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Background & Motivation 

F F FIV F 

Hash function H : ⌃⇤ ! ⌃n 

Construction: FIL primitive + domain extension 
•	 Merkle-Damg̊ard (Compression-function-based): SHA-2 
•	 Sponge (Permutation-based): SHA-3 

Strengthened MD 

M1 Mm−1 Mm∥10* 0*∥|M| 

Pros • Collision resistance is preserved. 
Cons • Length-extension property 

•	 The last message block may consist only of the padding 
sequence. 

Cons degrade efciency. 
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HMAC [BCK96] 
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• Calls H twice to prevent length-extension attacks 

• Not efcient for short messages 
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Overview of the Results 

Domain extension scheme for sequential hashing 

• with minimum padding (Padding sequence is as short as possible) 

• free from length-extension 

Security analysis of the domain extension scheme 

• Collision resistance 

• Indi↵erentiability from a random oracle (IRO) 

• Pseudorandom function (PRF) of keyed-via-IV mode 

Application to sponge construction 

• Indi↵erentiability from a random oracle 
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-Minimum and Non Injective Padding 

Minimum and non-injective padding is common for BC-based MAC 

E.g.) CMAC 

|M | > 0 and |M | ⌘ 0 (mod w) |M | = 0 or |M | 6⌘ 0 (mod w) 

M1 Mm−1 Mm∥10*M1 Mm−1 Mm 

w w 

EK EK 

22L2L 

EK EK. . .  . . .EK EK 

T T 

• L = EK (0) 
• 
2L and 22L are used for 

• preventing the length-extension 
• separating the domain (Padding is not injective) 
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Proposed Domain Extension Scheme 

For message M = M1kM2k · · · kMm such that 

1 |M | > 0 and |M | ⌘ 0 (mod w) 

M1 M2 Mm−1 Mm 

F F F FIV π0 

w 

2 |M | = 0 or |M | 6⌘ 0 (mod w) 

M1 M2 Mm−1 Mm∥10* 

F F F FIV π1 

w 

⇡0 and ⇡1 are not cryptographic operations 

• Assumption: ⇡0(v) 6= v ^ ⇡1(v) 6= v ^ ⇡0(v) 6= ⇡1(v) for any v 

• E.g.) XOR with distinct non-zero constants 
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Related Work 

Collision-Resistance-preserving domain extension 

• Merkle 1989 

• Damg̊ard 1989 

• Nandi 2009: Variable-length encoding of the message length 

Multi-property-preserving domain extension 

• EMD (Enveloped MD) [Bellare, Ristenpart 2006] 

• MDP (MD with Permutation) [Hirose, Park,Yun 2007] 
M1 M2 Mm−1 Mm 

F F FIV F π 

Cf.) Ferguson, Kelsey 2001 (Comment on Draft FIPS 180-2) 

⇡(x) = x � C 
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-Sufx-Free Prefix-Free Hashing [BGKZ12] 

M1 M2 Mm−1 Mm 

F1V F2 F2 F3 

• IV is variable; without MD strengthening 
• Needs three CFs 

• F1 provides prefix-freeness; F3 provides sufx-freeness 
• Satisfies IRO 
• Assumes injective padding 

Cf.) 

00∥M1 11∥M2 11∥Mm−1 10∥Mm 

FV F F F 

• Padding-length = O(|M |) 
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GCBC1 [Nandi 09] 

|Mm| = block length |Mm| 6= block length 

M1 M2 Mm−1 Mm∥10*M1 M2 Mm−1 Mm 

EK EK 

T 

. . .  EKEK 

≪1 

EK EK 

T 

. . .  EKEK 

≪2 

• XOR with constants does not work 

• Requires at least two message blocks 
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Collision Resistance in the Standard Model 

Lemma 
F,{⇡0,⇡1}Any collision pair for H implies IV 

• a collision pair, 

• a {⇡0,⇡1}-pseudo-collision pair, or 

• a preimage of IV , ⇡�1
(⇡1(IV )), or  ⇡�1

(⇡0(IV ))0 1 

for F 

Proof: Backward induction 

{⇡0,⇡1}-pseudo-collision pair for F : 

(V,X) and (V 0, X 0
) s.t. ⇡0(F (V,X)) = ⇡1(F (V 0, X 0

)) 
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Collision Resistance in the Standard Model 

Theorem 
F,{⇡0,⇡1}The collision resistance of H is reduced to IV 

• the collision resistance 

• the {⇡0, ⇡1}-pseudo-collision resistance, and 

• the everywhere preimage resistance 

of F . 

Everywhere preimage resistance of h: 

Adv

epre
(A) = max {Pr[M A(h) :  h(M) =  Y ]}h Y 2Y 
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Definition of Indi↵erentiability from a Random Oracle 

[Maurer, Renner, Holenstein 04], [Coron, Dodis, Malinaud, Puniya 05] 

C SHF 

A A 
or 

• C is hashing mode of F • H is VIL RO 
• F is FIL ideal primitive • Simulator S tries to mimic F 

• Random oracle with access to oracle H 
• Ideal block cipher 

CF is indi↵. from VIL RO (IRO) if no efcient adver A can tell apart 

(CF , F ) and (H, SH 
) 
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Indi↵erentiability from a Random Oracle (IRO) 

Theorem 

Suppose that CF F : ⌃n ⇥⌃w ! ⌃n is chosen uniformly at random. 
F,{⇡0,⇡1}Then, for HF H , there  exists  a simulator  S of F s.t., for any IV 

adversary A making 

• at most q queries to its FIL oracle 

•	 queries to its VIL oracle which cost at most ( message blocks in total, 

Adv

indi↵ 5(( + q)2 
3(q 

F,{⇡0,⇡1}	 (A)  + ,
H ,S 

2

n 
2

n - 6q + 1IV 

and S makes at most q queries. 

