
A Pseudorandom-Function Mode Based on Lesamnta-LW and

the MDP Domain Extension and Its Applications

Shoichi Hirose1, Hidenori Kuwakado2, and Hirotaka Yoshida3

1 University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

2 Kansai University, Osaka, Japan
kuwakado@kansai-u.ac.jp

3 National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
hirotaka.yoshida@aist.go.jp

Abstract. This paper discusses a mode for pseudorandom functions (PRFs) based on the hashing
mode of Lesamnta-LW and the domain extension called Merkle-Damg̊ard with permutation (MDP).
The hashing mode of Lesamnta-LW is a plain Merkle-Damg̊ard iteration of a block cipher with its
key size half of its block size. First, a PRF mode is presented which produces multiple independent
PRFs with multiple permutations and initialization vectors if the underlying block cipher is a PRP.
Then, two applications of the PRF mode are presented. One is a PRF with minimum padding.
Here, padding is said to be minimum if the produced message blocks do not include message blocks
only with the padded sequence for any non-empty input message. The other is a vector-input PRF
using the PRFs with minimum padding.

Keywords: Compression function, MAC, Provable security, Pseudorandom function, Vector-input
PRF

1 Introduction

Background. A pseudorandom function (PRF) is one of the most important elements in cryp­
tography. Informally, it is a keyed function indistinguishable from a uniform random function if
the key is chosen uniformly at random and kept secret. It is often used as a function for message
authentication (MAC function). It is also used for pseudorandom number generation. A PRF is
usually constructed using a block cipher or a cryptographic hash function. We are interested in
the latter approach.

HMAC [4] is a widely deployed MAC function constructed from a cryptographic hash func­
tion. HMAC is defined with a hash function H as follows:

HMAC(K, M) = H((K E opad)kH((K E ipad)kM)) ,

where K is a secret key, M is an input message, k represents concatenation, E represents bitwise
XOR, ipad = 0x3636 · · · 36 and opad = 0x5c5c · · · 5c. It is also depicted in Fig. 1.

Due to the length extension property of standardized hash functions such as SHA-1, SHA­
256 and SHA-512 [14], HMAC invokes the underlying hash function twice. The drawback of this
structure is inefciency for short messages. Such inefciency may also come from the padding of
the underlying hash function based on the Merkle-Damg̊ard strengthening.

Continuing advances of pervasive computing have greatly been increasing the demand for
security of devices with constrained resources. To answer to such demand, for cryptographic hash
functions, the international standard ISO/IEC 29192-5 [19] has been published, which includes
three lightweight hash functions: PHOTON [15], SPONGENT [12] and Lesamnta-LW [16].

In the coming IoT era, many of “things” will get connected to the internet and we will
enjoy the great amount of benefits, while the risk of cyber attacks will be significantly increased.
Examples of the fastest evolving IoT systems can be seen in automotive industry and smart

mailto:hirotaka.yoshida@aist.go.jp
mailto:kuwakado@kansai-u.ac.jp
mailto:shch@u-fukui.ac.jp

M

K

ipad

∥

opad

∥

H

H

Fig. 1: HMAC. H is a cryptographic hash function. K is a secret key. M is an input message. E
represents bitwise XOR operation. k represents concatenation of sequences. ipad = 0x3636 · · · 36
and opad = 0x5c5c · · · 5c.

factory (Industry 4.0). Recently, remote software update attracts a lot of attention in automotive
industry, and therefore, secure software update procedures for intelligent transportation systems
(ITS) are currently investigated for standardization in ITU-T SG17 [1]. It is expected that MAC
algorithms or PRFs play core roles for security of these procedures. To ensure security for IoT
devices such as electronic control units in a vehicle, cryptographic solutions need to be lightweight
in terms of implementation resources.

Our Contribution. This paper discusses a keyed mode based on the hashing mode of Lesamnta-
LW and the MDP domain extension [17], which is depicted in Fig. 2. It is first shown that the
keyed mode produces multiple independent PRFs with multiple permutations and initialization
vectors if the underlying block cipher is a PRP. Then, two applications of the mode are presented.
First, a PRF with minimum padding is presented. We say that padding is minimum if the
produced message blocks do not include message blocks only with the padded sequence for
any non-empty input message. Second, a vector-input PRF (vPRF) is constructed using the
PRFs with minimum padding. A vPRF is a PRF which takes as input a vector of strings.
The presented vPRF is an instantiation of the protected counter sum construction [9] with a
variable-input-length PRF based on Lesamnta-LW and MDP.

M1 M2 Mm−1 Mm

E E E E
K

IV π

Fig. 2: A keyed mode based on Lesamnta-LW and the MDP domain extension. E is the under­
lying block cipher, K is a secret key, IV is an initialization vector, and ⇡ is a permutation. The
input of E from the top is its key input.

The basic idea to obtain multiple independent PRFs using the MDP domain extension is
from the precedent paper [18] as well as its two applications described above. It is shown that
the keyed mode in [18] may produce multiple PRFs if the underlying compression function is
a PRF against related-key attacks with respect to the permutations used in the mode. On the
other hand, by adjusting the idea in [18] to the hashing mode of Lesamnta-LW, we show that
our keyed mode does not require the security against related-key attacks of the underlying block
cipher.

Actually, our result can be applied to any hash function that is constructed from Lesamnta-
LW by replacing the underlying block cipher with a block cipher whose plaintext size is larger
than its key size. An example of such a block cipher is Rijndael [13].

2

The advantage of the proposed PRF is that it is more efcient than HMAC with respect
to the number of the compression function calls. However, the proposed PRF requires the hash
function to be Lesamnta-LW or similar hash functions constructed in the way mentioned above,
while HMAC can use any hash function. The other advantage is that it is beneficial for im­
plementors who have already implemented Lesamnta-LW. If they additionally needs a PRF,
they can reuse their implementation of the Lesamnta-LW compression function. Note that in
our PRFs, Lesamnta-LW is modified but the compression function is not. This results in a
lightweight implementation of two cryptographic algorithms.

