
SOK it to the IoT

Michael Scott and Kealan McCusker

MIRACL Labs
mike.scott@miracl.com

September 14, 2016

Abstract. The non-interactive authenticated key exchange protocol
known as SOK after its inventors Sakai, Oghishi and Kasahara, is one
of the original pairing-based protocols. Here we suggest that it makes
an ideal bootstrapping mechanism for the Internet of Things. As it was
originally proposed, it was designed to work with a symmetric pairing.
However now it is known that symmetric pairings are very inefficient.
So the issue arises of how to migrate it successfully to the setting of
an efficient asymmetric pairing. Here we consider the challenges and op­
portunities. Since pairings are often regarded as being too resource de­
manding for small processors, we also make available a small foot-print
portable library which is tuned for pairing-based cryptography. Finally
we propose a distributed trusted authority infrastructure to eliminate
any single point of failure from the system.

1 Introduction

The SOK protocol [11] proposes the only known practical method for non-
interactive authenticated key exchange. As originally described it is based on
a type-1 pairing [6] on a supersingular elliptic curve. A type-1 pairing operates
as G1 ×G1 → GT , where G1 is a group of points of prime order q on the curve,
and GT is a finite extension field of the same order, whose extension is the so-
called embedding degree k associated with the curve. The SOK inventors were
one of the first to realise that by carefully matching the field size with the em­
bedding degree, that the discrete logarithm problem could remain hard in both
G1 and GT , and hence that the pairing was a suitable vehicle for cryptography.
Recently NIST endorsed pairing-based cryptography [9].

A type-1 pairing has the property of symmetry, and it turns out that this
property is quite important to the SOK protocol as originally described. How­
ever time has not been kind to type-1 pairings over the intervening years. For
required levels of security either G1 or GT must be greater than strictly neces­
sary due to the restricted choice of embedding degree possible on supersingular
curves, leading to inefficiencies. And for some of the most promising families of
supersingular curves, it turns out that the discrete logarithm problem in GT is
much easier than originally expected [7].

The most efficient pairing is the asymmetric type-3 pairing, which works
with non-supersingular pairing-friendly curves. These operate as G1 ×G2 → GT ,

mailto:mike.scott@miracl.com

where G2 is a particular group of points, again of the order q, but on a twisted
elliptic curve defined over an extension which is a divisor of k. These curves can
be constructed to be a good fit at any required level of security [5]. Until recently
the BN curves [2], with an embedding degree of k = 12 were regarded as an exact
fit for the AES-128 equivalent level of security. Progress in the analysis of the
discrete logarithm problem that arises in the finite field GT [8], now suggest that
somewhat larger curves must be used.

Pairings are usually written as functions of the form g = e(A, B), where
A ∈ G1, g ∈ GT , and for a type-1 pairing B ∈ G1 and for type-3 B ∈ G2. In
both cases there are efficient ways to hash an arbitrary string to an element in
G1 or G2, but we omit the details.

We should also mention the type-2 pairing, which allows a pairing between
a pair of elements in G2. But to preserve the symmetry property for the SOK
protocol it would have to be possible to hash arbitrary strings into the same
group of order q in G2, and there is no known way to do this [6].

2 The SOK protocol

The SOK protocol showcases the bilinearity property of the pairing

e(xA, B) = e(A, xB) = e(A, B)x

For a type-1 pairing there is also the property of symmetry

e(A, B) = e(B, A)

We first assume a type-1 pairing is being used. A Trusted Authority generates
a master secret s. Alice and Bob separately visit the trusted authority, and
present their identities and prove their right to those identities in some way.
Alice is issued with her secret s.A where A = H1(“Alice”), and the hash function
H1(.) hashes the identity string to a point of order q in G1. The trusted authority
calculation is simply the well known operation of multiplication by the scalar s
of a point on an elliptic curve. Similarly Bob is issued with the secret s.B where
B = H1(“Bob”).

Now Alice and Bob can communicate using a shared authenticated key, cal­
culated by Alice as e(sA, B) and by Bob as e(sB, A). These keys will be the same
due to bilinearity and symmetry. Note that by convention each can put their own
secret as the left-hand argument of the pairing, and the hashed identity of the
other as the right-hand argument.

2.1 Relevance to the IoT

Consider now an application of this protocol to an imagined Internet of Things
(IoT) setting as first proposed in [10]. Each Thing is issued with a serial number
and its own SOK secret based on that serial number as an identity. These SOK

2

secrets may be embedded at the time of manufacture, by the manufacturer acting
as a naturally trusted authority.

When a Thing needs to communicate with another Thing, an action which
requires knowing only the identity of the other, both parties can activate SOK
to calculate the same key to encrypt and authenticate their communication.

