Emerging Solutions in
Time Synchronization Security

Karen O’Donoghue,odonoghue@isoc.org

IEEE/NIST Challenges in the Smart Grid Workshop, 7 September 2014
Agenda

• Why Security Now?
• Requirements
• What currently exists?
• IEEE 1588
• IETF NTP NTS
• Next steps and parting thoughts…
Why Security Now?

- Increasing interconnection and decentralization
- Increasing evidence of the impact of inadequate security
- Interdependency between security and time
- Legal and Compliance requirements
Requirements for Time Synchronization Security

 - Threat model
 - Internal versus external attacker
 - Man-in-the-middle versus injection
 - Threats
 - Requirements analysis

- **IEEE 1588 requirements analysis**
 - (contact me for access to this document if necessary)
RFC 7384: Threats

- Manipulation of time synchronization packets,
- Masquerading as a legitimate participant in the time synchronization protocol,
- Replay of legitimate packets,
- Tricking nodes into believing time from the wrong master,
- Intercepting and removing valid synchronization packets,
- Delaying legitimate time synchronization packets on the network,
- Denial of service attacks on the network at layer 2 and layer 3,
- Denial of service by overloading the cryptographic processing components,
- Denial of service by overloading the time synchronization protocol,
- Corruption of the time source used by the grand master,
- Protocol design and implementation vulnerabilities, and
- Using the time synchronization protocol for broader network surveillance and fingerprinting types of activities.
RFC 7384: Requirements

- Authentication and authorization of a clock’s identity,
- Integrity of the time synchronization protocol messages,
- Prevention of various spoofing techniques,
- Protection against Denial of Service (availability),
- Protection against packet replay,
- Timely refreshing of cryptographic keys,
- Support for both unicast and multicast security associations,
- Minimal impact on synchronization performance,
- Confidentiality of the data in the time synchronization messages,
- Protection against packet delay and interception, and
- Operation in a mixed secure and non-secure environment.
What currently exists?

- **Network Time Protocol (NTP)**
 - Pre-shared key scheme for server authentication in the core specification (scaling issues)
 - Autokey – Authentication of time servers using PKI (known flaws)

- **IEEE 1588 Precision Time Protocol**
 - Annex K – Group source authentication, message integrity, and replay attack protection (defined as Experimental, flaws identified)
Proposed IEEE 1588 Security Approach

- IEEE 1588 security will include a set of mechanisms and tools that can be used together or individually.
- Individual mechanisms will be optional.
- The specific mechanisms chosen will vary by application and environment.
IEEE 1588 Security

• The multi-pronged approach:
 • PTP Integrated Security Mechanisms (Prong A)
 • External Transport Security Mechanisms (Prong B)
 • Architecture Guidance (Prong C)
 • Monitoring and Management Guidance (Prong D)
PTP Integrated Security Mechanism (Prong A)

- TLV definition and processing rules (proposed option within IEEE 1588)
- Guidance of key management schemes (informative)
- Specification of key management schemes in IETF
PTP Integrated Security Mechanism (Prong A): PTP Security TLV

- **tlvTag**: Tag
- **Length**: TLV Length Information
- **SPI**: Key Identifier (GDOI)
- **KeyId**: Key Disclosure Interval (TESLA)
- **Disclosed key from previous period**: Optional sequence number (counter replay)
- **SequenceNo (optional)**
- **Reserved**: ICV based on algorithm OID
- **RES**: ICV
External Transport Security Mechanisms (Prong B)

- **MACSec**
 - Based on IEEE 802.1AE Media Access Control (MAC) Security
 - Integrity protection between two IEEE 802 ports
 - Key management is manual or based on MACsec Key Agreement (MKA) specified in IEEE 802.1X-2010.