Related Work. It is shown that HMAC is a PRF if the compression function of the underlying
hash function is a PRF with respect to two keying strategies [2]. In particular, for one of the
keying strategies, the compression function is required to be a PRF against related key attacks
with respect to ipad and opad.

Yasuda [29] presented a secure HMAC variant without the second key, which is called H2­
MAC. It is shown to be a PRF on the assumption that the underlying compression function is
a PRF even if an adversary is allowed to obtain a piece of information on the secret key.

AMAC [3] is a MAC function using a hash function encapsulated with an unkeyed output
function. Typical candidates for the output function are truncation and the mod function. AMAC
is more efcient than HMAC especially for short messages. It is shown that AMAC is a PRF
if the underlying compression function remains a PRF under leakage of the key by the output
function.

Various PRF modes of a compression function are also known. The plain Merkle-Damg̊ard
cascade is a PRF against adversaries making prefix-free queries if the underlying compression
function is a PRF [5]. In the context of multi-property preservation [7], PRF modes such as
EMD [7] and MDP [17] are proposed. Yasuda’s PRF mode of a compression function in [25] is
shown to be a PRF if the underlying compression function is a PRF against a kind of related
key attacks. Sandwich construction for an iterated hash function is shown to produce a PRF if
the underlying compression function is a PRF with respect to two keying strategies [26].

PRF modes using keyed compression functions were also proposed. The first proposal was
XOR MAC [6], which was followed by the protected counter sum construction [9]. It is shown
that various hashing modes preserve the PRF security of keyed compression functions [8]. Yasuda
proposed PRF modes for keyed compression functions with security beyond birthday [27, 28, 30,
31].

Minimum padding is already common among block-cipher-based MAC functions such as
CMAC [23] and PMAC [11]. CMAC, which is based on OMAC (One-key CBC-MAC) [20],
originated from XCBC [10]. The idea to finalize the iteration with multiple permutations is used
in the secure CBC-MAC variants GCBC1 and GCBC2 [22].

Rogaway and Shrimpton [24] introduced the notion of vPRF. They also presented a generic
scheme to construct a vPRF from a common PRF taking a single string as input. Minematsu [21]
also proposed a vPRF using his universal hash function based on bit rotation.

Organization. Section 2 gives notations and definitions used in the remaining parts of the paper.
It is shown in Sect. 3 that the keyed mode based on Lesamnta-LW and MDP may produce
multiple independent PRFs with multiple permutations and multiple initialization vectors. Based
on the result in Sect. 3, the PRF with minimum padding and the vPRF are presented and their
security is confirmed in the manner of provable security in Sect. 4 and Sect. 5, respectively.
Section 6 concludes the paper.

3

2 Preliminaries

2.1 Notations and Definitions

S

= {0, 1}. For any non-negative integer l, ⌃l is identified with the set of all ⌃-sequences of
. ⌃0 is the set of the empty sequence ". Let (⌃l)⇤

S

Let ⌃
(⌃l)i and (⌃l)+ (⌃l)ilength l =
 =
 .

i>0 i>1
S

k2For k1  k2, let (⌃l)[k1,k2] = (⌃l)i .
i=k1

For x 2 ⌃⇤, the length of x is denoted by |x|. The concatenation of x1 and x2 in ⌃⇤ is
denoted by x1kx2.

The operation of selecting element s from set S uniformly at random is denoted by s ⌘ S.
Let f : K ⇥D ! R be a family of functions from D to R indexed by keys in K. Then, f(K, ·)

is a function from D to R for each key K 2 K. f(K,x) is often denoted by f
K (x).

Let F (D,R) denote the set of all functions from D to R. Let P(D) denote the set of all
permutations on D. id represents an identity permutation. Let C(, n) be the set of all block
ciphers with key size  and block size n. A block cipher in C(, n) is called a (, n) block cipher.

Let ⇧ ⇢ P (D). We say that ⇧ is pairwise everywhere distinct if, for any pair of distinct
permutations ⇡,⇡0 2 ⇧, ⇡(x) 6= ⇡0(x) for every x 2 D.

2.2 Pseudorandom Functions and Permutations

For f : K ⇥D ! R, let A be an adversary trying to distinguish f
K from a function ⇢, where K

and ⇢ are chosen uniformly at random from K and F (D,R), respectively. A is given access to
f
K or ⇢ as an oracle and makes adaptive queries in D and obtains the corresponding outputs.
The prf-advantage of A against f is defined as

Advprf
f (A) =

Pr
ih

AfK = 1 � Pr [A⇢ = 1]

 ,

where K ⌘ K and ⇢ ⌘ F (D,R). The prp-advantage of A against f is defined as

Advprp(A) =
f

Pr
ih

AfK = 1 � Pr [A⇢ = 1]

 ,

where K ⌘ K and ⇢ ⌘ P (D). In these notations, adversary A is regarded as a random variable.
f is called a pseudorandom function (permutation), or PRF (PRP) in short, if no efcient

adversary A can have any significant prf-advantage (prp-advantage) against f .
The definitions of the prf- and prp-advantage can naturally be extended to adversaries with

multiple oracles. The prf-advantage of adversary A with access to m oracles is defined as

Advm-prf
f (A) =

 ,FK2 ,...,FKm = 1] � Pr[A⇢1,⇢2,...,⇢mPr[AFK1 = 1]

 ,

Advm-prpwhere (K1,K2, . . . ,Km

) ⌘ Km and (⇢1, ⇢2, . . . , ⇢m) ⌘ F (D,R)m . can be defined
f

similarly.
The following lemma is a paraphrase of Lemma 3.3 in [5]:

Lemma 1. Let A be any adversary against f with access to m oracles. Then, there exists an
adversary B against f such that

Advm-prf m · Advprf(A)  (B) .
f f

The run time of B is approximately total of that of A and the time required to compute f to
answer to the queries of A. The number of the queries made by B is at most max{q

i | 1  i  m},
where q

i is the number of the queries made by A to its i-th oracle.

