
Galois Ultra Low Power

High Assurance

Asynchronous Crypto

Joe Kiniry

October 2016

Presented on behalf of Galois,  

the University of Southern California (Prof. Peter Beerel), and

Reduced Energy Microsystems (William Koven)

Executive Summary
•	 R&D performed with USC and REM has two main goals:

•	 synthesize high assurance HDL from formal specifications, and

•	 experiment with asynchronous VLSI crypto

•	 core strategy is to:

• start with formally verified Cryptol specifications of three

lightweight crypto algorithms (Simon, Speck, and AES),

•	 automatically synthesize System Verilog-CSP (SVC)

implementations and assurance artifacts,

•	 fabricate test chips in a fairly old process (IBM 130 nm), and

•	 characterize correctness, performance, and energy
2

Core Results

•	 all Simon and Speck cores operate correctly; multi-stage AES and

the hardware error counter do not (there were design errors in
hardware CAD; the HDL is correct)

•	 all but one chip operate properly (fair yield)

•	 measured frequency estimate (as if clocked) varies from  
~300 MHz@~0.6 V to 2.1 GHz@1.35 V

•	 energy/bit at 140 nm ranges between 4.2 and 7.5 pJ/b at threshold

•	 static load varies between 0.0012 mA and 0.0029 mA

•	 energy varies between 0.05 mW and 10 mW and is in close
alignment with (post place and route) simulation

•	 safe minimum operating voltage is the process threshold (~625mV)

3

mailto:GHz@1.35
mailto:MHz@~0.6

Interpreter

 SAWCore
Translator

Type
Checker

BACKENDS

Other
HDLVHDL System

Verilog

EXECUTABLES

CIPHERS IMPLS

VHDL System
Verilog

Ot

SAWScriptSymbolic
Interpreter

Galois HACrypto Toolchain

4

SPECIFICATIONS

Specification of Cipher
(Cryptol) or Protocol

(ProVerif, EasyCrypt, F*,
FCF, etc.)

Formal Specification of
Cipher or Protocol

Theorems, including Test
Vectors

Cipher and Protocol
Specification via

Standards or
Research Papers

Research Papers
Characterizing Cipher
or Protocol Properties

CRYPTOL

Type
Checker

Test
Generator

CORRECTNESS EVIDENCE

Runtime Verification
of Theorems as

Parameterized Tests

Test Vector
Runtime

Verification

Test Vector
Formal

Verification

Formal
Verification

of Theorems

SAW

SAT/
SMT C

her
HDLs

PERFORMANCE, ENERGY, SPACE
EVALUATION

Runtime
Verification on

FPGA Test Bench

Runtime
Verification on

ASIC Test Bench

Runtime
Verification

on HDL
Simulation

Traditional
CAD

Simulation

Synthesis Tuner

CIPHER TEST BENCHES

VHDL System
Verilog

Other
HDLs

Other HDLs

Verilog Altera/Xilinx
CAD Tools

FPGA

HDL FLOW

Structured
VC Gen

Key for architecture specification
subsystem

CLUSTER OF SUBSYSTEMS

A B

dataflow from A to B

A B

A depends upon B

C

C

Hardware Synthesis

•	 we have synthesized formally verified high performance System Verilog-

CSP implementations of Simon, Speck, and AES

•	 the hardware synthesis pipeline is

Cryptol → Abstract Circuit Representation → System Verilog-CSP

•	 Cryptol modules are mapped to CSP processes and function calls are
mapped to CSP message sends

• our focus is on pipeline simplicity (for assurance) at this time; no pipeline

optimizations were made to achieve high performance or low energy

•	 there are a variety of research opportunities with respect to secure
asynchronous VLSI and platform targeting

5

Estimating Performance and

Energy for Later Processes

•	 we fabricated using IBM’s 130 nm process

•	 our implementations, broadly speaking, use 4.2–7.5 pJ/
bit at our lowest power (0.625 mA)

•	 a 40% reduction in area/power for each generation is
generally a good estimate, but there are caveats

•	 other work discussed later focuses on 65 nm simulation

• consequently, we estimate that our energy use in 65 nm

is 1.5 pJ/bit, and in the fJ/bit in the latest processes

6

Estimate Caveats

•	 130 nm library we used had cells with only a single channel

length and only a single Vt (threshold); by 65 nm and beyond,
most libraries have cells with the same logic function (and size)
but different channel lengths and different Vt's to allow for power/
performance optimizations that didn't exist in our process

•	 there is also a bigger reduction in power/area from something
like 90 nm to 55 LP (a optical low power shrink of 65 nm offered
by both Global Foundries and TSMC) and similarly a bigger
jump from 65 nm to 40 LP (again an optical low power shrink of
45 nm)

