
Sequential Hashing with Minimum Padding

Shoichi Hirose

Faculty of Engineering, University of Fukui, Fukui, Japan
hrs shch@u-fukui.ac.jp

Abstract. This article presents a sequential domain extension scheme with minimum padding for
hashing using a compression function. The proposed domain extension scheme is also free from the
length extension property. The collision resistance of a hash function using the proposed domain
extension is shown to be reduced to the collision resistance and the everywhere preimage resistance
of the underlying compression function in the standard model, where the compression function is
assumed to be chosen at random from a function family in some efcient way. Its indi↵erentiability
from a random oracle up to the birthday bound is also shown on the assumption that the underlying
compression function is a fixed-input-length random oracle or the Davies-Meyer mode of a block
cipher chosen uniformly at random. In addition, keying via IV to the proposed domain extension
produces a pseudorandom function. The proposed domain extension is also applied to the sponge
construction and the resultant hash function is shown to be indi↵erentiable from a random oracle
up to the birthday bound in the ideal permutation model. The proposed domain extension scheme
is expected to be useful for processing short messages.

Keywords: Hash function, Domain extension, Collision resistance, Indi↵erentiability, Pseudoran
dom function

1 Introduction

Background. A cryptographic hash function takes as input a sequence of arbitrary length and
produces as output a sequence of fixed length. It usually consists of a primitive and a domain
extension scheme. A primitive is a compression function or a permutation, which takes a fixed-
length input and produces a fixed-length output. A domain extension scheme specifies how to
process an input sequence with arbitrary length using a primitive with fixed input length.

The standardized hash functions SHA-2 [16] use dedicated compression functions and a
domain extension scheme due to Merkle [25] and Damg̊ard [15]. The domain extension scheme is
called strengthened Merkle-Damg̊ard (SMD). It is sequential iteration of a compression function
and its padding algorithm appends the binary representation of the length of an input message,
which is called MD strengthening.

A positive point of SMD is its preservation of collision resistance. Namely, a hash function
using SMD satisfies collision resistance if its underlying compression function satisfies it. On
the other hand, a negative point of SMD is its length extension property. Due to this property,
the MAC function HMAC [2] invokes the underlying hash function twice. It causes inefciency
for short messages. The other negative point is that message blocks after padding may include
a message block consisting only of a padding sequence, which needs an additional call to the
compression function.

A domain extension scheme with minimum padding and free from the length extension
property seems useful especially for processing short messages. Informally, we say that padding
is minimum if the produced message blocks include no message block only with the padding
sequence for any non-empty input message.

Our Contribution. This article first presents a sequential domain extension scheme with min
imum padding for hashing using a compression function. The padding function of the domain
extension is not injective. It extends the MDP domain extension [19] and uses two distinct per
mutations for domain separation. The permutations also prevent the length extension property.

mailto:shch@u-fukui.ac.jp

The permutations need not be cryptographic transformations. A typical candidate for them is
bitwise XOR with a nonzero constant.

Then, the security properties of a hash function using the proposed domain extension are
analyzed. The properties considered are the collision resistance, the indi↵erentiability and the
pseudorandom-function property.

The proposed domain extension does not preserve the collision resistance. However, it is
shown that the collision resistance of a hash function using the domain extension is reduced to
the collision resistance and the everywhere preimage resistance of the underlying compression
function.

It is also shown that a hash function using the domain extension is indi↵erentiable from
a variable-input-length random oracle (VIL RO) up to the birthday bound if the underlying
compression function is a fixed-input-length random oracle (FIL RO) or the Davies-Meyer mode
of a block cipher chosen uniformly at random.

In addition, it is mentioned that keying via IV produces a pseudorandom function, which
was already shown in [20].

The proposed domain extension scheme can also be applied to the sponge construction in a
straightforward way. It is shown that the resultant hash function is indi↵erentiable from a VIL
RO up to the birthday bound if the underlying permutation is chosen uniformly at random.

Related Work. There are many proposals for domain extension. On the other hand, little atten
tion has been paid for padding.

