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Abstract. This paper discusses a mode for pseudorandom functions (PRFs) based on the hashing 
mode of Lesamnta-LW and the domain extension called Merkle-Damg̊ard with permutation (MDP). 
The hashing mode of Lesamnta-LW is a plain Merkle-Damg̊ard iteration of a block cipher with its 
key size half of its block size. First, a PRF mode is presented which produces multiple independent 
PRFs with multiple permutations and initialization vectors if the underlying block cipher is a PRP. 
Then, two applications of the PRF mode are presented. One is a PRF with minimum padding. 
Here, padding is said to be minimum if the produced message blocks do not include message blocks 
only with the padded sequence for any non-empty input message. The other is a vector-input PRF 
using the PRFs with minimum padding. 

Keywords: Compression function, MAC, Provable security, Pseudorandom function, Vector-input 
PRF 

1 Introduction 

Background. A pseudorandom function (PRF) is one of the most important elements in cryp­
tography. Informally, it is a keyed function indistinguishable from a uniform random function if 
the key is chosen uniformly at random and kept secret. It is often used as a function for message 
authentication (MAC function). It is also used for pseudorandom number generation. A PRF is 
usually constructed using a block cipher or a cryptographic hash function. We are interested in 
the latter approach. 

HMAC [4] is a widely deployed MAC function constructed from a cryptographic hash func­
tion. HMAC is defined with a hash function H as follows: 

HMAC(K, M) =  H((K E opad)kH((K E ipad)kM)) , 

where K is a secret key, M is an input message, k represents concatenation, E represents bitwise 
XOR, ipad = 0x3636 · · · 36 and opad = 0x5c5c · · · 5c. It is also depicted in Fig. 1. 

Due to the length extension property of standardized hash functions such as SHA-1, SHA­
256 and SHA-512 [14], HMAC invokes the underlying hash function twice. The drawback of this 
structure is inefciency for short messages. Such inefciency may also come from the padding of 
the underlying hash function based on the Merkle-Damg̊ard strengthening. 

Continuing advances of pervasive computing have greatly been increasing the demand for 
security of devices with constrained resources. To answer to such demand, for cryptographic hash 
functions, the international standard ISO/IEC 29192-5 [19] has been published, which includes 
three lightweight hash functions: PHOTON [15], SPONGENT [12] and Lesamnta-LW [16]. 

In the coming IoT era, many of “things” will get connected to the internet and we will 
enjoy the great amount of benefits, while the risk of cyber attacks will be significantly increased. 
Examples of the fastest evolving IoT systems can be seen in automotive industry and smart 
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Fig. 1: HMAC. H is a cryptographic hash function. K is a secret key. M is an input message. E 
represents bitwise XOR operation. k represents concatenation of sequences. ipad = 0x3636 · · · 36 
and opad = 0x5c5c · · · 5c. 

factory (Industry 4.0). Recently, remote software update attracts a lot of attention in automotive 
industry, and therefore, secure software update procedures for intelligent transportation systems 
(ITS) are currently investigated for standardization in ITU-T SG17 [1]. It is expected that MAC 
algorithms or PRFs play core roles for security of these procedures. To ensure security for IoT 
devices such as electronic control units in a vehicle, cryptographic solutions need to be lightweight 
in terms of implementation resources. 

Our Contribution. This paper discusses a keyed mode based on the hashing mode of Lesamnta-
LW and the MDP domain extension [17], which is depicted in Fig. 2. It is first shown that the 
keyed mode produces multiple independent PRFs with multiple permutations and initialization 
vectors if the underlying block cipher is a PRP. Then, two applications of the mode are presented. 
First, a PRF with minimum padding is presented. We say that padding is minimum if the 
produced message blocks do not include message blocks only with the padded sequence for 
any non-empty input message. Second, a vector-input PRF (vPRF) is constructed using the 
PRFs with minimum padding. A vPRF is a PRF which takes as input a vector of strings. 
The presented vPRF is an instantiation of the protected counter sum construction [9] with a 
variable-input-length PRF based on Lesamnta-LW and MDP. 

M1 M2 Mm−1 Mm 

E E E E 
K 

IV π 

Fig. 2: A keyed mode based on Lesamnta-LW and the MDP domain extension. E is the under­
lying block cipher, K is a secret key, IV  is an initialization vector, and ⇡ is a permutation. The 
input of E from the top is its key input. 

The basic idea to obtain multiple independent PRFs using the MDP domain extension is 
from the precedent paper [18] as well as its two applications described above. It is shown that 
the keyed mode in [18] may produce multiple PRFs if the underlying compression function is 
a PRF against related-key attacks with respect to the permutations used in the mode. On the 
other hand, by adjusting the idea in [18] to the hashing mode of Lesamnta-LW, we show that 
our keyed mode does not require the security against related-key attacks of the underlying block 
cipher. 

Actually, our result can be applied to any hash function that is constructed from Lesamnta-
LW by replacing the underlying block cipher with a block cipher whose plaintext size is larger 
than its key size. An example of such a block cipher is Rijndael [13]. 
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The advantage of the proposed PRF is that it is more efcient than HMAC with respect 
to the number of the compression function calls. However, the proposed PRF requires the hash 
function to be Lesamnta-LW or similar hash functions constructed in the way mentioned above, 
while HMAC can use any hash function. The other advantage is that it is beneficial for im­
plementors who have already implemented Lesamnta-LW. If they additionally needs a PRF, 
they can reuse their implementation of the Lesamnta-LW compression function. Note that in 
our PRFs, Lesamnta-LW is modified but the compression function is not. This results in a 
lightweight implementation of two cryptographic algorithms. 