•	 so by the time you get all the way to something like 28 LPP, you
almost get another generation's worth of improvement than
would be implied by 130 -> 28 LPP via just 40% per generation

7

Software Synthesis

• we have also automatically synthesized formally verified high

performance software implementations of all three ciphers

•	 this synthesis pipeline transforms Cryptol programs into their
SAW IR representations via symbolic evaluation, and then
transforms that representation directly into LLVM

• our focus in this pipeline is on simplicity (for assurance) and

where the opportunities for improvement are (for security)

•	 there are obvious R&D opportunities wrt formally verified side
channels (e.g., Almeida et al.) and platform targeting (via
automatic evaluation of functional and non-functional properties)

8

Assurance

•	 assurance means providing third-party verifiable evidence that claims we

make are true (in all circumstances, given any input, etc.)

•	 the strength of an assurance argument ranges from “we did some code
review and ran a few unit tests” to “we formally specified and verified the
following properties”

•	 our assurance case is based upon Literate Cryptol specifications

•	 specs are literate (in the Knuth sense) versions of NIST and IETF standards

•	 specs include models, reference implementation, and many theorems

•	 spec compile to, e.g., NIST PDFs and ASCII RFCs

•	 specs are also interpretable as mechanized models of algorithms and
protocols, thus theorems are automatically proven (about models and
implementations) and/or are used to automatically generate test benches

9

Formal Verification

•	 formal verification is about proving theorems, sometimes automatically and

sometimes interactively

•	 our theorems focus on correctness; others are about security

•	 we automatically prove theorems about specifications and relationships
among specifications and implementations

•	 some example theorems include

•	 a decrypt of an encrypt is what we started with

•	 this optimized code behaves exactly as that reference code

•	 this LLVM compiled from that C behaves exactly as specified in that
Cryptol specification for all possible inputs

10

Formal Validation

•	 formal verification is only possible with a mechanized semantics

•	 most hardware engineers do not understand proof, though some
do understand Jasper-style equivalence checking

• we synthesize complete test benches from specifications by

transmuting all theorems into SVC test code and assertions

•	 test benches are checked using a variety of techniques available in
modern CAD tools (mainly simulation, finite explicit state model
checking, and equivalence checking)

•	 with additional resources we could write a full mechanized
semantics of System Verilog-CSP and provide even greater
assurance

11

Related Work

•	 comparisons to the state of the art are difficult

•	 other implementations are clocked, report rough
energy estimates from simulations rather than
measurements, and often optimize for size

• in a clocked setting, size2 ~ energy, but in an

unclocked setting, there is little relationship

12

	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

Big Picture Results

Block	 speed (KHz) Bit speed (kbps) Power (mW) Energy/bit	(pJ)

Chip SimulaBon Chip (Sim for AES) Chip SimulaBon Chip SimulaBon

simon128 1,916.80 1,958.15 250,643 6.826 7.289 27.82 29.08

simon48 3,788.40 4,011.18 192,537 4.149 4.449 22.81 23.11

speck128 3,841.90 4,088.88 523,377 10.204 11.300 20.75 21.59

speck48 6,001.20 6,231.51 299,112 4.489 4.862 15.58 16.25

aes128 28,737.30 3,678,374 659.400 179.26

Results at	 1.2 V, using TT library for simulaDon, all delay lines set	 to minimum viable seFng

SimulaDon results using "SigCMin" SPEF with "MINIMUM" SDF values

13

Performance

•	 reported maximum performance implementations
in FPGA are in the 2.5 to 5.3 Mbps range (Gulcan,
Aysu, Schaumont)

•	 reported maximum performance of other
lightweight ciphers (not Simon & Speck) at 1.2 V &
65 nm process is 2 to 15 Gbps (Kerckhoff et al.)

•	 our (unoptimized) performance ranges from  
170 Mbps (Simon 48) to 450 Mbps (Speck 128)

14

	

Simon 128/128 Delay

Delay vs Voltage (simon128)
De

la
y 	
(µ
S)

0

1

2

3

4

0.6 0.8 1 1.2 1.4

Voltage (V)

• data collected from a single chip
• varied voltage from 0.538 V to 1.46 V

• shows internal cycle time of the core

15

	

Chip-to-Chip Variation

Chip Frequency (@ 1.15 V)

16

12

8

4

0

Block	 Frequency (kHz)

▪	 tested 38 chips; 1 failed
▪	 showing frequency of simon128 core @ 1.15 V

(internal frequency is 66x faster)