The most related work was done by Bagheri et al. [1]. They proposed a generic scheme to
construct an iterated hash function which requires neither a fixed IV nor the MD strength
ening. Their scheme uses three distinct compression functions to get prefix-free and sufx-free
property. It assumes injective padding function. They also showed that their hash function is
indi↵erentiable from a VIL RO if the underlying compression functions are FIL ROs.

Nandi [26] showed that the sufx-free property of padding is necessary and sufcient for the
plain MD domain extension to preserve the collision resistance. He also presented a sufx-free
padding scheme which works for any input message M of arbitrary length. It appends O(log |M |)
bits to M . The padding scheme for SHA-2, which is based on Merkle’s [25], also appends only
O(log |M |) bits. However, it works only for input messages of bounded length.

Coron et al. [14] formalized the indi↵erentiability notion for hash functions in the framework
by Maurer et al. [24]. They also showed the indi↵erentiability of the following domain extension
schemes: prefix-free plain MD, plain MD with output truncation (chopMD), NMAC construction,
and HMAC construction, where HMAC construction is rather di↵erent from the MAC function
HMAC [2]. They assumed injective padding. Their work was followed by Chang et al. [12, 13].

Bellare and Ristenpart introduced the notion of multi-property preservation for domain
extension [3]. They also presented the EMD (enveloped MD) domain extension and showed
that it preserves collision resistance, pseudorandom function, and indi↵erentiability assuming
injective padding.

MDP (Merkle-Damg̊ard with permutation) [19] is a variant of plain MD preventing its length-
extension property. A typical example of MDP was presented by Kelsey in [21]. It uses bitwise
XOR with a nonzero constant for the permutation.

Minimum padding is already common among MAC functions based on a block cipher such
as CMAC [28] and PMAC [9]. The idea to finalize the iteration with multiple non-cryptographic
transformations for domain separation is used in the secure CBC-MAC variants GCBC1 and
GCBC2 [27].

Sarkar [31] presented a domain extension scheme preserving the collision resistance based on
directed acyclic graphs. Bertoni et al. [6] formulated sufcient conditions for domain extension
schemes covering both tree and sequential structures to be indi↵erentiable up to the birthday

2

bound. Based on the sufcient conditions, a coding scheme for tree domain extension schemes
is specified in [5], which also covers sequential domain extension schemes.

The sponge construction [7] is a scheme to construct a hash function using a function with
its input length equal to its output length, which is typically a permutation. It was invented for
the SHA-3 hash function [17]. It is adopted by lightweight hash functions such as PHOTON [18]
and SPONGENT [10]. It is also extended to design cryptographic schemes such as authenticated
encryption [8].

Organization. Section 2 gives notations used in this article and defines some security properties
required of cryptographic hash functions. The proposed scheme is described in Sect. 3. The
collision resistance of the proposed hash function is discussed in the standard model in Sect. 4.
The indi↵erentiability is discussed in Sect. 5. The PRF property of the proposed hash function
keyed via IV is briefly mentioned in Sect. 6. The proposed domain extension is applied to the
sponge construction in Sect. 7.

2 Preliminaries

2.1 Notations

⌃niLet ⌃ = {0, 1}. Let ⌃⇤ =
S1 ⌃i, and (⌃n)+ =

S1 .i=0 i=1
For binary sequences x and y, let xky be their concatenation. The empty sequence is denoted

by ".
The operation of selecting an element from set S uniformly at random and assigning it to s

is denoted by s ⌘ S.

2.2 Collision Resistance and Preimage Resistance

In this section, the collision resistance and everywhere preimage resistance [30] are defined in
the standard model. To do so, a family of hash functions should be introduced. Suppose that
h is a hash function chosen at random from some set of hash functions from X to Y in some
efcient way.

Let A be an adversary which is given h as input and tries to find a collision pair for h.
A collision pair for h are a pair of distinct inputs mapped to the same output by h. The col-
advantage of A against h is given by

Advcol(A) = Pr[(M,M 0) A(h) : h(M) = h(M 0) ^M 6= M 0] ,h

where the probability is taken over the coin tosses by A and the distribution of h.
Let A be an adversary which is given h as input and tries to find a preimage of an output

for h. The epre-advantage of A against h is given by

Advepre(A) = max {Pr[M A(h) : h(M) = Y]} ,h Y 2Y

where the probability is taken over the coin tosses by A and the distribution of h.