4

�

2.3 The Hashing Mode of Lesamnta-LW and Its Variant with MDP

The hashing mode of Lesamnta-LW [16] is given in Figure 3. It is the plain Merkle-Damg̊ard
iteration of a block cipher E in C(n/2,n), where n is a positive even integer. The input of E
from the top is its key input. IV0kIV1 2 ⌃n is an initialization vector, where |IV0| = |IV1| = n/2.
M1,M2, . . . ,Mm are message blocks, where M

i 2 ⌃n/2 for i = 1, 2, . . . ,m.

M1 M2 Mm−1 Mm

IV0

IV1

E E E E

Fig. 3: The hashing mode of Lesamnta-LW

Now, let us introduce the variant of the hashing mode of Lesamnta-LW with the MDP domain
extension [17]. Hereafter, it is assumed that the underlying block cipher E is in C(w, n), where
w < n. The MDP variant with a permutation ⇡ on ⌃n-w is the function J E ,⇡ : ⌃n ⇥ (⌃w)+ !
⌃n, which is defined as follows: For X1, X2, . . . , Xx 2 ⌃w and Y0 2 ⌃n ,

J E ,⇡(Y0, X1kX2k · · · kXx

) = Y
x

such that
(

E
Yi�1,0 (Xi

kY
i-1,1) (1  i  x 1)

Y
i

E
Yi�1,0 (Xi

k⇡(Y
i-1,1)) (i = x) ,

⌃n

seen later, ⇡ need not be a cryptographic primitive. Thus, the computational overhead of ⇡ can
be small.

where Y
j = Y

j,0kYj,1 2 and |Y
j,0| = w for 0  j  x. It is depicted in Fig. 4. As it will be

X1 X2 Xx−1 Xx

E E E E
Y0,0
Y0,1 π

Fig. 4: J E ,⇡(Y0, X1kX2k · · · kXx

)

3 Multiple PRFs based on Lesamnta-LW

In this section, it is shown that the MDP variant of the Lesamnta-LW hashing mode may
produce multiple independent PRFs with a single secret key using multiple permutations and
initialization vectors.

E ,⇡ E ,⇡Let J : ⌃w ⇥ (⌃w)+ ! ⌃n be a keyed function such that J (K,X) = J E ,⇡(KkIV,X),
IV IV

where K 2 ⌃w , IV 2 ⌃n-w and X 2 (⌃w)+ . K is a secret key and IV is an initialization
vector. J E ,⇡(K, ·) is also denoted by J E ,⇡ (·). For ⇧ ⇢ P(⌃n-w) and V ⇢ ⌃n-w, let

IV IV,K

n o

J E ,⇧
V = J E ,⇡

IV IV 2 V ^ ⇡ 2 ⇧ .

5

�

�

�

V Let V = {IV
i | 1  j  a} and ⇧ = {⇡

j | 1  j  d}. Let A be an adversary against J E ,⇧ .
The advantage of A is defined by

"

D E1jd #

J
E,⇡j h i

Advprfs IVi,K Ah⇢i,j i1jd
1ia 1ia(A) = Pr A = 1 Pr = 1

J E,⇧
V

for K ⌘ ⌃w and h⇢
i,j i1jd ⌘ F ((⌃w)+ ,⌃n)a⇥d, where 1ia

D E1jd ⇣ ⌘

E ,⇡j J E ,⇡1J =
IV1,K , . . . , J E ,⇡d

IV2,K , . . . , J E ,⇡d
IVi,K IV1,K , J E ,⇡2

IV1,K , J E ,⇡1
IVa,K1ia

and
h⇢

i,j i1jd = (⇢1,1, ⇢1,2, . . . , ⇢1,d, ⇢2,1, . . . , ⇢a,d) .1ia

Notice that the setting is di↵erent from that of PRF for an adversary with multiple oracles in
D

E ,⇡j
E1jd

Sect. 2.2. Only a single key K is used for J
IVi,K 1ia

The following theorem states that JV
E ,⇧ may produce multiple independent PRFs with a

single key if E is a PRP.

Theorem 1. Let V ⇢ ⌃n-w and ⇧ ⇢ P (⌃n-w). Suppose that ⇧ [{id} is pairwise everywhere
distinct and that ⇡(IV) 6 6= ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [{id} and IV, IV 0 2 V such that (⇡, IV) =
(⇡0, IV 0). Let A be any adversary against J E ,⇧ running in time at most t and making at most V
q queries in total. Suppose that each query consists of at most ` blocks. Then, there exists an
adversary B against E such that

Advprfs
`q(q 1)· Advprp(A)  `q (B) + .

J E ,⇧
E 2n+1

V

B runs in time at most t + O(`qT
E), and makes at most q queries. T

E is the time required to
compute E .

Remark 1. Let V = {IV1, IV2, . . . , IVa

} and ⇧ = {⇡1,⇡2, . . . ,⇡
d

}. Let tv and tp be integers such
that tv + tp = n w. Let v1, v2, . . . , va be distinct constants in ⌃tv . Let c1, c2, . . . , c

d be distinct
nonzero constants in ⌃tp . Suppose that IV

i = v
i

k0tp for 1  i  a and that ⇡
j (x) = xE (0tv kc

j)
for 1  j  d. Then,

– ⇧ [{id} is pairwise everywhere distinct, and
– since ⇡

j (IVi

) = v
i

kc
j , ⇡j (IVi

) 6= ⇡
j

0 (IV
i

0) if (i, j) 6= (i0, j0).

Theorem 1 immediately follows from Lemma 2 and Lemma 3.

⌃n-wLemma 2. Let V ⇢ and ⇧ ⇢ P (⌃n-w). Suppose that ⇧ [{id} is pairwise everywhere
distinct and that ⇡(IV) 6 6= ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [{id} and IV, IV 0 2 V such that (⇡, IV) =
(⇡0, IV 0). Let A be any adversary against J E ,⇧ running in time at most t and making at most V
q queries in total. Suppose that each query consists of at most ` blocks. Then, there exists an
adversary B against E with access to q oracles such that

Advprfs ` · Advq-prf
E,⇧ (A)  (B) .