Related Work. It is shown that HMAC is a PRF if the compression function of the underlying 
hash function is a PRF with respect to two keying strategies [2]. In particular, for one of the 
keying strategies, the compression function is required to be a PRF against related key attacks 
with respect to ipad and opad. 

Yasuda [29] presented a secure HMAC variant without the second key, which is called H2­
MAC. It is shown to be a PRF on the assumption that the underlying compression function is 
a PRF even if an adversary is allowed to obtain a piece of information on the secret key. 

AMAC [3] is a MAC function using a hash function encapsulated with an unkeyed output 
function. Typical candidates for the output function are truncation and the mod function. AMAC 
is more efcient than HMAC especially for short messages. It is shown that AMAC is a PRF 
if the underlying compression function remains a PRF under leakage of the key by the output 
function. 

Various PRF modes of a compression function are also known. The plain Merkle-Damg̊ard 
cascade is a PRF against adversaries making prefix-free queries if the underlying compression 
function is a PRF [5]. In the context of multi-property preservation [7], PRF modes such as 
EMD [7] and MDP [17] are proposed. Yasuda’s PRF mode of a compression function in [25] is 
shown to be a PRF if the underlying compression function is a PRF against a kind of related 
key attacks. Sandwich construction for an iterated hash function is shown to produce a PRF if 
the underlying compression function is a PRF with respect to two keying strategies [26]. 

PRF modes using keyed compression functions were also proposed. The first proposal was 
XOR MAC [6], which was followed by the protected counter sum construction [9]. It is shown 
that various hashing modes preserve the PRF security of keyed compression functions [8]. Yasuda 
proposed PRF modes for keyed compression functions with security beyond birthday [27, 28, 30, 
31]. 

Minimum padding is already common among block-cipher-based MAC functions such as 
CMAC [23] and PMAC [11]. CMAC, which is based on OMAC (One-key CBC-MAC) [20], 
originated from XCBC [10]. The idea to finalize the iteration with multiple permutations is used 
in the secure CBC-MAC variants GCBC1 and GCBC2 [22]. 

Rogaway and Shrimpton [24] introduced the notion of vPRF. They also presented a generic 
scheme to construct a vPRF from a common PRF taking a single string as input. Minematsu [21] 
also proposed a vPRF using his universal hash function based on bit rotation. 

Organization. Section 2 gives notations and definitions used in the remaining parts of the paper. 
It is shown in Sect. 3 that the keyed mode based on Lesamnta-LW and MDP may produce 
multiple independent PRFs with multiple permutations and multiple initialization vectors. Based 
on the result in Sect. 3, the PRF with minimum padding and the vPRF are presented and their 
security is confirmed in the manner of provable security in Sect. 4 and Sect. 5, respectively. 
Section 6 concludes the paper. 
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2 Preliminaries 

2.1 Notations and Definitions 

S 

= {0, 1}. For any non-negative integer l, ⌃l is identified with the set of all ⌃-sequences of 
. ⌃0 is the set of the empty sequence ". Let (⌃l)⇤

S

Let ⌃ 
(⌃l)i and (⌃l)+ (⌃l)ilength l =
 =
 .


i>0 i>1
S

k2For k1  k2, let  (⌃l)[k1,k2] = (⌃l)i .
i=k1 

For x 2 ⌃⇤, the length of x is denoted by |x|. The concatenation of x1 and x2 in ⌃⇤ is 
denoted by x1kx2. 

The operation of selecting element s from set S uniformly at random is denoted by s ⌘ S. 
Let f : K ⇥D ! R be a family of functions from D to R indexed by keys in K. Then,  f(K, ·) 

is a function from D to R for each key K 2 K. f(K,x) is often denoted by f
K (x). 

Let F (D,R) denote the set of all functions from D to R. Let P(D) denote the set of all 
permutations on D. id represents an identity permutation. Let C(, n) be the set of all block 
ciphers with key size  and block size n. A  block cipher in  C(, n) is called a (, n) block cipher.  

Let ⇧ ⇢ P (D). We say that ⇧ is pairwise everywhere distinct if, for any pair of distinct 
permutations ⇡,⇡0 2 ⇧, ⇡(x) 6= ⇡0(x) for every x 2 D. 

2.2 Pseudorandom Functions and Permutations 

For f : K ⇥D ! R, let  A be an adversary trying to distinguish f
K from a function ⇢, where  K 

and ⇢ are chosen uniformly at random from K and F (D,R), respectively. A is given access to 
f
K or ⇢ as an oracle and makes adaptive queries in D and obtains the corresponding outputs. 
The prf-advantage of A against f is defined as 

Advprf 
f (A) = 


 

 

 
Pr 
ih 

AfK = 1  � Pr [A⇢ = 1]
 

 

 
 ,
 

where K ⌘ K and ⇢ ⌘ F (D,R). The prp-advantage of A against f is defined as 

Advprp(A) =
f 

 

 

 
Pr 
ih 

AfK = 1  � Pr [A⇢ = 1]
 

 

 
 ,
 

where K ⌘ K and ⇢ ⌘ P (D). In these notations, adversary A is regarded as a random variable. 
f is called a pseudorandom function (permutation), or PRF (PRP) in short, if no efcient 

adversary A can have any significant prf-advantage (prp-advantage) against f . 
The definitions of the prf- and prp-advantage can naturally be extended to adversaries with 

multiple oracles. The prf-advantage of adversary A with access to m oracles is defined as 

