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Abstract. The non-interactive authenticated key exchange protocol 
known as SOK after its inventors Sakai, Oghishi and Kasahara, is one 
of the original pairing-based protocols. Here we suggest that it makes 
an ideal bootstrapping mechanism for the Internet of Things. As it was 
originally proposed, it was designed to work with a symmetric pairing. 
However now it is known that symmetric pairings are very inefficient. 
So the issue arises of how to migrate it successfully to the setting of 
an efficient asymmetric pairing. Here we consider the challenges and op­
portunities. Since pairings are often regarded as being too resource de­
manding for small processors, we also make available a small foot-print 
portable library which is tuned for pairing-based cryptography. Finally 
we propose a distributed trusted authority infrastructure to eliminate 
any single point of failure from the system. 

1 Introduction 

The SOK protocol [11] proposes the only known practical method for non-
interactive authenticated key exchange. As originally described it is based on 
a type-1 pairing [6] on a supersingular elliptic curve. A type-1 pairing operates 
as G1 ×G1 → GT , where G1 is a group of points of prime order q on the curve, 
and GT is a finite extension field of the same order, whose extension is the so-
called embedding degree k associated with the curve. The SOK inventors were 
one of the first to realise that by carefully matching the field size with the em­
bedding degree, that the discrete logarithm problem could remain hard in both 
G1 and GT , and hence that the pairing was a suitable vehicle for cryptography. 
Recently NIST endorsed pairing-based cryptography [9]. 

A type-1 pairing has the property of symmetry, and it turns out that this 
property is quite important to the SOK protocol as originally described. How­
ever time has not been kind to type-1 pairings over the intervening years. For 
required levels of security either G1 or GT must be greater than strictly neces­
sary due to the restricted choice of embedding degree possible on supersingular 
curves, leading to inefficiencies. And for some of the most promising families of 
supersingular curves, it turns out that the discrete logarithm problem in GT is 
much easier than originally expected [7]. 

The most efficient pairing is the asymmetric type-3 pairing, which works 
with non-supersingular pairing-friendly curves. These operate as G1 ×G2 → GT , 
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where G2 is a particular group of points, again of the order q, but on a twisted 
elliptic curve defined over an extension which is a divisor of k. These curves can 
be constructed to be a good fit at any required level of security [5]. Until recently 
the BN curves [2], with an embedding degree of k = 12 were regarded as an exact 
fit for the AES-128 equivalent level of security. Progress in the analysis of the 
discrete logarithm problem that arises in the finite field GT [8], now suggest that 
somewhat larger curves must be used. 

Pairings are usually written as functions of the form g = e(A, B), where 
A ∈ G1, g ∈ GT , and for a type-1 pairing B ∈ G1 and for type-3 B ∈ G2. In 
both cases there are efficient ways to hash an arbitrary string to an element in 
G1 or G2, but we omit the details. 

We should also mention the type-2 pairing, which allows a pairing between 
a pair of elements in G2. But to preserve the symmetry property for the SOK 
protocol it would have to be possible to hash arbitrary strings into the same 
group of order q in G2, and there is no known way to do this [6]. 

2 The SOK protocol 

The SOK protocol showcases the bilinearity property of the pairing 

e(xA, B) = e(A, xB) = e(A, B)x 

For a type-1 pairing there is also the property of symmetry 

e(A, B) = e(B, A) 

We first assume a type-1 pairing is being used. A Trusted Authority generates 
a master secret s. Alice and Bob separately visit the trusted authority, and 
present their identities and prove their right to those identities in some way. 
Alice is issued with her secret s.A where A = H1(“Alice” ), and the hash function 
H1(.) hashes the identity string to a point of order q in G1. The trusted authority 
calculation is simply the well known operation of multiplication by the scalar s 
of a point on an elliptic curve. Similarly Bob is issued with the secret s.B where 
B = H1(“Bob” ). 

Now Alice and Bob can communicate using a shared authenticated key, cal­
culated by Alice as e(sA, B) and by Bob as e(sB, A). These keys will be the same 
due to bilinearity and symmetry. Note that by convention each can put their own 
secret as the left-hand argument of the pairing, and the hashed identity of the 
other as the right-hand argument. 