E

JV

B runs in time at most t + O(`qT
E), and makes at most q queries. T

E is the time required to
compute E .

6

�

�

Proof. Let V = {IV1, IV2, . . . , IVa

} and ⇧ = {⇡1,⇡2, . . . ,⇡
d

}. Let X = X1kX2k · · · kXx

, where
1  x  ` and |X

i

| = w for 1  i  x. For 1  i1  i2  x, let X[i1,i2] = X
i1 kXi1+1k · · · kXi2 .

For l 2 {0, 1, . . . , `} and two functions µ : (⌃w)[1,`] ! ⌃n and ⇠ : (⌃w)[0,`-1] ! ⌃n, let
R[l]E ,⇡ : (⌃w)[1,`] ! ⌃n be a function such that

µ,⇠

(

R[l]E ,⇡(X) =
µ,⇠

µ(X) 	 if x  l,

J E ,⇡(⇠(X[1,l]), X[l+1,x]) if x 2 l + 1,

where X[1,l] = " if l = 0. We define

"
5
D E1jd

E ,⇡j
R[l]µi,j ,⇠i 1iaP

l = Pr A	 = 1

#
5

,

where (µ1,1, . . . , µ
a,d

) ⌘ F ((⌃w)[1,`],⌃n)a⇥d and

⇠
i

(X[1,l]) =

(

KkIV

i if l = 0

⇠̃
i

(X[1,l]) otherwise

for K ⌘ ⌃w and (⇠̃1, . . . , ⇠̃a) ⌘ F ((⌃w)[1,`-1],⌃n)a. Then, the advantage of A is

Advprfs (A) = |P0 P
`

| .
J E ,⇧
V

The algorithm of an adversary B against E with q oracles is described below. Let (g1, . . . , gq)
be the oracles of B. They are either (E

K1 , . . . ,EKq) or (⇢1, . . . , ⇢q) such that (K1, . . . ,Kq

) ⌘
(⌃n)q and (⇢1, . . . , ⇢q) ⌘ F (⌃n ,⌃n)q, respectively. B uses A as a subroutine.

1.	 B selects r from {1, . . . , `} uniformly at random.
2. If r 2 2, then B selects functions (µ̃1,1, . . . , µ̃

a,d

) from F ((⌃w)[1,r-1],⌃n)a⇥d uniformly at
random. Actually, B simulates µ̃

i,j with lazy evaluation.
3.	 B runs A. Finally, B outputs the output of A.

For 1  k  q and 1  x  `, let X = X1kX2k · · · kXx be the k-th query made by A during
the execution of A. Suppose that X is a query to the (i, j)-th oracle of A. If x 2 r, then B
makes a query to the idx (k)-th oracle g

idx (k), where idx : {1, . . . , q} ! {1, . . . , q} is a function
defined below:

–	 If r = 1, then idx (k) = 1 for 1  k  q.
–	 If r 2 2, then

•	 idx (k) = idx (k0) if there exists a previous k0-th query X 0 (k0 < k) such that it is a query
to the (i, j0)-th oracle for some 1  j0  d and X 0 = X[1,r-1], and [1,r-1]

•	 idx (k) = k otherwise.

For the query to the idx (k)-th oracle, B also chooses ⌫(k) as follows:

–	 If r = 1, then ⌫(k) = IV
i

.
–	 If r 2 2, then ⌫(k) = ⌫(k0) if idx (k) = idx (k0) and ⌫(k) ⌘ ⌃n-w if idx (k) = k.

The query made by B is (X
r

k⇡
j (⌫(k))) if x = r and (X

r

k⌫(k)) if x 2 r+ 1. The answer of B to
X is

8

>

<

>

:
5

µ̃
i,j (X) if x  r 1,

g
idx (k)(Xr

k⇡
j (⌫(k))) if x = r,

J E ,⇡j (g
idx (k)(Xr

k⌫(k)), X[r+1,x]) if x 2 r + 1.

7

�

�

�

�

�

�

Now, suppose that B is given (E
K1 , . . . ,EKq) as oracles. Then, the answer of B to X is

8

>

<

>

:
5

µ̃
i,j (X) if x  r 1,

(X
r

k ⇡
j (⌫(k))) if x = r,E

K

idx (k)

(X
r

k ⌫(k)), X[r+1,x]) if x 2 r + 1.J E ,⇡j (E
K

idx (k)

If r = 1, then idx (k) = 1 and ⌫(k) = IV
i for 1  k  q. If r 2 2, then K

idx (k)k ⌫(k) is chosen
uniformly at random from ⌃n for a new pair of i and X[1,r-1]. Thus, B provides A with the

E ,⇡joracle R[r 1] , and
µi,j ,⇠i

ih ih

`

BEK1 ,...,EKq = u ^ BEK1 ,...,EKqPr = 1 = Pr r = 1
u=1

`

X

X

ih1

BEK1 ,...,EKqPr = 1=
 r = u

`
u=1

"
 #

D E1jd

E,⇡j
X

`

=
`

u=1

1
 R[u-1]µi,j ,⇠i 1ia = 1Pr A

X

`

= P
u-1 .

`
u=1

Suppose that B is given oracles (⇢1, . . . , ⇢q). Then, the answer of B to X is

1

8

>

<

>

:
5

µ̃
i,j (X) if x  r 1,

⇢
idx (k)(Xr

k ⇡
j (⌫(k))) if x = r,

J E ,⇡j (⇢
idx (k)(Xr

k ⌫(k)), X[r+1,x]) if x 2 r + 1.