Advm-prf 
f (A) = 


 

 
 ,FK2 ,...,FKm = 1] � Pr[A⇢1,⇢2,...,⇢mPr[AFK1 = 1]

 

 
 ,
 

Advm-prpwhere (K1,K2, . . . ,Km

) ⌘ Km and (⇢1, ⇢2, . . . , ⇢m) ⌘ F (D,R)m . can be defined 
f 

similarly. 
The following lemma is a paraphrase of Lemma 3.3 in [5]: 

Lemma 1. Let A be any adversary against f with access to m oracles. Then, there exists an 
adversary B against f such that 

Advm-prf m · Advprf(A)  (B) .
f f 

The run time of B is approximately total of that of A and the time required to compute f to 
answer to the queries of A. The number of the queries made by B is at most max{q

i | 1  i  m}, 
where q

i is the number of the queries made by A to its i-th oracle. 
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2.3 The Hashing Mode of Lesamnta-LW and Its Variant with MDP 

The hashing mode of Lesamnta-LW [16] is given in Figure 3. It is the plain Merkle-Damg̊ard 
iteration of a block cipher E in C(n/2,n), where n is a positive even integer. The input of E 
from the top is its key input. IV0kIV1 2 ⌃n is an initialization vector, where |IV0| = |IV1| = n/2. 
M1,M2, . . . ,Mm are message blocks, where M

i 2 ⌃n/2 for i = 1, 2, . . . ,m. 

M1 M2 Mm−1 Mm 

IV0
 
IV1
 

E E E E 

Fig. 3: The hashing mode of Lesamnta-LW 

Now, let us introduce the variant of the hashing mode of Lesamnta-LW with the MDP domain 
extension [17]. Hereafter, it is assumed that the underlying block cipher E is in C(w, n), where 
w < n. The MDP variant with a permutation ⇡ on ⌃n-w is the function J E ,⇡ : ⌃n ⇥ (⌃w)+ ! 
⌃n, which is defined as follows: For X1, X2, . . . , Xx 2 ⌃w and Y0 2 ⌃n , 

J E ,⇡(Y0, X1kX2k · · · kXx

) =  Y
x 

such that 
(

E
Yi�1,0 (Xi

kY
i-1,1)  (1   i  x 1)

Y
i 

E
Yi�1,0 (Xi

k⇡(Y
i-1,1)) (i = x) , 

⌃n 

seen later, ⇡ need not be a cryptographic primitive. Thus, the computational overhead of ⇡ can 
be small. 

where Y
j = Y

j,0kYj,1 2 and |Y
j,0| = w for 0  j  x. It is depicted in Fig. 4. As it will be 

X1 X2 Xx−1 Xx 

E E E E 
Y0,0 
Y0,1 π 

Fig. 4: J E ,⇡(Y0, X1kX2k · · · kXx

) 

3 Multiple PRFs based on Lesamnta-LW 

In this section, it is shown that the MDP variant of the Lesamnta-LW hashing mode may 
produce multiple independent PRFs with a single secret key using multiple permutations and 
initialization vectors. 

E ,⇡ E ,⇡Let J : ⌃w ⇥ (⌃w)+ ! ⌃n be a keyed function such that J (K,X) =  J E ,⇡(KkIV,X),
IV  IV  

where K 2 ⌃w , IV  2 ⌃n-w and X 2 (⌃w)+ . K is a secret key and IV  is an initialization 
vector. J E ,⇡(K, ·) is also denoted by J E ,⇡ (·). For ⇧ ⇢ P(⌃n-w) and V ⇢ ⌃n-w, let  

IV  IV,K

n o 

J E ,⇧ 
V = J E ,⇡ 

IV  IV  2 V ^ ⇡ 2 ⇧ . 
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V Let V = {IV
i | 1  j  a} and ⇧ = {⇡

j | 1  j  d}. Let A be an adversary against J E ,⇧ . 
The advantage of A is defined by 

" 

D E1jd # 

J 
E,⇡j h i 

Advprfs IVi,K Ah⇢i,j i1jd 
1ia 1ia(A) =  Pr A = 1 Pr = 1  

J E,⇧ 
V 

for K ⌘ ⌃w and h⇢
i,j i1jd ⌘ F ((⌃w)+ ,⌃n)a⇥d, where  1ia 

D E1jd ⇣ ⌘ 

E ,⇡j J E ,⇡1J = 
IV1,K , . . . , J E ,⇡d 

IV2,K , . . . , J E ,⇡d 
IVi,K IV1,K , J E ,⇡2 

IV1,K , J E ,⇡1 
IVa,K1ia 

and 
h⇢

i,j i1jd = (⇢1,1, ⇢1,2, . . . , ⇢1,d, ⇢2,1, . . . , ⇢a,d) .1ia 

Notice that the setting is di↵erent from that of PRF for an adversary with multiple oracles in 
D 

E ,⇡j 
E1jd 

Sect. 2.2. Only a single key K is used for J
IVi,K 1ia 

The following theorem states that JV 
E ,⇧ may produce multiple independent PRFs with a 

single key if E is a PRP. 