N
um

be
r o

f 	C
hi
ps

1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900

16

Energy

•	 we run correctly at threshold voltage

•	 we are power invariant and performance scales nicely

•	 our energy measurements are for the encryption cells only; all the
I/O pads, logic, and memory used for testing on a separate power
domain

•	 precise numbers for pJ/bit for a few algorithms follow

•	 energy use in low-power scenarios is a composite of active and
quiescent energy, thus our low quiescent energy (1 µA) is exciting

•	 we extrapolate for modern processes in the following slides

17

	

	

	

	

	

Frequency vs Voltage (simon128) Power vs Voltage (simon128)
&
Fr
eq

ue
nc
y
(k
Hz

)

0

750

1500

2250

3000

0.6 0.8 1 1.2 1.4

Po
w
er

 (m
W
)

0

3

6

9

12

0.6 0.8 1 1.2 1.4

Voltage (V) Voltage (V)

Delay vs Voltage (simon128)
&

De
la
y 	
(µ
S)

0

1

2

3

4

0.6 0.8 1 1.2 1.4

Voltage (V)

▪ averaged results from entire lot of chips (130 nm)

▪ fastest / average / slowest @ 1.255 V: 2.000 MHz / 1.964 MHz / 1.885 MHz

▪ highest / average / lowest @ 1.255 V: 7.67 mW / 7.43 mW / 7.11 mW

18

	

	

Energy per Block (simon128) Energy per Bit (simon128)
&

En
er
gy
	(n

J)

0

1.5

3

4.5

6

0.6 0.8 1 1.2 1.4

En
er
gy
	(p

J)

0

12.5

25

37.5

50

0.6 0.8 1 1.2 1.4

Voltage (V) Voltage (V)

▪ averaged results from full lot of chips (130 nm)

▪ bars show min/max
19

	

	

Es7mated Energy per Block
&
(simon128) Es7mated Energy per Bit (simon128)
&

En
er
gy
	(n

J)

0

0.45

0.9

1.35

1.8

0.6 0.8 1 1.2 1.4
En

er
gy
	(p

J)

0

3.5

7

10.5

14

0.6 0.8 1 1.2 1.4

Voltage (V)	 Voltage (V)

▪	 estimated energy at 65 nm (40% reduction over
two generations)

20

	

	 	 	
	 	

Energy Consumption

▪	 metric: energy per encrypted bit

▪	 abstracts differences in key/block
size as well as the internal cycles
of each cipher

▪	 original paper: “Simon has been
op-mized for hardware”

▪ both Speck implementations
consume less energy / bit

▪	 ciphers are more efficient near their
minimum voltage

▪	 ~3.6x decrease in energy
consumption through voltage
scaling (0.625 V vs 1.2 V)

En
er
gy
	(p

J)

Energy per Encrypted Bit
40

30

20

10

0

speck48
speck128
simon48
simon128

0.6 0.8 1	 1.2 1.4

Voltage (V)

21

	

	

Energy Consumption

Energy per Encrypted Block

5

3.75

▪ metric: energy per

encrypted block

2.5

▪ favors smaller  

block sizes

1.25

0

speck48
speck128
simon48
simon128

0.6 0.8 1 1.2 1.4

Voltage (V)
22

En
er
gy
	(n

J)

	

	

Power

▪ Speck 128/128 uses
the most power
during operation but
is more efficient than
Simon 128/128 due to
fewer internal cycles

▪ Similarly, Speck 48/72
uses more power
than Simon 48/72

Po
w
er

 (m
W
)

Power vs Voltage
18

13.5

9

4.5

0

speck48
speck128
simon48
simon128

0.6 0.8 1 1.2 1.4

Voltage (V)
23

this, because these implementations have relatively large area, and, as such,
fall outside the scope of this paper. In particular, if throughput per unit area
is the measure of interest, then optimal implementations are not shown in the
table—they would involve updating more than n bits per clock cycle.

A further note on throughput: it’s natural to count only those cycles required
for the encryption process. However, we believe that the throughput values
we present will be of most interest to implementers considering applications
that require the encryption of only a small number of blocks. Consequently, we
have included cycles for loading plaintext and key in a manner consistent with
our low-area implementation. In every case it’s possible to make the loading
proceed more quickly, thereby raising throughput a little, at a small cost in
area. We have not included any cycles for sending the resulting ciphertext
o↵ chip, since we make the assumption that this can be done more-or-less
instantaneously or, at worst, simultaneously with the task of reading new data.