2.1 Relevance to the IoT 

Consider now an application of this protocol to an imagined Internet of Things 
(IoT) setting as first proposed in [10]. Each Thing is issued with a serial number 
and its own SOK secret based on that serial number as an identity. These SOK 
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secrets may be embedded at the time of manufacture, by the manufacturer acting 
as a naturally trusted authority. 

When a Thing needs to communicate with another Thing, an action which 
requires knowing only the identity of the other, both parties can activate SOK 
to calculate the same key to encrypt and authenticate their communication. 

However in reality this description is probably a massive simplification of a 
real world IoT deployment. Are the Things capable of protecting their secrets 
from an attacker, do they support secure storage? Are they capable of calculating 
a pairing? Do they communicate on a peer-to-peer basis, or client-server? Are the 
things mobile or stationary, what is the network topology of their communication 
links, and are they fixed or fluid? Are all Things created equal or do some have 
more resources than others? Since we do not have a particular application in 
mind, we merely suggest that SOK might be a nice fit for at least some of these 
scenarios. 

3 Migrating to a type-3 pairing 

Take away the symmetry property, and things get a bit more complicated. One 
thing we can exploit – in any communication context there is an initiator and a 
responder. Therefore the obvious solution is to issue each entity with two secrets, 
one in G1 and the other in G2, as proposed by Dupont and Enge [4]. So Alice is 
issued with sA1 and sA2, where A1 = H1(“Alice” ) and A2 = H2(“Alice” ). We call 
these Alice’s lefthand and righthand secrets respectively, as this describes where 
they can appear in the pairing. Similarly Bob is issued with sB1 and sB2. Now 
if Alice initiates and Bob responds, Alice calculates the key as e(sA1, B2) and 
Bob can calculate the same key as e(A1, sB2), where by convention the initiator 
uses their lefthand secret and the responder uses their righthand secret. 

4 An IoT deployment 

That seems an appropriate and workable solution. However maybe we can do bet­
ter. Consider again the IoT setting. Now Things are divided into two categories, 
Talkers and Listeners. Some Things might have only one of these attributes, some 
may have both. But now this division of capabilities can be cryptographically 
enforced, by issuing lefthand secrets only to talkers and righthand secrets only 
to listeners. Perhaps a listener-only Thing might be lower powered, and perhaps 
its secret does not need to be so vigorously defended, as a hacked listener secret 
may be of less significance. 

At first glance it may appear that a listener secret could still be used to talk 
by exploiting bilinearity – if we cannot calculate e(sA1, B2) because we do not 
possess sA1, we could instead calculate e(B1, sA2). But these are not the same 
as A1  and B1 = B2.= A2  

Without making any dogmatic claims, we suggest that this attribute of SOK 
on a type-3 pairing may in fact be considered as a useful feature in many IoT 
contexts. 
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Given the undoubted resource consumption involved in calculating a pairing, 
it is probable that the pairing will only be invoked on first-contact between 
Things, after which the agreed key might be cached for future use, or used 
to bootstrap up into something more efficient. However an IoT deployment is 
probably at its most vulnerable during its initialisation, and for this our proposal 
offers cryptographic security in the form of an encrypted and authenticated 
channel between Things, available from the very start. We also recognise that 
this proposal is for use only at the lowest layers of a security stack. We would 
visualize that more elaborate higher-level protocols would be built on top of it. 

5 A software library 

Much has been written on the computational effort involved in pairing-based 
cryptography. Unfortunately some early and still widely-used libraries are very 
inefficient and slow, and do not make use of the very latest optimizations. So 
to realise our IoT offering we first set about developing an efficient IoT-friendly 
software library. The Apache Milagro Crypto Library (AMCL) 1 is portable and 
truly multi-lingual as it only uses generic programming constructs. It is currently 
is available in C, Java, C#, Javascript, Go, Rust and Swift. Here we focus on the 
C version. AMCL is small and takes up the minimum of ROM/RAM resources 
in order to fit into the smallest possible embedded footprint, consistent with 
other design constraints. AMCL only uses stack memory, and is thus natively 
multi-threaded. 