Theorem 1. Let V ⇢ ⌃n-w and ⇧ ⇢ P (⌃n-w). Suppose  that  ⇧ [ {id} is pairwise everywhere 
distinct and that ⇡(IV ) 6 6= ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [ {id} and IV, IV 0 2 V such that (⇡, IV ) = 
(⇡0, IV 0). Let A be any adversary against J E ,⇧ running in time at most t and making at most V 
q queries in total. Suppose that each query consists of at most ` blocks. Then, there exists an 
adversary B against E such that 

Advprfs 
`q(q 1)· Advprp(A)  `q (B) +  . 

J E ,⇧ 
E 2n+1 

V 

B runs in time at most t + O(`qT
E ), and makes at most q queries. T

E is the time required to 
compute E . 

Remark 1. Let V = {IV1, IV2, . . . , IVa

} and ⇧ = {⇡1,⇡2, . . . ,⇡
d

}. Let tv and tp be integers such 
that tv + tp = n w. Let v1, v2, . . . , va be distinct constants in ⌃tv . Let c1, c2, . . . , c

d be distinct 
nonzero constants in ⌃tp . Suppose that IV

i = v
i

k0tp for 1  i  a and that ⇡
j (x) =  xE (0tv kc

j ) 
for 1  j  d. Then,  

– ⇧ [ {id} is pairwise everywhere distinct, and 
– since ⇡

j (IVi

) =  v
i

kc
j , ⇡j (IVi

) 6= ⇡
j

0 (IV
i

0 ) if  (i, j) 6= (i0, j0). 

Theorem 1 immediately follows from Lemma 2 and Lemma 3. 

⌃n-wLemma 2. Let V ⇢ and ⇧ ⇢ P (⌃n-w). Suppose  that  ⇧ [ {id} is pairwise everywhere 
distinct and that ⇡(IV ) 6 6= ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [ {id} and IV, IV 0 2 V such that (⇡, IV ) = 
(⇡0, IV 0). Let A be any adversary against J E ,⇧ running in time at most t and making at most V 
q queries in total. Suppose that each query consists of at most ` blocks. Then, there exists an 
adversary B against E with access to q oracles such that 

Advprfs ` · Advq-prf 
E,⇧ (A)  (B) .

E

JV 

B runs in time at most t + O(`qT
E ), and makes at most q queries. T

E is the time required to 
compute E . 

6
 



�

�

Proof. Let V = {IV1, IV2, . . . , IVa

} and ⇧ = {⇡1,⇡2, . . . ,⇡
d

}. Let X = X1kX2k · · · kXx

, where  
1  x  ` and |X

i

| = w for 1  i  x. For 1  i1  i2  x, let  X[i1,i2] = X
i1 kXi1+1k · · · kXi2 . 

For l 2 {0, 1, . . . , `} and two functions µ : (⌃w)[1,`] ! ⌃n and ⇠ : (⌃w)[0,`-1] ! ⌃n, let  
R[l]E ,⇡ : (⌃w)[1,`] ! ⌃n be a function such that 

µ,⇠ 

(


R[l]E ,⇡(X) =
µ,⇠ 

µ(X) 	  if  x  l, 

J E ,⇡(⇠(X[1,l]), X[l+1,x]) if  x 2 l + 1, 

where X[1,l] = " if l = 0. We define 

"
5
D E1jd

E ,⇡j
R[l]µi,j ,⇠i 1iaP

l = Pr  A	 = 1  

#
5

,
 

where (µ1,1, . . . , µ
a,d

) ⌘ F ((⌃w)[1,`],⌃n)a⇥d and 

⇠
i

(X[1,l]) =

(

KkIV

i if l = 0  

⇠̃
i

(X[1,l]) otherwise 

for K ⌘ ⌃w and (⇠̃1, . . . , ⇠̃a) ⌘ F ((⌃w)[1,`-1],⌃n)a. Then, the advantage of A is 

Advprfs (A) =  |P0 P
`

| . 
J E ,⇧ 
V 

The algorithm of an adversary B against E with q oracles is described below. Let (g1, . . . , gq) 
be the oracles of B. They are either (E

K1 , . . . ,EKq ) or (⇢1, . . . , ⇢q) such that (K1, . . . ,Kq

) ⌘ 
(⌃n )q and (⇢1, . . . , ⇢q) ⌘ F (⌃n ,⌃n )q, respectively.  B uses A as a subroutine. 

1.	 B selects r from {1, . . . , `} uniformly at random. 
2. If r 2 2, then B selects functions (µ̃1,1, . . . , µ̃

a,d

) from F ((⌃w)[1,r-1],⌃n )a⇥d uniformly at 
random. Actually, B simulates µ̃

i,j with lazy evaluation. 
3.	 B runs A. Finally, B outputs the output of A. 

For 1  k  q and 1  x  `, let  X = X1kX2k · · · kXx be the k-th query made by A during 
the execution of A. Suppose that X is a query to the (i, j)-th oracle of A. If  x 2 r, then  B 
makes a query to the idx (k)-th oracle g

idx (k), where  idx : {1, . . . , q} ! {1, . . . , q} is a function 
defined below: 

–	 If r = 1, then idx (k) = 1 for 1  k  q. 
–	 If r 2 2, then 

•	 idx (k) =  idx (k0) if there exists a previous k0-th query X 0 (k0 < k) such that it is a query 
to the (i, j0)-th oracle for some 1  j0  d and X 0 = X[1,r-1], and [1,r-1] 

•	 idx (k) =  k otherwise. 