- **IPSec**
 - Base architecture defined in IETF RFC 4301
 - Node authentication and key exchange defined in RFC 7296
 - Integrity checking and encryption of data defined in RFC 4303
Architecture Guidance (Prong C)

- Redundancy
 - Redundant timing systems
 - Redundant PTP grandmasters
 - Redundant paths

- Inherent measurements
 - Delay and offset measurements
Monitoring and Management Guidance (Prong D)

- Definition of parameters in IEEE 1588 data sets that can be monitored to detect security problems

- A recommendation to not use unsecure management protocols including IEEE 1588 native management
IETF Network Time Security (NTS)

• NTS – Work in Progress
 • Original core set of documents
 • Generic approach: draft-ietf-ntp-network-time-security
 • Mapping of NTS to NTP: draft-ietf-ntp-using-nts-for-ntp
 • Protecting NTS with CMS: draft-ietf-ntp-cms-for-nts-message
 • Additional documents under discussion
 • DTLS mechanism for NTP: draft-dfranke-nts
 • Improving privacy for NTP: draft-dfranke-ntp-data-minimization
 • Evaluation of MAC algorithms for use with NTP: draft-aanchal4-ntp-mac
IETF Network Time Security (NTS)

- Recent Decisions (still to be confirmed by NTP WG):
 - **Key Exchange Protocol**
 - No custom key exchange being defined
 - Combination of DTLS and TLS in different combinations:
 - For client/server mode, TLS out of band to establish keys, transmission of timing information over UDP/123
 - For symmetric mode, TLS (or DTLS) on port other than UDP/123 to establish keys, transmission of timing information over TLS
 - For control mode, DTLS on port other than UDP/123 to establish keys
 - **Privacy – requirement to prevent linkability**
 - Need to address in base NTP as well as NTS
Merge of NTS for NTP draft with new proposal

<table>
<thead>
<tr>
<th>Old draft</th>
<th>Preliminary merged draft</th>
<th>Daniel’s draft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Abstract</td>
<td>Abstract</td>
</tr>
<tr>
<td>Introduction</td>
<td>Introduction</td>
<td>Introduction</td>
</tr>
<tr>
<td>Objectives</td>
<td>Objectives</td>
<td>DTLS profile for Network Time Security</td>
</tr>
<tr>
<td>Terms and Abbreviations</td>
<td>Terms and Abbreviations</td>
<td>Transport mechanisms for DTLS records</td>
</tr>
<tr>
<td>Overview of NTS-Secured NTP</td>
<td>Embracing DTLS for NTP Security</td>
<td>The NTS-encapsulated NTPv4 protocol</td>
</tr>
<tr>
<td>Protocol Sequence</td>
<td>Protocol Sequence for Time Synchronization Messages in Client-Server Mode</td>
<td>The NTS Key Establishment protocol</td>
</tr>
<tr>
<td>Implementation Notes: ASN.1 Structures and Use of the CMS</td>
<td>IANA Considerations</td>
<td>NTS Extensions for NTPv4</td>
</tr>
<tr>
<td>IANA Considerations</td>
<td>8. Security Considerations</td>
<td>Recommended format for NTS cookies</td>
</tr>
<tr>
<td>8. Security Considerations</td>
<td></td>
<td>Security Considerations</td>
</tr>
</tbody>
</table>

Also contains language from the generic draft
Best Practices

• There are a number of best practices that when applied to systems can improve their security posture.

• Both IEEE 1588 and NTP are addressing these types of topics:
 • IEEE 1588 – additional section in draft annex
 • IETF NTP – proposed BCP: draft-ietf-ntp-bcp
Next Steps

• IEEE 1588
 • Complete proposal for next revision of IEEE 1588
 • Continue specification of key management options

• NTS
 • Revise NTS specifications
 • Publish BCP
 • Incorporate additional fixes to base specification (RFC 5905)

• Gather feedback from implementers and users
Final remarks

• Why has this been so hard?
• When will we be done?

• Hopefully these solutions will be aligned to help development, deployment, and operation!

• Contact me if you are interested in helping:
 • Karen O’Donoghue,odonoghue@isoc.org