If r = 1, then idx (k) = 1 and ⌫(k) = IV
i for 1  k  q. The functions in {⇢1(·k ⇡(IV)) | ⇡ 2

⇧ [{id}, IV 2 V} are independent of each other since ⇡(IV) 6 = ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [{id}
and IV, IV 0 2 V such that (⇡, IV) 6 = (⇡0, IV 0). If r 2 2, then idx (k) is fixed only by (i,X[1,r-1])
and ⌫(k) is chosen uniformly at random only when idx (k) = k. In addition, ⇧ [{id} is pairwise

E ,⇡jeverywhere distinct. Thus, B provides A with the oracle R[r] , and
µi,j ,⇠i

X

`

P
i .

`
i=1

Pr[B⇢1,...,⇢q
1

= 1] =

Thus,

ih

Advq-prf BEK1 ,...,EKq Pr [B⇢1,...,⇢q(B) = Pr = 1 = 1]
E

XX

` `

= P
i-1 P

i =
` `
1
 1
 |P0 P

`

|
`

i=1 i=1

1
Advprfs=

E,⇧ (A) . ` JV

There may exist an adversary with the same amounts of resources as B and larger advantage.
Let us call it B again. ut

8

�

�

Lemma 3 (Lemma 3 of [16]). Let A be any adversary with m oracles against E running in
time at most t, and making at most q queries. Then, there exists an adversary B against E such
that

Advm-prf q(q 1) ·Advprp(A)  m (B) + .
E E 2n+1

B runs in time at most t + O(qT
E

) and makes at most q queries, where T
E represents the time

required to compute E.

4 PRF with minimum padding

Based on the result in the previous section, a PRF mode with minimum padding is proposed
and its security is confirmed in this section. Then, the proposed scheme is compared with two
PRF modes based on Lesamnta-LW in [16] in terms of efciency.

4.1 The Proposed Scheme

The padding function used in the proposed construction is defined as follows: For any M 2 ⌃⇤ ,
(

M if |M | > 0 and |M | ⌘ 0 (mod w)
pad(M) =

Mk10t if |M | = 0 or |M | 6⌘ 0 (mod w) ,

where t is the minimum non-negative integer such that

|M |+ 1 + t ⌘ 0 (mod w) .

In particular, pad(") = 10w-1 .
For any M , | pad(M)| is the minimum positive multiple of w, which is greater than or equal

¯ ¯ ¯to |M |. Let pad(M) = M1kM2k · · · kMm

, where |M̄
i

| = w for every i such that 1  i  m. m = 1
¯if |M | = 0, and m = d|M |/we if |M | > 0. M
i is called the i-th block of pad(M).

E ,{⇡1,⇡2}The proposed function L : ⌃w ⇥ ⌃⇤ ! ⌃n based on Lesamnta-LW and MDP is
IV

defined by
(

E ,{⇡1,⇡2} J E ,⇡1 (pad(M)) if |M | > 0 and |M | ⌘ 0 (mod w)
L (K,M) = IV,K

IV J E ,⇡2 (pad(M)) if |M | = 0 or |M | 6⌘ 0 (mod w).
IV,K

E ,{⇡1,⇡2}L is shown to be a PRF if the underlying block cipher E is a PRP.
IV

Corollary 1. Let IV 2 ⌃n-w. Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that {⇡1,⇡2, id} is pairwise
E ,{⇡1,⇡2}everywhere distinct. Let A be any adversary against L running in time at most t and
IV

making at most q queries in total. Suppose that the length of each query is at most `w. Then,
there exists an adversary B against E such that

`q(q 1)
Advprf ·Advprp(A)  `q (B) + .

E,{⇡1,⇡2}
E 2n+1

LIV

B runs in time at most t + O(`qT
E), and makes at most q queries. T

E is the time required to
compute E .

E ,⇡1 E ,⇡2ˆProof. Let A be an adversary against J , J using A as a subroutine. Let (h1, h2) be the
IV IV

oracles of Â. Then, (h1, h2) are either (J E ,⇡1) with K ⌘ ⌃w or (⇢1, ⇢2) ⌘ F ((⌃w)+ ,⌃n).
IV,K

, J E ,⇡2
IV,K

9

�

�
�

ˆ ˆA simply runs A. Let M be a query made by A. If |M | > 0 and |M | ⌘ 0 (mod w), then A
returns h1(pad(M)) to A. Otherwise, Â returns h2(pad(M)) to A. Finally, Â outputs the output

ˆof A. The run time of A is almost equal to that of A and A makes at most q queries in total.
Notice that

 �  �

E ,⇡1 E,⇡2 E ,{⇡1,⇡2}

Pr ÂJIV,K ,JIV,K = 1 = Pr ALIV,K = 1 ,

h i

Pr Â⇢1,⇢2 = 1 = Pr [A⇢ = 1] ,

where ⇢ ⌘ F (⌃⇤ ,⌃n). Thus, from Theorem 1, there exists an adversary B against F such that

`q(q 1)
Advprf (A) = Advprfs (Â)  ̀q · Advprp(B) + .

E ,{⇡1,⇡2} E,{⇡1,⇡2}
E 2n+1

L JIV IV

B runs in time at most t + O(`qT
E), and makes at most q queries. ut

Remark 2. A PRF with minimum padding can also be constructed with a single permutation
E ,{⇡1,⇡2}and two distinct initialization vectors. However, L
IV is much better than this construction.

For the PRF with a single permutation and two distinct initialization vectors, users have to know
the length of an input message in advance since it determines which initialization vector should
be chosen.

4.2 Discussion

In [16], the authors presented two PRF modes based on Lesamnta-LW, which are called a keyed­
via-IV (KIV) mode and a key-prefix (KP) mode.

Let n = 256 and w = 128 for J E ,⇡ , as is specified for Lesamnta-LW. Let padL is the
2 ⌃256padding function of Lesamnta-LW and IVL is the initialization vector of Lesamnta­

⌃256 ! ⌃128LW. Let chop : be the function which simply outputs the latter half of the
input. Then, the KIV mode of Lesamnta-LW is chop(J E ,⇡(K, padL(M))) and the KP mode is
chop(J E ,⇡(IVL, padL(K

0k M))), where K 2 ⌃256 and K 0 2 ⌃128 are secret keys and M 2 ⌃⇤ is
a message input of length at most 264 1.