2.3 Indi↵erentiability from Random Oracle

Maurer et al. [24] formalized the notion of indi↵erentiability as a generalized notion of indistin
guishability. Then, Coron et al. [14] tailored it for the security analysis of hash functions.

Let C be an algorithm with oracle access to an ideal primitive P. Here in this article, C is a
domain extension scheme using P with fixed input length and CP defines a hash function. Let

3

R be a VIL random oracle and S be a simulator which has oracle access to R. SR simulates P
in order to convince an adversary that R is CP . The indi↵-advantage of adversary A against
(C, S) is given by

Advindi↵ (A) =
 Pr[ACP ,P = 1] - Pr[AR,SR

= 1]
 ,C,S

where the probabilities are taken over the coin tosses by A, S and the oracles R and P. CP and
R are called VIL oracles, and P and SR are called FIL oracles.

3 Proposed Scheme

The proposed hash function consists of a compression function F : ⌃n ⇥⌃w ! ⌃n, permutations
⇡
0 and ⇡

1 over ⌃n, and an initialization vector IV 2 ⌃n . For ⇡
0 and ⇡

1

, it is assumed that
⇡
0

(v) 6 6 6 .= v, ⇡
1

(v) = v and ⇡
0

(v) = ⇡
1

(v) for any v 2 ⌃n

Remark 1. Let c
0 and c

1 be distinct constants in ⌃n \ {0}. Let ⇡i(v) = v E ci for i = 1, 2. Then,
for any v 2 ⌃n , ⇡

0

(v) 6= v, ⇡
1

(v) 6= v and ⇡
0

(v) =6 ⇡
1

(v).

Domain Extension MDP. Let ⇡ be a permutation over ⌃n. For 1 i x, let Xi 2 ⌃w. The MDP
domain extension [19] CF,⇡ : (⌃w)+ ! ⌃n for F is defined as follows: CF,⇡(X

1

kX
2

k · · · kXx) = vx,IV IV
where v

0 IV , vi F (vi-1

, Xi) for 1 i x - 1, and vx F (⇡(vx-1

), Xx).

Padding. For M 2 ⌃⇤, the padding function is defined as follows:
(
M if |M | > 0 and |M | ⌘ 0 (mod w),

pad(M) =
Mk10d otherwise,

where d is the smallest non-negative integer such that |M |+ 1 + d ⌘ 0 (mod w). The length of
any output of pad is a positive multiple of w. In particular, pad(") = 10w-1. If |M | > 0, then
|pad(M)| = wd|M |/we.

F,{⇡0,⇡1}Proposed Scheme. The proposed hash function H : ⌃⇤ ! ⌃n is defined as follows: IV
(
CF,⇡0

F,{⇡0,⇡1} (pad(M)) if |M | > 0 and |M | ⌘ 0 (mod w),IVH (M) =IV CF,⇡1 (pad(M)) otherwise. IV

It is also depicted in Fig. 1.

M1 M2 Mm−1 Mm

π0IV F F FF

(a) For M such that |M | > 0 and |M | ⌘ 0 (mod w). |M
m

| = w.

M1 M2 Mm−1 Mm∥10*

π1IV F F FF

(b) For M such that |M | = 0 or |M | 6⌘ 0 (mod w). |M
m

| = 0 if |M | = 0 and 1 |M
m

|
w - 1 otherwise.

Fig. 1: The proposed hash function. M = M
1

kM
2

k · · · kMm, where |Mi| = w for 1 i m - 1.

4

http:10w-1.If

4 Collision Resistance
F,{⇡0,⇡1}The collision resistance of H is discussed in the standard model. It is assumed that the IV

compression function F is chosen at random from some set of functions from ⌃n ⇥ ⌃w to ⌃n in
some efcient way.