However in reality this description is probably a massive simplification of a
real world IoT deployment. Are the Things capable of protecting their secrets
from an attacker, do they support secure storage? Are they capable of calculating
a pairing? Do they communicate on a peer-to-peer basis, or client-server? Are the
things mobile or stationary, what is the network topology of their communication
links, and are they fixed or fluid? Are all Things created equal or do some have
more resources than others? Since we do not have a particular application in
mind, we merely suggest that SOK might be a nice fit for at least some of these
scenarios.

3 Migrating to a type-3 pairing

Take away the symmetry property, and things get a bit more complicated. One
thing we can exploit – in any communication context there is an initiator and a
responder. Therefore the obvious solution is to issue each entity with two secrets,
one in G1 and the other in G2, as proposed by Dupont and Enge [4]. So Alice is
issued with sA1 and sA2, where A1 = H1(“Alice”) and A2 = H2(“Alice”). We call
these Alice’s lefthand and righthand secrets respectively, as this describes where
they can appear in the pairing. Similarly Bob is issued with sB1 and sB2. Now
if Alice initiates and Bob responds, Alice calculates the key as e(sA1, B2) and
Bob can calculate the same key as e(A1, sB2), where by convention the initiator
uses their lefthand secret and the responder uses their righthand secret.

4 An IoT deployment

That seems an appropriate and workable solution. However maybe we can do bet­
ter. Consider again the IoT setting. Now Things are divided into two categories,
Talkers and Listeners. Some Things might have only one of these attributes, some
may have both. But now this division of capabilities can be cryptographically
enforced, by issuing lefthand secrets only to talkers and righthand secrets only
to listeners. Perhaps a listener-only Thing might be lower powered, and perhaps
its secret does not need to be so vigorously defended, as a hacked listener secret
may be of less significance.

At first glance it may appear that a listener secret could still be used to talk
by exploiting bilinearity – if we cannot calculate e(sA1, B2) because we do not
possess sA1, we could instead calculate e(B1, sA2). But these are not the same
as A1 and B1 = B2.= A2

Without making any dogmatic claims, we suggest that this attribute of SOK
on a type-3 pairing may in fact be considered as a useful feature in many IoT
contexts.

3

http:DupontandEnge[4].So

Given the undoubted resource consumption involved in calculating a pairing,
it is probable that the pairing will only be invoked on first-contact between
Things, after which the agreed key might be cached for future use, or used
to bootstrap up into something more efficient. However an IoT deployment is
probably at its most vulnerable during its initialisation, and for this our proposal
offers cryptographic security in the form of an encrypted and authenticated
channel between Things, available from the very start. We also recognise that
this proposal is for use only at the lowest layers of a security stack. We would
visualize that more elaborate higher-level protocols would be built on top of it.

5 A software library

Much has been written on the computational effort involved in pairing-based
cryptography. Unfortunately some early and still widely-used libraries are very
inefficient and slow, and do not make use of the very latest optimizations. So
to realise our IoT offering we first set about developing an efficient IoT-friendly
software library. The Apache Milagro Crypto Library (AMCL) 1 is portable and
truly multi-lingual as it only uses generic programming constructs. It is currently
is available in C, Java, C#, Javascript, Go, Rust and Swift. Here we focus on the
C version. AMCL is small and takes up the minimum of ROM/RAM resources
in order to fit into the smallest possible embedded footprint, consistent with
other design constraints. AMCL only uses stack memory, and is thus natively
multi-threaded.

AMCL supports AES/128/192/256 for symmetric encryption, and
SHA256/384/512 for hashing. Standard modes of AES are supported, plus GCM
mode for authenticated encryption. Prime field elliptic curves are supported for
public key protocols, and BN [2] and BLS [1] curves to support pairing-based
protocols, like SOK. Three different parameterizations of Elliptic curve are sup­
ported - Weierstrass, Edwards and Montgomery, as each is appropriate within
its own niche. In each case the standard projective coordinates are used. The
user can choose the actual elliptic curve, with support for three different forms
of the modulus.

AMCL is configured at compile time for 16, 32 or 64 bit processors, and for
a specific elliptic curve. The library is written with an awareness of the abilities
of modern pipelined processors. In particular there was an awareness that the
unpredictable program branch should be avoided, not only as it slows down the
processor, but as it may open the door to side-channel attacks. The innocuous
looking if statement – unless its outcome can be accurately predicted at runtime
– is the enemy of quality crypto software.

No external libraries or packages are required to implement all of the sup­
ported cryptographic functionality (other than for an external entropy source).
There is included a basic X.509 module as we recognize the need to support
X509 standards (not out of conviction, as we are strongly of the view that PKI
is not appropriate for the IoT, but for legacy reasons).