For X 2 ⌃⇤ such that |X|  264 1, padL(X) = Xk 10t+63k len64(X), where len64(X) is
the 64-bit binary representation of |X| and t is the minimum non-negative integer such that
|X| + t ⌘ 0 (mod 128).

Suppose that input M is not the empty sequence. Then, the number of invocations of E
is d |M |/128e + 1 for the KIV mode, d |M |/128e + 2 for the KP mode, and d |M |/128e for the

E ,{⇡1,⇡2} E ,{⇡1,⇡2}proposed mode L . Thus, L is the most efcient, especially for short messages.
IV IV

The advantage of the KP mode is that it uses the hash function Lesamnta-LW as it is.
E ,{⇡1,⇡2}The output of L is twice as long as those of the KIV mode and the KP mode. It
IV

may be advantageous when used for pseudorandom bit generation.

5 Vector-Input PRF

5.1 The Proposed Scheme

A scheme is proposed to construct a vector-input PRF (vPRF) using instances of the PRF
presented in Sect. 4. In the original formalization [24], a vPRF accepts vectors with any number
of components as inputs. In contrast, the proposed scheme has a parameter which specifies the
maximum number of the components in an input vector.

10

� �

�

�

�

 �

Let a be a positive integer, which is the maximum number of the components in an input
⌃n-wvector. Let ⇧ = {⇡1,⇡2} ⇢ P (⌃n-w) and V = {IV0, IV1, . . . , IVa

} ⇢ . The proposed
E ,{⇡1,⇡2} : ⌃w ⇥ (⌃⇤)[0,a] ! ⌃nvector-input function based on Lesamnta-LW vLV is defined as

follows: For an s-component vector (S1, . . . , Ss

) such that 0  s  a, where (S1, . . . , Ss

) = () if
s = 0,

8

E ,{⇡1,⇡2}
>

L (K, ") if s = 0,
< IV0

!

E ,{⇡1,⇡2}
s

MvL (K, (S1, S2, . . . , Ss

)) =
E ,{⇡1,⇡2} E ,{⇡1,⇡2}V

>L K, L (K,S
i

) if s 2 1.
:

IV0 IVi

i=1

E ,{⇡1,⇡2}It is shown that vL is a vPRF if E is a PRP. V

Corollary 2. Let V = {IV0, IV1, . . . , IVa

} ⇢ ⌃n-w. Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that
E ,{⇡1,⇡2}{⇡1,⇡2, id} is pairwise everywhere distinct. Let A be any adversary against vL runningV

in time at most t and making at most q queries. Suppose that the length of each vector component
in queries is at most `w and the total number of the vector components in all of the queries is
at most �. Then, there exists an adversary B against E such that

prf `(� + q)(� + q 1) + q(q 1)
Adv (A)  `(� + q) Advprp(B) + .

E,{⇡1,⇡2}
E 2n+1

vLV

B runs in time at most t + O(`(� + q)T
E), and makes at most (� + q) queries. T

E is the time
required to compute E.

Corollary 2 directly follows from Lemmas 4 and 5.

⌃n-wLemma 4. Let V = {IV0, IV1, . . . , IVa

} ⇢ . Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that
E ,{⇡1,⇡2}{⇡1,⇡2, id} is pairwise everywhere distinct. Let A be any adversary against vL runningV

in time at most t and making at most q queries. Suppose that the length of each vector component
in queries is at most `w and the total number of the vector components in all of the queries is

n o

E ,{⇡1,⇡2}at most �. Then, there exists an adversary B against L
IVi

0  i  a such that

(A)  Advprfs
q(q 1)

Advprf
E,{⇡1,⇡2}

n
E ,{⇡1,⇡2}

o(B) +
2n+1 .

vL

L 0iaV IVi

B runs in time at most t and makes at most (� + q) queries in total. The length of each query
is at most `w.

Proof. Notice that
 �

E,{⇡1,⇡2}
Advprf

E,{⇡1,⇡2} (A) = Pr AvLV,K = 1 Pr [A⇢ = 1] ,
vLV

where K ⌘ ⌃w and ⇢ ⌘ F ((⌃⇤)[0,a],⌃n).
Let ⇢

i : ⌃⇤ ! ⌃n for 0  i  a. Let Q⇢0,...,⇢a : (⌃⇤)[0,a] ! ⌃n be a vector-input function
such that

(

⇢0(") if s = 0,
Q⇢0,...,⇢a (S1, . . . , Ss

) =
L

s⇢0 (⇢
i

(S
i

)) if s 2 1.
i=1

Q⇢0,...,⇢a E ,{⇡1,⇡2} E ,{⇡1,⇡2}is obtained from vL simply by replacing L with ⇢
i for 0  i  a. Then, V,K IVi,K

 �

prf AvL

E ,{⇡1,⇡2}
⇥

AQ

⇢0,...,⇢a ⇤

Adv (A)  Pr V,K = 1 Pr = 1 +
E ,{⇡1,⇡2}

vLV
⇥

AQ

⇢0,...,⇢a ⇤

Pr = 1 Pr [A⇢ = 1] , (1)

11

�

 �

�

�

where K ⌘ ⌃w, (⇢0, . . . , ⇢a) ⌘ F (⌃⇤ ,⌃n)a+1 and ⇢ ⌘ F ((⌃⇤)[0,a],⌃n).
E ,{⇡1,⇡2}For the first term of the upper bound of Eq. (1), let B be an adversary against L
IV0

,
⇣

E ,{⇡1,⇡2} E ,{⇡1,⇡2} E ,{⇡1,⇡2}L , . . . , L . Let (g0, g1, . . . , g) be the oracles of B, which are either L ,
IV1 IVa a

IV0,K
⌘

E ,{⇡1,⇡2} E ,{⇡1,⇡2}L , . . . , L or (⇢0, ⇢1, . . . , ⇢a). B runs A. For each query (S1, S2, . . . , S) by A, B
IV1,K IVa,K s

L

sreturns g0(") if s = 0 and g0 (
i=1 gi(Si

)) if s 2 1. Finally, B outputs the output of A. Thus,

 �

AvL

E,{⇡1,⇡2}
⇥

AQ

⇢0,...,⇢a ⇤ prfsV,K
nPr = 1 Pr = 1 = Adv o(B) .