For the query to the idx (k)-th oracle, B also chooses ⌫(k) as follows: 

–	 If r = 1, then ⌫(k) =  IV
i

. 
–	 If r 2 2, then ⌫(k) =  ⌫(k0) if  idx (k) =  idx (k0) and ⌫(k) ⌘ ⌃n-w if idx (k) =  k. 

The query made by B is (X
r

k⇡
j (⌫(k))) if x = r and (X

r

k⌫(k)) if x 2 r+ 1. The answer of B to 
X is

8 

>

< 

>

:
5

µ̃
i,j (X)  if  x  r 1, 

g
idx (k)(Xr

k⇡
j (⌫(k))) if x = r, 

J E ,⇡j (g
idx (k)(Xr

k⌫(k)), X[r+1,x]) if  x 2 r + 1. 
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Now, suppose that B is given (E
K1 , . . . ,EKq ) as oracles. Then, the answer of B to X is 

8 

>

< 

>

:
5

µ̃
i,j (X)  if  x  r 1, 

(X
r

k ⇡
j (⌫(k))) if x = r,E

K

idx (k) 

(X
r

k ⌫(k)), X[r+1,x]) if  x 2 r + 1.J E ,⇡j (E
K

idx (k) 

If r = 1, then idx (k) = 1 and ⌫(k) =  IV
i for 1  k  q. If  r 2 2, then K

idx (k)k ⌫(k) is chosen 
uniformly at random from ⌃n for a new pair of i and X[1,r-1]. Thus,  B provides A with the 

E ,⇡joracle R[r 1] , and 
µi,j ,⇠i 

ih ih

`

BEK1 ,...,EKq = u ^ BEK1 ,...,EKqPr = 1 = Pr r = 1  
u=1 

`

X 

X 

ih1
 
BEK1 ,...,EKqPr = 1=
 r = u 

` 
u=1

"
 #

D E1jd

E,⇡j
X

`

= 
` 

u=1 

1
 R[u-1]µi,j ,⇠i 1ia = 1Pr A 

X

`

= P
u-1 . 

` 
u=1 

Suppose that B is given oracles (⇢1, . . . , ⇢q). Then, the answer of B to X is 

1
 

8 

>

< 

>

:
5

µ̃
i,j (X)  if  x  r 1, 

⇢
idx (k)(Xr

k ⇡
j (⌫(k))) if x = r, 

J E ,⇡j (⇢
idx (k)(Xr

k ⌫(k)), X[r+1,x]) if  x 2 r + 1. 

If r = 1, then idx (k) = 1 and ⌫(k) =  IV
i for 1  k  q. The functions in {⇢1(·k ⇡(IV )) | ⇡ 2 

⇧ [ {id}, IV  2  V}  are independent of each other since ⇡(IV ) 6 = ⇡0(IV 0) for any ⇡,⇡0 2 ⇧ [ {id}
and IV, IV 0 2 V such that (⇡, IV ) 6 = (⇡0, IV 0). If r 2 2, then idx (k) is fixed only by (i,X[1,r-1]) 
and ⌫(k) is chosen uniformly at random only when idx (k) =  k. In addition, ⇧ [ {id} is pairwise 

E ,⇡jeverywhere distinct. Thus, B provides A with the oracle R[r] , and 
µi,j ,⇠i 

X

`

P
i . 

` 
i=1 

Pr[B⇢1,...,⇢q 
1 

= 1] = 

Thus, 

ih 

Advq-prf BEK1 ,...,EKq Pr [B⇢1,...,⇢q(B) = Pr = 1  = 1] 
E 

XX

` `

= P
i-1 P

i = 
` ` 
1
 1
 |P0 P

`

|
`
 

i=1 i=1 

1 
Advprfs= 

E,⇧ (A) . ` JV 

There may exist an adversary with the same amounts of resources as B and larger advantage. 
Let us call it B again. ut 
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Lemma 3 (Lemma 3 of [16]). Let A be any adversary with m oracles against E running in 
time at most t, and making at most q queries. Then, there exists an adversary B against E such 
that 

Advm-prf q(q 1) ·Advprp(A)  m (B) +  .
E E 2n+1 

B runs in time at most t + O(qT
E

) and makes at most q queries, where T
E represents the time 

required to compute E. 

4 PRF with minimum padding 

Based on the result in the previous section, a PRF mode with minimum padding is proposed 
and its security is confirmed in this section. Then, the proposed scheme is compared with two 
PRF modes based on Lesamnta-LW in [16] in terms of efciency. 

4.1 The Proposed Scheme 

The padding function used in the proposed construction is defined as follows: For any M 2 ⌃⇤ , 
(

M if |M | > 0 and |M | ⌘ 0 (mod  w)
pad(M) =  

Mk10t if |M | = 0 or |M | 6⌘ 0 (mod  w) , 

where t is the minimum non-negative integer such that 

|M |+ 1 +  t ⌘ 0 (mod  w) . 

In particular, pad(") = 10w-1 . 
For any M , | pad(M)| is the minimum positive multiple of w, which is greater than or equal 

¯ ¯ ¯to |M |. Let pad(M) =  M1kM2k · · · kMm

, where  |M̄
i

| = w for every i such that 1  i  m. m = 1  
¯if |M | = 0, and m = d|M |/we if |M | > 0. M
i is called the i-th block of pad(M). 