AMCL supports AES/128/192/256 for symmetric encryption, and 
SHA256/384/512 for hashing. Standard modes of AES are supported, plus GCM 
mode for authenticated encryption. Prime field elliptic curves are supported for 
public key protocols, and BN [2] and BLS [1] curves to support pairing-based 
protocols, like SOK. Three different parameterizations of Elliptic curve are sup­
ported - Weierstrass, Edwards and Montgomery, as each is appropriate within 
its own niche. In each case the standard projective coordinates are used. The 
user can choose the actual elliptic curve, with support for three different forms 
of the modulus. 

AMCL is configured at compile time for 16, 32 or 64 bit processors, and for 
a specific elliptic curve. The library is written with an awareness of the abilities 
of modern pipelined processors. In particular there was an awareness that the 
unpredictable program branch should be avoided, not only as it slows down the 
processor, but as it may open the door to side-channel attacks. The innocuous 
looking if statement – unless its outcome can be accurately predicted at runtime 
– is the enemy of quality crypto software. 

No external libraries or packages are required to implement all of the sup­
ported cryptographic functionality (other than for an external entropy source). 
There is included a basic X.509 module as we recognize the need to support 
X509 standards (not out of conviction, as we are strongly of the view that PKI 
is not appropriate for the IoT, but for legacy reasons). 

1 https://github.com/MIRACL/amcl.git 

4 

https://github.com/MIRACL/amcl.git


5.1 Representing Big Numbers 

As is well known to support elliptic curve and pairing-based cryptography effi­
ciently, it is important to be able to do basic modular arithmetic on numbers 
whose size exceeds the word-length w of the processor. Therefore such numbers 
must be represented using a fixed number of words. Here we went with a “reduced 
radix” rather than a “packed-radix” representation, where each word represents 
a digit of the larger number considered as being to the base 2b, where b is a 
few bits less than w. This method is often used, see for example [3]. It facili­
tates efficient portable implementation (carry bits do not need to be handled), 
encourages efficient compilation, allows faster multiplication [12], supports lazy 
reduction, and assists in the generation of side-channel resistant code. 

5.2 Performance 

A pairing on a BN curve at the AES-128 level of security on a Raspberry Pi 
computer (32-bit, Version 1, 700MHz), which is often touted as an IoT platform, 
can be calculated using this software in just 86ms. We regard this as quite 
acceptable for bootstrapping purposes. To implement the SOK protocol the code 
required 85k of ROM and 8K of RAM (stack memory). To respond to recent 
developments [8], we also implemented SOK on a 455 bit BLS [1] curve on the 
same platform. The pairing was calculated in 205ms, and the stack requirement 
rose to 16k. 

6 A Distributed Trust Authority Infrastructure 

In our view one of the best way to manage trust, is to distribute it. Secure 
Multi-Party Computation is often touted as being the best way to distribute 
cryptographic trust. However performing MPC on cryptographic primitives that 
have not been designed with MPC in mind, can be very challenging. Fortunately 
it turns out that the form of secrets often used in pairing-based cryptography, 
and used here, are ideal for MPC. 

Here the problem we are addressing is the Trusted Authority as a poten­
tial single-point-of-failure. Our solution to this problem is to distribute the TA 
functionality, and establish a D-TA infrastructure. For example a pair of D-TAs 
can generate their own independent secrets s1 and s2, and separately issue s1A 
and s2A to Alice. Alice simply adds these components together to form her full 
secret. 

To this end we have built a scalable cloud-based DTA infrastructure. Any 
number of DTAs can be used in a particular application. When a new customer 
(for example an IoT manufacturer) registers with MIRACL, a D-TA is started on 
their behalf on the MIRACL infrastructure which uses the Amazon Web Service 
(AWS) platform. The partial master secret is then encrypted with an AES key 
that is secured using the AWS key management service, which is built using 
hardware security modules. This approach enables MIRACL to horizontally scale 
the D-TAs with ease. The customers are also provided with the code to run their 
own independent D-TA. 
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