Biometric Testing
And
Performance Extrapolation

Jean-Christophe.Fondeur@sagem.com
Biometric Testing & Performance Extrapolation

Introduction

Biometric testing
- Objectives
- Test protocol
- Test database
- Test criteria

Performance extrapolation
- Accuracy
- Sizing

Conclusion
Testing Large Scale Biometric Systems

Observation: Test results
• Limited
• Potentially biased

We need:
• To characterize the target system
• A reliable observation
 => Test protocol, database, criteria
• A way to extrapolate from this observation
 • Accuracy & Sizing
• A risk analysis approach
 • No testing is perfect ...

Focus on
• Large scale back end systems (capture, human factors not in the scope)
• Biometric aspects (architecture, security not in the scope)
Testing overview

- Define test
 - Objectives

- Prepare test
 - Protocole
 - Database
 - Criteria

- Run test
 - Tuning
 - Blind test

- Interpret results
 - Qualitative analyze
 - Extrapolate results

- Conclusion
 - With regards to original objectives
Testing can have many objectives

- Check feasibility
- Estimate system performance, cost, risk
 - Accuracy, HW sizing, operator workload, ...
- Select best technology provider
- Make some key system design choices
 - Mono/multi modal, enrolment workflow,

Test shall be explicitely designed for the desired purpose

- Impact on test protocols, type and size of database, ...
- Specific sub test may be required to reach some of the objectives
Test Protocoles are defined from

- **Objectives of the test**
 - « Why are we doing this test »
- **Operational requirement**
 - « What the system should do »
- **Risk assessment**
 - « What are the main risks ? »

Several subtest scenarios are often necessary

- Accuracy, throughput, resistance to fraud & errors, ...

No test will ever be perfect, biases must be identified and analyzed.
Test database must be

- **Representative of system scenario**
 - Acquisition conditions and workflow, Population characteristics, ...
- **Unbiased**
 - Sequestered (blind test), not correlated with automated system
 - Mix of database shall be avoided (Better to conduct the test on each database)
 - Synthetic data are likely to introduce biases and shall be avoided
- **Large enough**
 - To capture diversity of situations
 - To enable extrapolation: database should be at least ~ 1/100 of the final system size
- **... and reasonably known and characterized** (Ground truth, quality distribution, ...)

No database is perfect

- Analysis shall be performed to assess risks and biases
Test criteria must be directly linked to system behavior

- Classical biometric indicators are
 - Rejection rate (FTE/FTA)
 - Accuracy (FMR, FNMR)
 - Throughput (Speed)

- Other indicators can be
 - Robustness to biometric errors & fraud
 - Interoperability,

- Internal parameter may be measured to help modeling system behavior
 - Filtering rate, number of correct minutiae,
 - They shall not be directly used as system performance criteria

- Specify the information that will be needed to calculate and interpret the results
Test preparation: Criteria

- Those Indicators are linked
 - FMR \Leftrightarrow FNMR: "Decision policy"
 - Speed \Leftrightarrow FNMR: "Tuning policy"
 - FTE/FTA \Leftrightarrow FNMR: "Rejection policy"

⇒ Those policies are business policies, not technology policies
 - Weight of those criteria must be known before testing to enable system tuning

⇒ Tuning to system requirement is necessary
 - Tuning to business policies and -to some extent- to system data

⇒ Those indicators must be measured simultaneously
Set up
• Install, tuning, smoke test

Blind test
• no modification to system

Documentation, logging and monitoring are critical during this phase
• Biometric results
• Timing information
• Errors and anomalies
• System behavior (CPU, I/O, ...)

NIST IBPC - Gaithersburg, March 4, 2010
Interprete results

- First thing to do is to check and validate the results
 - Calculate performance indicators
 - Is blind test consistent with the tuning tests?
 - Accuracy, speed
 - Analyze potential errors (corrupted files, problems in the data, ...)
 - Validate ground truth
 - Are there unexpected hits?
 - Are there any surprising results?

- Then you can do more interpretation
 - Detailed analysis
 - Correlation with data characteristics
 - Extrapolation
- **Use statistical methods (parametric and non parametric):**

- **Use empirical methods**
 - Plot TAR vs Database size

- **Raises fundamental statistical issues**
 - Independence of measurements

- **In practice, Simplistic extrapolation approach**
 - Provide acceptable results (if extrapolating by less than 100)
 - Permits to project conclusions (at least qualitatively)

- **ROC curves:** $\text{FNMR (FMR, 10xDBSize)} \sim \text{FNMR (FMR/10, DBSize)}$
Extrapolating sizing from test measurements is very complex

- **Biometric factors**
 - Algorithm speed (can be estimated in testing providing test DB is large enough)

- **Non biometric factors**
 - Architecture considerations, hardware limitation, ...

However simple « rule of three » on matching time can and must be done

- It is certainly not sufficient to prove scalability
- It is often sufficient to prove non-scalability
 - Throughput = 100,000 requests/day
 - Database size = 100,000,000 people
 - Measured matching speed = 1,000 record/sec/server

=> Requires over 115,000 servers ...
Testing is application dependent
- Need to define objectives, protocol, database and criteria

Main biometric criteria (FTE/FMR/FNMR/Speed) are linked
- Trade off must be decided by business, not by technology
- Some tuning (to policies and to data) is necessary

There are biases in every test and extrapolation
- They need to be minimized
- They need to be known and taken into account when drawing conclusions

Simplisitic extrapolation techniques are useful (even if not sufficient)

Thanks!