (How long shall we observe the eye?)

Modeling horizon: 2 seconds

Modeling horizon: 3 seconds

Modeling horizon: 4 seconds

Modeling horizon: 5 seconds
FerrLive and FerrFake vs. observation time
Linear SVM, goodness of fit not considered
FerrLive and FerrFake vs. observation time
Linear SVM, goodness of fit considered

Classifier: linear SVM

- FerrLive
- FerrFake with goodness of fit
- Regression for FerrLive
- Regression for FerrFake with goodness of fit
FerrLive and FerrFake vs. observation time
SVM with Gaussian kernel, goodness of fit not considered

Classifier: SVM with nonlinear kernel (RBF)
FerrLive and FerrFake vs. observation time
SVM with Gaussian kernel, goodness of fit considered

Classifier: SVM with nonlinear kernel (RBF)

- FerrLive
- FerrFake with goodness of fit
- Regression for FerrLive
- Regression for FerrFake with goodness of fit
Conclusions

1. Dynamics of the pupil delivers *interesting liveness features*
2. Depending on the assumed dynamics of fake objects, *linear classification seems to be sufficient* to recognize artefacts
3. Having a few additional seconds (≥ 3) while capturing the iris may provide *almost perfect recognition* of actual and odd behavior of the pupil
Contact

Adam Czajka, Ph.D.
aczajka@elka.pw.edu.pl

Biometrics Laboratory
Research and Academic Computer Network (NASK)
Warsaw, Poland

Biometrics and Machine Learning Laboratory
Warsaw University of Technology
Warsaw, Poland