1 https://github.com/MIRACL/amcl.git

4

https://github.com/MIRACL/amcl.git

5.1 Representing Big Numbers

As is well known to support elliptic curve and pairing-based cryptography effi­
ciently, it is important to be able to do basic modular arithmetic on numbers
whose size exceeds the word-length w of the processor. Therefore such numbers
must be represented using a fixed number of words. Here we went with a “reduced
radix” rather than a “packed-radix” representation, where each word represents
a digit of the larger number considered as being to the base 2b, where b is a
few bits less than w. This method is often used, see for example [3]. It facili­
tates efficient portable implementation (carry bits do not need to be handled),
encourages efficient compilation, allows faster multiplication [12], supports lazy
reduction, and assists in the generation of side-channel resistant code.

5.2 Performance

A pairing on a BN curve at the AES-128 level of security on a Raspberry Pi
computer (32-bit, Version 1, 700MHz), which is often touted as an IoT platform,
can be calculated using this software in just 86ms. We regard this as quite
acceptable for bootstrapping purposes. To implement the SOK protocol the code
required 85k of ROM and 8K of RAM (stack memory). To respond to recent
developments [8], we also implemented SOK on a 455 bit BLS [1] curve on the
same platform. The pairing was calculated in 205ms, and the stack requirement
rose to 16k.

6 A Distributed Trust Authority Infrastructure

In our view one of the best way to manage trust, is to distribute it. Secure
Multi-Party Computation is often touted as being the best way to distribute
cryptographic trust. However performing MPC on cryptographic primitives that
have not been designed with MPC in mind, can be very challenging. Fortunately
it turns out that the form of secrets often used in pairing-based cryptography,
and used here, are ideal for MPC.

Here the problem we are addressing is the Trusted Authority as a poten­
tial single-point-of-failure. Our solution to this problem is to distribute the TA
functionality, and establish a D-TA infrastructure. For example a pair of D-TAs
can generate their own independent secrets s1 and s2, and separately issue s1A
and s2A to Alice. Alice simply adds these components together to form her full
secret.

To this end we have built a scalable cloud-based DTA infrastructure. Any
number of DTAs can be used in a particular application. When a new customer
(for example an IoT manufacturer) registers with MIRACL, a D-TA is started on
their behalf on the MIRACL infrastructure which uses the Amazon Web Service
(AWS) platform. The partial master secret is then encrypted with an AES key
that is secured using the AWS key management service, which is built using
hardware security modules. This approach enables MIRACL to horizontally scale
the D-TAs with ease. The customers are also provided with the code to run their
own independent D-TA.

5

References

1. P.S.L.M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with pre­
scribed embedding degrees. In Security in Communication Networks – SCN 2002,
volume 2576 of Lecture Notes in Computer Science, pages 257–267. Springer-
Verlag, 2003.

2. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography – SAC’2005, volume 3897 of Lecture Notes in

Computer Science, pages 319–331. Springer-Verlag, 2006.
3. Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange. Curve41417:

Karatsuba revisited. Cryptology ePrint Archive, Report 2014/526, 2014. http:
//eprint.iacr.org/2014/526.

4. R. Dupont and A. Enge. Practical non-interactive key distribution based on pair­
ings. Cryptology ePrint Archive, Report 2002/136, 2002. http://eprint.iacr.
org/2002/136.

5. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptography, 23:224 – 280, 2010.

6. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete

Applied Mathematics, 156:3113–3121, 2008.
7. R. Granger, T. Kleinjung, and J. Zumbragel. Breaking 128-bit secure supersingular

binary curves. In Advances in Cryptology – Crypto 2014, volume 8617 of Lecture

Notes in Computer Science, pages 126–145. Springer-Verlag, 2014.
8. T. Kim and R. Barbelescu. Extended tower number field sieve: A new complexity

for the medium prime case. Cryptology ePrint Archive, Report 2015/1027, 2015.
http://eprint.iacr.org/2015/1027.

9. D. Moody, R. Peralta, R. Perlner, A. Regenscheid, A. Roginsky, and L. Chen. Re­
port on pairing-based cryptography, 2015. http://nvlpubs.nist.gov/nistpubs/
jres/120/jres.120.002.pdf.

10. L.B. Oliveira, D.F. Aranha, C.P.L. Gouvea, M. Scott, D.F. Camara, J. Lopez, and
R. Dahab. TinyPBC: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks. Computer Communications, 34:485–493, 2011.

11. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

12. M. Scott. Missing a trick: Karatsuba variations. Artic Crypt, 2015. http://
eprint.iacr.org/2015/1247.

6

http://nvlpubs.nist.gov/nistpubs
http://eprint.iacr.org/2015/1027
http://eprint.iacr