E ,{⇡1,⇡2}
L 0iaIVi,K

The run time of B approximately equals that of A. The number of queries made by B to its
oracles is at most (� + q) and the length of each query is at most `w.

For the second term of the upper bound of Eq. (1), let R be the oracle of A such that

1. Prior to the interaction with A,
– Y

i,j

 ? for 1  i  q and 1  j  a,
– Z

i ⌘ ⌃n for 1  i  q, and
– bad 0.

2. During the interaction with A, return Z
i to the i-th query made by A.

3. For 1  i  q, let S
i = (S

i,1, Si,2, . . . , Si,si) be the i-th query made by A, where 0  s
i  a.

For 1  j  s
i

,
– Y

i,j ⌘ ⌃n if S
i,j is new, that is, Si,j =6 S

i

0
,j for any i0 such that i0 < i, and

– Y
i,j Y

i

0
,j if Si,j is not new.

4. bad 1 if, for some distinct i and i0 ,

si si0
M M

Y
i,j = Y

i

0
,j .

j=1 j=1

⇥ ⇤

Since R is identical to ⇢, Pr AR = 1 = Pr [A⇢ = 1]. As long as bad = 0, R is also identical
to Q⇢0,...,⇢a . Notice that

2 3

si si0
M M 1

Pr 4 Y
i,j = Y

i

0
,j 5  .

2n
j=1 j=1

Thus,
⇥

AQ

⇢0,...,⇢a ⇤ q(q 1)
Pr = 1 Pr [A⇢ = 1] 

2n+1 .

ut

Lemma 5. Let V = {IV0, IV1, . . . , IVa

} ⇢ ⌃n-w and {⇡1,⇡2} ⇢ P (⌃n-w). Suppose that {⇡1,
n o

E ,{⇡1,⇡2}⇡2, id} is pairwise everywhere distinct. Let A be any adversary against L 0  i  a
IVi

running in time at most t and making at most q queries in total. Suppose that the length of each
query is at most `w. Then, there exists an adversary B against E such that

Advprfs
`q(q 1)

n o(A)  ̀qAdvprp(B) + .
E,{⇡1,⇡2}

E 2n+1
L 0iaIVi

B runs in time at most t + O(`qT
E), and makes at most q queries. T

E is the time required to
compute E .

12

�

n o

Proof. Let Â be an adversary against J E ,⇡1 , J E ,⇡2 , J E ,⇡1 , . . . , J E ,⇡1 , J E ,⇡2 using A as a sub­
IV0 IV0 IV1 IVa IVa

ˆroutine. A is given access to 2(a + 1) oracles (h0,1, h0,2, h1,1, h1,2, . . . , ha,1, ha,2), which are ei­
⇣ ⌘

J E ,⇡1ther
IV1,K , . . . , J E ,⇡1

IVa,K with K ⌘ ⌃w or (⇢̂0,1, ⇢̂0,2, . . . , ˆ ⇢
a,2) ⌘

IV0,K , JIV
E ,

0

⇡

,K
2 , J E ,⇡1

IVa,K , J E ,⇡2 ⇢
a,1, ˆ

,⌃n)2(a+1)F ((⌃w)+ .
Â simply runs A. Let M be a query made by A to its j-th oracle for 0  j  a. If |M | > 0

ˆ ˆand |M | ⌘ 0 (mod w), then A returns h
j,1(pad(M)) to A. Otherwise, A returns h

j,2(pad(M))
ˆ ˆ ˆto A. Finally, A outputs the output of A. The run time of A is almost equal to that of A and A

makes at most q queries in total.
Notice that

 �  �

E,⇡1 E ,⇡2 E,⇡2 E,{⇡1,⇡2} E,{⇡1,⇡2}
J IV0,K ,...,J L ,...,Lˆ IV0,K ,J IVa,K IV0,K IVa,KPr A = 1 = Pr A = 1 ,

h i

ˆ⇢0,1,⇢̂0,2,...,⇢̂a,2Pr Aˆ = 1 = Pr [A⇢0,...,⇢a = 1] ,

where (⇢0, . . . , ⇢a) ⌘ F (⌃⇤ ,⌃n)a+1. Thus, from Theorem 1, there exists an adversary B against
F such that

Advprfs
`q(q 1)

n o(A)  ̀qAdvprp(B) + .
E ,{⇡1,⇡2}

E 2n+1
L 0iaIVi

B runs in time at most t+ O(`qT
E), and makes at most q queries. ut

5.2 Discussion

Some generic constructions of vPRF using any string-input PRF such as S2V [24] and S2V­
E ,{⇡1,⇡2}R [21] can also be applied to L . S2V and S2V-R require finite field multiplications and
IV

E ,{⇡1,⇡2}bit rotations, respectively, as well as bitwise XOR operations. On the other hand, vLV
only requires bitwise XOR operations if the permutations ⇡1 and ⇡2 are bitwise XOR operations
with constants.

E ,{⇡1,⇡2}vLV can be regarded as an instantiation of the protected counter sum construction with
E ,{⇡1,⇡2}a variable-input-length PRF. It is not a straightforward application, however, in that vLV

does not require any encoding of an input to add counter values. The domain separation and
the ordering of vector components are achieved by the initialization vectors in V.

6 Conclusion

This paper has first presented a PRF mode based on Lesamnta-LW and MDP which may pro­
duce multiple independent PRFs with a single key and multiple permutations and initialization
vectors. Then, it has used this mode to construct a PRF with minimum padding and a vector-
input PRF. It is expected that the proposed PRF mode will find some other applications. Future
work is to provide security analysis for the proposed schemes in multi-user settings.

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP16H02828.