E ,{⇡1,⇡2}The proposed function L : ⌃w ⇥ ⌃⇤ ! ⌃n based on Lesamnta-LW and MDP is 
IV  

defined by 
(

E ,{⇡1,⇡2} J E ,⇡1 (pad(M)) if |M | > 0 and |M | ⌘ 0 (mod  w)
L (K,M) =  IV,K

IV  J E ,⇡2 (pad(M)) if |M | = 0 or |M | 6⌘ 0 (mod  w).
IV,K

E ,{⇡1,⇡2}L is shown to be a PRF if the underlying block cipher E is a PRP. 
IV  

Corollary 1. Let IV  2 ⌃n-w. Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that {⇡1,⇡2, id} is pairwise 
E ,{⇡1,⇡2}everywhere distinct. Let A be any adversary against L running in time at most t and
IV  

making at most q queries in total. Suppose that the length of each query is at most `w. Then, 
there exists an adversary B against E such that 

`q(q 1)
Advprf ·Advprp(A)  `q (B) +  .

E,{⇡1,⇡2} 
E 2n+1

LIV  

B runs in time at most t + O(`qT
E ), and makes at most q queries. T

E is the time required to 
compute E . 

E ,⇡1 E ,⇡2ˆProof. Let A be an adversary against J , J using A as a subroutine. Let (h1, h2) be  the  
IV  IV  

oracles of Â. Then, (h1, h2) are either (J E ,⇡1 ) with  K ⌘ ⌃w or (⇢1, ⇢2) ⌘ F ((⌃w)+ ,⌃n).
IV,K

, J E ,⇡2 
IV,K
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ˆ ˆA simply runs A. Let M be a query made by A. If  |M | > 0 and |M | ⌘ 0 (mod  w), then A 
returns h1(pad(M)) to A. Otherwise,  Â returns h2(pad(M)) to A. Finally, Â outputs the output 

ˆof A. The run time of A is almost equal to that of A and A makes at most q queries in total. 
Notice that 

 �  � 

E ,⇡1 E,⇡2 E ,{⇡1,⇡2}


Pr ÂJIV,K ,JIV,K  = 1  = Pr  ALIV,K  = 1  ,
 
h i 

Pr Â⇢1,⇢2 = 1  = Pr [A⇢ = 1] , 

where ⇢ ⌘ F (⌃⇤ ,⌃n ). Thus, from Theorem 1, there exists an adversary B against F such that 

`q(q 1)
Advprf (A) = Advprfs (Â)  ̀q · Advprp(B) +  .

E ,{⇡1,⇡2} E,{⇡1,⇡2} 
E 2n+1

L JIV  IV  

B runs in time at most t + O(`qT
E ), and makes at most q queries. ut 

Remark 2. A PRF with minimum padding can also be constructed with a single permutation 
E ,{⇡1,⇡2}and two distinct initialization vectors. However, L
IV  is much better than this construction. 

For the PRF with a single permutation and two distinct initialization vectors, users have to know 
the length of an input message in advance since it determines which initialization vector should 
be chosen. 

4.2 Discussion 

In [16], the authors presented two PRF modes based on Lesamnta-LW, which are called a keyed­
via-IV (KIV) mode and a key-prefix (KP) mode. 

Let n = 256 and w = 128 for J E ,⇡ , as is specified for Lesamnta-LW. Let padL is the 
2 ⌃256padding function of Lesamnta-LW and IVL is the initialization vector of Lesamnta­

⌃256 ! ⌃128LW. Let chop : be the function which simply outputs the latter half of the 
input. Then, the KIV mode of Lesamnta-LW is chop(J E ,⇡(K, padL(M))) and the KP mode is 
chop(J E ,⇡(IVL, padL(K

0k M))), where K 2 ⌃256 and K 0 2 ⌃128 are secret keys and M 2 ⌃⇤ is 
a message input of length at most 264 1. 

For X 2 ⌃⇤ such that |X|  264 1, padL(X) =  Xk 10t+63k len64(X), where len64(X) is  
the 64-bit binary representation of |X| and t is the minimum non-negative integer such that 
|X| + t ⌘ 0 (mod 128). 

Suppose that input M is not the empty sequence. Then, the number of invocations of E 
is d |M |/128e + 1 for the KIV mode, d |M |/128e + 2 for the KP mode, and d |M |/128e for the 

E ,{⇡1,⇡2} E ,{⇡1,⇡2}proposed mode L . Thus,  L is the most efcient, especially for short messages. 
IV  IV  

The advantage of the KP mode is that it uses the hash function Lesamnta-LW as it is. 
E ,{⇡1,⇡2}The output of L is twice as long as those of the KIV mode and the KP mode. It 
IV  

may be advantageous when used for pseudorandom bit generation. 

5 Vector-Input PRF 

5.1 The Proposed Scheme 

A scheme is proposed to construct a vector-input PRF (vPRF) using instances of the PRF 
presented in Sect. 4. In the original formalization [24], a vPRF accepts vectors with any number 
of components as inputs. In contrast, the proposed scheme has a parameter which specifies the 
maximum number of the components in an input vector. 
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Let a be a positive integer, which is the maximum number of the components in an input 
⌃n-wvector. Let ⇧ = {⇡1,⇡2} ⇢ P (⌃n-w) and V = {IV0, IV1, . . . , IVa

} ⇢ . The proposed 
E ,{⇡1,⇡2} : ⌃w ⇥ (⌃⇤)[0,a] ! ⌃nvector-input function based on Lesamnta-LW vLV is defined as 

follows: For an s-component vector (S1, . . . , Ss

) such that 0  s  a, where  (S1, . . . , Ss

) = ()  if  
s = 0, 

8 

E ,{⇡1,⇡2}
>

L (K, ")  if  s = 0, 
< IV0 

! 