Secure if ( + q = o(2n/2) 
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IRO in the Ideal Cipher Model 

The CF F : ⌃n ⇥⌃w ! ⌃n is the Davies-Meyer mode of a BC E 

• E is chosen uniformly at random 

Theorem 

For the hash function HF,{⇡0,⇡1}
IV , there  exists  a simulator  S of E s.t., for 

any adversary A making 

• at most qe queries to its FIL encryption oracle 

• at most qd queries to its FIL decryption oracle 

• queries to its VIL oracle which cost at most ( message blocks in total, 

Adv

indi↵ 
H

F,{⇡0,⇡1}
IV ,S

(A)  12(( + qe + qd)2 

2

n + 
3((qe + qd) 

2

n - 6(qe + qd) - 5 
, 

and S makes at most qe queries. 

Secure if ( + qe + qd = o(2n/2) 
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Keyed via IV mode of HF,{⇡0,⇡1}
IV 

For message M such that 

1 |M | > 0 and |M | ⌘ 0 (mod w), 

M1 M2 Mm−1 Mm 

F F F FK π0 

w 

2 |M | = 0 or |M | 6⌘ 0 (mod w), 

M1 M2 Mm−1 Mm∥10* 

F F F FK π1 

w 
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PRF Security 

Theorem 
F,{⇡0,⇡1}Let A be any adversary against KIV mode of H :IV 

• A runs in time at most t and makes at most q queries 

• The length of each query is at most `w
 

Then, there exists an adversary B against F such that
 

Adv

prf `q Advprf-rka 
(A)  (B) .F,{⇡0,⇡1} {id ,⇡1,⇡2},FHIV 

B runs in time at most t + O(`qTF ) and makes at most q queries. 

HF,{⇡0,⇡1} is PRF (= F is PRF against {id , ⇡1, ⇡2}-restricted RKAs 
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Definition of PRF 

A keyed function f : K ⇥D ! R is PRF 

if f is indistinguishable from uniform random function ⇢ : D ! R 

• Adversary makes queries to fK or ⇢ 

• Secret key K 2 K is chosen uniformly at random 

x 

ρ

ρ(x) x 

fK 

fK(x) 

A A 

ideal world real world 

prf
Adv (A) =  

���Pr[AfK 
= 1] - Pr[A⇢ 

= 1]
���f 
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PRF against related key attacks 

f : K ⇥D ! R is PRF against -restricted RKAs if 

f is indistinguishable from uniform random keyed function ⇢ : K ⇥D ! R 

• is a set of related-key deriving functions 

• Secret key K 2 K is chosen uniformly at random 

• Adversary makes queries to f (K) or ⇢ (K) for any 2 

x, ψ
ρ, K 

ρψ(K)(x) x, ψ 

f, K
fψ(K)(x) 

A A 

ideal world real world 

Adv

prf-rka (K)) 2 2
(A) =  

���Pr[A(f 
= 1] - Pr[A(⇢ (K)) 

= 1]
���,f 
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Application to Sponge Construction 

For message M such that 

1 |M | > 0 and |M | ⌘ 0 (mod w), 

M1 M2 Mm−1 Mm 

π0 
IV P P P P 

2 |M | = 0 or |M | 6⌘ 0 (mod w), 

M1 M2 Mm−1 Mm∥10* 

π1 
IV P P P P 
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IRO in the Ideal Permutation Model 

The permutation P : ⌃b ! ⌃b is chosen uniformly at random 

• b = r + c and c is capacity of sponge construction 

Theorem 

For the hash function GP,{⇡0,⇡1}
IV , there  exists  a simulator  S of P s.t., for 

any adversary A making 

• at most qf queries to its FIL forward oracle 

• at most qb queries to its FIL backward oracle 

• queries to its VIL oracle which cost at most ( message blocks in total, 

Adv

indi↵ 
G

P,{⇡0,⇡1}
IV ,S 

(A)  12(( + qf + qb)2 

2

c + 
3((qf + qb) 

2

c - 6(qf + qb) - 5 
, 

and S makes at most qf queries. 

Secure if ( + qf + qb = o(2c/2) 

S. Hirose (Univ. Fukui) Hashing with Minimum Padding NIST LWC (2016/10/18) 20 / 21 



Conclusion 

Domain extension scheme for sequential hashing 

• with minimum padding 

• free from length-extension 

Security analysis of the domain extension scheme 

• Collision resistance 
• Indi↵erentiability from a random oracle 

• in the random oracle model 
• in the ideal cipher model with Davies-Meyer CF 

• Pseudorandom function by keyed-via-IV 

Application to sponge construction 

• IRO in the ideal permutation model 

Our proposal may be useful for lightweight hashing. 
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