13

References

1.	 http://www.itu.int/ITU-T/workprog/wp_item.aspx?isn=10276
2.	 Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance. In: Dwork, C. (ed.)

CRYPTO. Lecture Notes in Computer Science, vol. 4117, pp. 602–619. Springer (2006), the full version is
“Cryptology ePrint Archive: Report 2006/043” at http://eprint.iacr.org/

3.	 Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and its multi-user security.
Cryptology ePrint Archive, Report 2016/142 (2016), http://eprint.iacr.org/

4.	 Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N.
(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 1109, pp. 1–15. Springer (1996)

5.	 Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The cascade construction and its
concrete security. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science. pp.
514–523 (1996)

6.	 Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: New methods for message authentication using finite
pseudorandom functions. In: Coppersmith, D. (ed.) Advances in Cryptology - CRYPTO ’95, 15th Annual
International Cryptology Conference. Lecture Notes in Computer Science, vol. 963, pp. 15–28. Springer (1995)

7.	 Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD transform. In:
Lai, X., Chen, K. (eds.) Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the
Theory and Application of Cryptology and Information Security. Lecture Notes in Computer Science, vol.
4284, pp. 299–314. Springer (2006)

8.	 Bellare, M., Ristenpart, T.: Hash functions in the dedicated-key setting: Design choices and MPP transforms.
In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) Automata, Languages and Programming, 34th
International Colloquium, ICALP 2007. Lecture Notes in Computer Science, vol. 4596, pp. 399–410. Springer
(2007)

9.	 Bernstein, D.J.: How to stretch random functions: The security of protected counter sums. Journal of Cryp­
tology 12(3), 185–192 (1999)

10.	 Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key constructions. In: Bellare,
M. (ed.) Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference. Lecture
Notes in Computer Science, vol. 1880, pp. 197–215. Springer (2000)

11.	 Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: Knud­
sen, L.R. (ed.) Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and Ap­
plications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 2332, pp. 384–397. Springer
(2002)

12.	 Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.: spongent: A lightweight
hash function. In: Preneel, B., Takagi, T. (eds.) CHES. Lecture Notes in Computer Science, vol. 6917, pp.
312–325. Springer (2011)

13.	 Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information
Security and Cryptography, Springer (2002)

14.	 FIPS PUB 180-4: Secure hash standard (SHS) (Mar 2012)
15.	 Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P.

(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 6841, pp. 222–239. Springer (2011)
16.	 Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: An AES based 256-bit hash

function for lightweight applications: Lesamnta-LW. IEICE Transactions on Fundamentals E95-A(1), 89–99
(2012)

17.	 Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damg̊ard scheme with a permutation. Journal
of Cryptology 25(2), 271–309 (2012)

18.	 Hirose, S., Yabumoto, A.: A tweak for a PRF mode of a compression function and its applications. The 9th
International Conference on Security for Information Technology and Communications (SECITC ’16) (2016)

19.	 ISO/IEC 29192-5:2016. Information technology – Security techniques – Lightweight cryptography – Part 5:
Hash-functions (2016)

20.	 Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.) FSE. Lecture Notes in Com­
puter Science, vol. 2887, pp. 129–153. Springer (2003), an updated version is “Cryptology ePrint Archive:
Report 2002/180” at http://eprint.iacr.org/

21.	 Minematsu, K.: A short universal hash function from bit rotation, and applications to blockcipher modes. In:
Susilo, W., Reyhanitabar, R. (eds.) Provable Security - 7th International Conference, ProvSec 2013. Lecture
Notes in Computer Science, vol. 8209, pp. 221–238. Springer (2013)

22.	 Nandi, M.: Fast and secure CBC-type MAC algorithms. In: Dunkelman, O. (ed.) Fast Software Encryption,
16th International Workshop, FSE 2009. Lecture Notes in Computer Science, vol. 5665, pp. 375–393. Springer
(2009)

23.	 NIST Special Publication 800-38B: Recommendation for block cipher modes of operation: The CMAC mode
for authentication (2005)

14

http:http://eprint.iacr.org
http:http://eprint.iacr.org
http:http://eprint.iacr.org
http://www.itu.int/ITU-T/workprog/wp_item.aspx?isn=10276

24.	 Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.)
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Ap­
plications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 4004, pp. 373–390. Springer
(2006)

25.	 Yasuda, K.: Boosting Merkle-Damg̊ard hashing for message authentication. In: Kurosawa, K. (ed.) Advances
in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryp­
tology and Information Security. Lecture Notes in Computer Science, vol. 4833, pp. 216–231. Springer (2007)

26.	 Yasuda, K.: “Sandwich” is indeed secure: How to authenticate a message with just one hashing. In: Pieprzyk,
J., Ghodosi, H., Dawson, E. (eds.) Information Security and Privacy, 12th Australasian Conference, ACISP
2007. Lecture Notes in Computer Science, vol. 4586, pp. 355–369. Springer (2007)

27.	 Yasuda, K.: A one-pass mode of operation for deterministic message authentication- security beyond the
birthday barrier. In: Nyberg, K. (ed.) Fast Software Encryption, 15th International Workshop, FSE 2008.
Lecture Notes in Computer Science, vol. 5086, pp. 316–333. Springer (2008)

28.	 Yasuda, K.: A double-piped mode of operation for macs, prfs and pros: Security beyond the birthday barrier.
In: Joux, A. (ed.) Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Lecture Notes in Computer Science, vol. 5479,
pp. 242–259. Springer (2009)

29.	 Yasuda, K.: HMAC without the “second” key. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) Information Security, 12th International Conference, ISC 2009. Lecture Notes in Computer Science,
vol. 5735, pp. 443–458. Springer (2009)

30.	 Yasuda, K.: On the full MAC security of a double-piped mode of operation. IEICE Transactions on Funda­
mentals 94-A(1), 84–91 (2011)

31.	 Yasuda, K.: A parallelizable PRF-based MAC algorithm: Well beyond the birthday bound. IEICE Transac­
tions on Fundamentals 96-A(1), 237–241 (2013)

15