E ,{⇡1,⇡2} 
s

MvL (K, (S1, S2, . . . , Ss

)) = 
E ,{⇡1,⇡2} E ,{⇡1,⇡2}V 

>L K, L (K,S
i

) if s 2 1.
: 

IV0 IVi 

i=1 

E ,{⇡1,⇡2}It is shown that vL is a vPRF if E is a PRP. V 

Corollary 2. Let V = {IV0, IV1, . . . , IVa

} ⇢ ⌃n-w. Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that 
E ,{⇡1,⇡2}{⇡1,⇡2, id} is pairwise everywhere distinct. Let A be any adversary against vL runningV 

in time at most t and making at most q queries. Suppose that the length of each vector component 
in queries is at most `w and the total number of the vector components in all of the queries is 
at most �. Then, there exists an adversary B against E such that 

prf `(� + q)(� + q 1) + q(q 1)
Adv (A)  `(� + q) Advprp(B) +  .

E,{⇡1,⇡2} 
E 2n+1

vLV 

B runs in time at most t + O(`(� + q)T
E ), and makes at most (� + q) queries. T

E is the time 
required to compute E. 

Corollary 2 directly follows from Lemmas 4 and 5. 

⌃n-wLemma 4. Let V = {IV0, IV1, . . . , IVa

} ⇢ . Let {⇡1,⇡2} ⇢ P (⌃n-w) and suppose that 
E ,{⇡1,⇡2}{⇡1,⇡2, id} is pairwise everywhere distinct. Let A be any adversary against vL runningV 

in time at most t and making at most q queries. Suppose that the length of each vector component 
in queries is at most `w and the total number of the vector components in all of the queries is 

n o 

E ,{⇡1,⇡2}at most �. Then, there exists an adversary B against L
IVi 

0  i  a such that 

(A)  Advprfs
q(q 1)

Advprf 
E,{⇡1,⇡2} 

n 
E ,{⇡1,⇡2} 

o(B) +  
2n+1 . 

vL

L 0iaV IVi 

B runs in time at most t and makes at most (� + q) queries in total. The length of each query 
is at most `w. 

Proof. Notice that 
 � 

E,{⇡1,⇡2}
Advprf 

E,{⇡1,⇡2} (A) =  Pr AvLV,K = 1  Pr [A⇢ = 1] , 
vLV 

where K ⌘ ⌃w and ⇢ ⌘ F ((⌃⇤)[0,a],⌃n). 
Let ⇢

i : ⌃⇤ ! ⌃n for 0  i  a. Let Q⇢0,...,⇢a : (⌃⇤)[0,a] ! ⌃n be a vector-input function 
such that 

(

⇢0(")  if  s = 0, 
Q⇢0,...,⇢a (S1, . . . , Ss

) =  
L 

s⇢0 ( ⇢
i

(S
i

)) if s 2 1.
i=1 

Q⇢0,...,⇢a E ,{⇡1,⇡2} E ,{⇡1,⇡2}is obtained from vL simply by replacing L with ⇢
i for 0  i  a. Then,  V,K IVi,K 

 � 

prf AvL

E ,{⇡1,⇡2} 
⇥ 

AQ

⇢0,...,⇢a ⇤ 

Adv (A)  Pr V,K = 1  Pr = 1 +
E ,{⇡1,⇡2}

vLV 
⇥ 

AQ

⇢0,...,⇢a ⇤ 

Pr = 1  Pr [A⇢ = 1] , (1) 

11
 



 

 

 

 

�
 

 

 

 

 

 

 

 
 

 

 �
 

 

�

 

 

 

 

�

where K ⌘ ⌃w, (⇢0, . . . , ⇢a) ⌘ F (⌃⇤ ,⌃n)a+1 and ⇢ ⌘ F ((⌃⇤)[0,a],⌃n). 
E ,{⇡1,⇡2}For the first term of the upper bound of Eq. (1), let B be an adversary against L
IV0 

,
⇣ 

E ,{⇡1,⇡2} E ,{⇡1,⇡2} E ,{⇡1,⇡2}L , . . . , L . Let (g0, g1, . . . , g ) be the oracles of B, which are either L ,
IV1 IVa a

IV0,K
⌘ 

E ,{⇡1,⇡2} E ,{⇡1,⇡2}L , . . . , L or (⇢0, ⇢1, . . . , ⇢a). B runs A. For each query (S1, S2, . . . , S ) by  A, B
IV1,K IVa,K s

L

sreturns g0(") if  s = 0 and g0 ( 
i=1 gi(Si

)) if s 2 1. Finally, B outputs the output of A. Thus,  

 � 

AvL

E,{⇡1,⇡2} 
⇥ 

AQ

⇢0,...,⇢a ⇤ prfsV,K 
nPr = 1  Pr = 1  = Adv o(B) .

E ,{⇡1,⇡2}
L 0iaIVi,K 

The run time of B approximately equals that of A. The number of queries made by B to its 
oracles is at most (� + q) and the length of each query is at most `w. 

For the second term of the upper bound of Eq. (1), let R be the oracle of A such that 

1. Prior to the interaction with A, 
– Y

i,j

 ? for 1  i  q and 1  j  a, 
– Z

i ⌘ ⌃n for 1  i  q, and 
– bad 0. 