Simon32/64 523 5.6 Speck32/64 580 4.2
535 11.1 642 8.3
566 22.2 708 16.7
627 44.4 822 33.3
722 88.9 850 123.1

Simon48/72 631 5.1 Speck48/72 693 4.3
639 10.3 752 8.5
648 15.4 777 12.8
662 20.5 821 17.0
683 30.8 848 25.5
714 41.0 963 34.0
765 61.5 1040 51.1
918 123.1 1152 192.0

Continued on next page

25

this, because these implementations have relatively large area, and, as such,
fall outside the scope of this paper. In particular, if throughput per unit area
is the measure of interest, then optimal implementations are not shown in the
table—they would involve updating more than n bits per clock cycle.

A further note on throughput: it’s natural to count only those cycles required
for the encryption process. However, we believe that the throughput values
we present will be of most interest to implementers considering applications
that require the encryption of only a small number of blocks. Consequently, we
have included cycles for loading plaintext and key in a manner consistent with
our low-area implementation. In every case it’s possible to make the loading
proceed more quickly, thereby raising throughput a little, at a small cost in
area. We have not included any cycles for sending the resulting ciphertext
o↵ chip, since we make the assumption that this can be done more-or-less
instantaneously or, at worst, simultaneously with the task of reading new data.

Table 6.2: Hardware performance for Simon and Speck.

area throughput area throughput
algorithm (GE) (kbps) algorithm (GE) (kbps)

Simon32/64 523 5.6 Speck32/64 580 4.2
535 11.1 642 8.3
566 22.2 708 16.7
627 44.4 822 33.3
722 88.9 850 123.1

on next page

25

algorithm area throughput algorithm area throughput

Simon96/144 1160 3.5 Speck96/144 1217 3.3
1169 7.0 1269 6.6
1175 10.5 1297 9.8
1189 14.0 1345 13.1
1211 21.0 1371 19.7
1242 28.1 1485 26.2
1292 42.1 1558 39.3
1354 56.1 1751 52.5
1467 84.2 1928 78.7
1790 168.4 2262 300.0

Simon128/192 1508 2.8 Speck128/192 1566 2.9
1514 5.6 1627 5.8
1536 11.1 1687 11.6
1587 22.2 1797 23.2
1700 44.4 2038 46.4
1937 88.9 2536 92.8
2378 177.8 3012 355.6

Simon128/256 1782 2.6 Speck128/256 1840 2.8
1792 5.3 1901 5.6
1823 10.5 1967 11.1
1883 21.1 2087 22.2
2010 42.1 2341 44.4
2272 84.2 2872 88.9
2776 168.4 3284 336.8

27

     

	 	

	 	 	

Hardware Comparisons
▪ original paper: Table 6.2: Hardware performance for Simon and Speck.

▪ area is shown in “gate equivalent” algorithm

▪ 1 GE = 5.76 µm2
Simon48/72

▪ throughput measured at 100kHz

▪ our designs:

▪ much larger, but much faster

Area
(µm2)

Area
(GE)

Throughput
(kbps)

simon128 62,205 10,799 250,643
simon48 41,683 7,237 192,537
speck128 111,428 19,345 523,377
speck48 43,547 7,560 299,112
aes128 1,835,174 318,607 3,678,374

Simon128/128

GULPHAAC Designs (at	 1.2 V)

area throughput
(GE) (kbps) algorithm

631 5.1 Speck48/72 693 4.3

639 10.3 752 8.5

648 15.4 777 12.8

662 20.5 821 17.0

683 30.8 848 25.5

714 41.0 963 34.0

765 61.5 1040 51.1

918 123.1 1152 192.0

area throughput
(GE) (kbps)

Continued

1234 2.9 Speck128/128 1280 3.0

1242 5.7 1338 6.1

1263 11.4 1396 12.1

1317 22.9 1488 24.2

1430 45.7 1711 48.5

1665 91.4 2179 97.0

2090 182.9 2727 376.5

[Beaulieu et	 al. 2013]

24

	

Lightweight on Embedded

▪ unclear if energy is
per block or bit

▪	 in either case, we
are significantly
lower (no surprise)

▪	 ASIC vs µC
implementation

Compact Implementation and [Eisenbarth, 2012]
Performance Evaluation of Block

Ciphers in ATtiny Devices

25

	 	

Green Crypto

Towards Green Cryptography: A

Comparison of Lightweight Ciphers

from the Energy Viewpoint

[Kerckhoff et	 al. 2012]

26

Open Questions

• how much synthesis pipeline tuning is necessary for

dramatically different backends (e.g., BSV or SV)?

•	 how much intelligence to build in for optimization
(e.g., automatically measuring of, and learning
from, LLVM backend behavior) and parallelization
and pipelining?

•	 what other kinds of assurance artifacts matter to
customers (most folks do not understand proof, but
do understand testing—how do we accommodate?)

27

	Structure Bookmarks
	1700