2. During the interaction with A, return  Z
i to the i-th query made by A. 

3. For 1  i  q, let  S
i = (S

i,1, Si,2, . . . , Si,si ) be  the  i-th query made by A, where  0   s
i  a. 

For 1  j  s
i

, 
– Y

i,j ⌘ ⌃n if S
i,j is new, that is, Si,j =6 S

i

0
,j for any i0 such that i0 < i, and 

– Y
i,j Y

i

0
,j if Si,j is not new. 

4. bad 1 if, for some distinct i and i0 , 

si si0
M M 

Y
i,j = Y

i

0
,j . 

j=1 j=1 

⇥ ⇤ 

Since R is identical to ⇢, Pr  AR = 1  = Pr [A⇢ = 1]. As long as bad = 0, R is also identical 
to Q⇢0,...,⇢a . Notice that 

2 3 

si si0
M M 1 

Pr 4 Y
i,j = Y

i

0
,j 5  . 

2n 
j=1 j=1 

Thus, 
⇥ 

AQ

⇢0,...,⇢a ⇤ q(q 1)
Pr = 1  Pr [A⇢ = 1]  

2n+1 . 

ut 

Lemma 5. Let V = {IV0, IV1, . . . , IVa

} ⇢ ⌃n-w and {⇡1,⇡2} ⇢ P (⌃n-w). Suppose  that  {⇡1,
n o 

E ,{⇡1,⇡2}⇡2, id} is pairwise everywhere distinct. Let A be any adversary against L 0  i  a
IVi 

running in time at most t and making at most q queries in total. Suppose that the length of each 
query is at most `w. Then, there exists an adversary B against E such that 

Advprfs
`q(q 1)

n o(A)  ̀qAdvprp(B) +  .
E,{⇡1,⇡2} 

E 2n+1
L 0iaIVi 

B runs in time at most t + O(`qT
E ), and makes at most q queries. T

E is the time required to 
compute E . 
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Proof. Let Â be an adversary against J E ,⇡1 , J E ,⇡2 , J E ,⇡1 , . . . , J E ,⇡1 , J E ,⇡2 using A as a sub­
IV0 IV0 IV1 IVa IVa 

ˆroutine. A is given access to 2(a + 1) oracles (h0,1, h0,2, h1,1, h1,2, . . . , ha,1, ha,2), which are ei­
⇣ ⌘ 

J E ,⇡1ther 
IV1,K , . . . , J E ,⇡1 

IVa,K with K ⌘ ⌃w or (⇢̂0,1, ⇢̂0,2, . . . , ˆ ⇢
a,2) ⌘

IV0,K , JIV
E ,

0

⇡

,K 
2 , J E ,⇡1 

IVa,K , J E ,⇡2 ⇢
a,1, ˆ

,⌃n)2(a+1)F ((⌃w)+ . 
Â simply runs A. Let M be a query made by A to its j-th oracle for 0  j  a. If  |M | > 0 

ˆ ˆand |M | ⌘ 0 (mod  w), then A returns h
j,1(pad(M)) to A. Otherwise,  A returns h

j,2(pad(M)) 
ˆ ˆ ˆto A. Finally, A outputs the output of A. The run time of A is almost equal to that of A and A 

makes at most q queries in total. 
Notice that 

 �  � 

E,⇡1 E ,⇡2 E,⇡2 E,{⇡1,⇡2} E,{⇡1,⇡2}
J IV0,K ,...,J L ,...,Lˆ IV0,K ,J IVa,K IV0,K IVa,KPr A = 1  = Pr  A = 1  , 

h i 

ˆ⇢0,1,⇢̂0,2,...,⇢̂a,2Pr Aˆ = 1  = Pr [A⇢0,...,⇢a = 1] , 

where (⇢0, . . . , ⇢a) ⌘ F (⌃⇤ ,⌃n )a+1. Thus, from Theorem 1, there exists an adversary B against 
F such that 

Advprfs
`q(q 1)

n o(A)  ̀qAdvprp(B) +  .
E ,{⇡1,⇡2} 

E 2n+1
L 0iaIVi 

B runs in time at most t+ O(`qT
E ), and makes at most q queries. ut 

5.2 Discussion 

Some generic constructions of vPRF using any string-input PRF such as S2V [24] and S2V­
E ,{⇡1,⇡2}R [21] can also be applied to L . S2V and S2V-R require finite field multiplications and 
IV  

E ,{⇡1,⇡2}bit rotations, respectively, as well as bitwise XOR operations. On the other hand, vLV 
only requires bitwise XOR operations if the permutations ⇡1 and ⇡2 are bitwise XOR operations 
with constants. 

E ,{⇡1,⇡2}vLV can be regarded as an instantiation of the protected counter sum construction with 
E ,{⇡1,⇡2}a variable-input-length PRF. It is not a straightforward application, however, in that vLV 

does not require any encoding of an input to add counter values. The domain separation and 
the ordering of vector components are achieved by the initialization vectors in V. 

6 Conclusion 

This paper has first presented a PRF mode based on Lesamnta-LW and MDP which may pro­
duce multiple independent PRFs with a single key and multiple permutations and initialization 
vectors. Then, it has used this mode to construct a PRF with minimum padding and a vector-
input PRF. It is expected that the proposed PRF mode will find some other applications. Future 
work is to provide security analysis for the proposed schemes in multi-user settings. 
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