F,{⇡0,⇡1}The collision resistance of H needs a new security requirement for F , which is a kind IV
of collision resistance. A pair of distinct inputs (v, X) and (v0, X 0) for F are called a {⇡

0

, ⇡
1

}
pseudo-collision pair if ⇡

0

(F (v, X)) = ⇡
1

(F (v0, X 0)). The advantage of adversary A against F
with respect to {⇡

0

, ⇡
1

}-pseudo-collision is defined similarly to the col-advantage. It is denoted
by Advpcol (A).F,{⇡0,⇡1}

F,{⇡0,⇡1}
It will be shown that the collision resistance of HIV is reduced to the collision resistance,
the {⇡

0

, ⇡
1

}-pseudo-collision resistance and the everywhere preimage resistance of F .
F,{⇡0,⇡1}Lemma 1. Any collision pair for H implies a collision pair, a {⇡

0

, ⇡
1

}-pseudo-collision IV
pair, or a preimage of IV , ⇡ -1(⇡

1

(IV)), or ⇡ -1(⇡
0

(IV)) for F .
0 1

F,{⇡0,⇡1}Proof. Let M and M 0 be any collision pair for H . It is shown below that, by tracing IV
F,{⇡0,⇡1} F,{⇡0,⇡1}back the computation of H (M) and H (M 0), one can find a collision pair for F ,IV IV

a {⇡
0

, ⇡
1

}-pseudo-collision pair for F , or a preimage of IV , ⇡ -1(⇡
1

(IV)), or ⇡ -1(⇡
0

(IV)) for F .
0 1

0Let |pad(M)|/w = m and |pad(M 0)|/w = m .
F,{⇡0,⇡1} F,{⇡0,⇡1}Suppose that pad(M) = pad(M 0). Then, one of H (M) and H (M 0) uses ⇡

0IV IV
and the other uses ⇡

1

. Notice that ⇡
0

(v) 6 0 = 1, then one finds = ⇡
1

(v) for any v 2 ⌃n. If m = m
a collision pair for F since ⇡

0

(IV) 6 0 � 2, then one finds a collision pair or a = ⇡
1

(IV). If m = m
{⇡

0

, ⇡
1

}-pseudo-collision pair for F since ⇡
0

(v) = ⇡
1

(v0) implies v =6 v0 for any v, v . 0 2 ⌃n

Suppose that pad(M) 6 = pad(M 0).
F,{⇡0,⇡1} F,{⇡0,⇡1}(i) Suppose that one of H (M) and H (M 0) uses ⇡

0 and the other uses ⇡
1

. Assume IV IV
F,{⇡0,⇡1} F,{⇡0,⇡1}that H (M) uses ⇡

0 and H (M 0) uses ⇡
1 without loss of generality. If m = m0 = 1, IV IV

then one finds a collision pair for F . If m = 1 and m0 � 2, then one finds a collision pair for F
or a preimage of ⇡ -1(⇡

0

(IV)) for F . If m � 2 and m0 = 1, then one finds a collision pair for F
1

or a preimage of ⇡ -1(⇡
1

(IV)) for F . If m � 2 and m0 � 2, then one finds a collision pair or a
0

{⇡
0

, ⇡
1

}-pseudo-collision pair for F .
F,{⇡0,⇡1} F,{⇡0,⇡1}(ii) Suppose that both of H (M) and H (M 0) uses a same permutation. If m = IV IV

m0 = 1, then one finds a collision pair for F . If m = 1 and m0 � 2, or m � 2 and m0 = 1, then
one finds a collision pair for F or a preimage of IV for F . If m � 2 and m0 � 2, then one finds
a collision pair or a preimage of IV for F . ut

F,{⇡0,⇡1}Theorem 1. For any adversary A trying to find a collision pair for H with run time t,IV
there exist adversaries B

1

, B
2 and B

3 such that

Advcol
F,{⇡0,⇡1} (A) Advcol(B1

) + Advpcol (B
2

) + 3Advepre(B
3

) .F F,{⇡0,⇡1} FHIV

The run times of B
1

, B
2 and B

3 are about t + O((|pad(M)| + |pad(M 0)|)TF /w), where M and
F,{⇡0,⇡1}M 0 are a collision pair of H output by A and TF is the time required to compute F .IV

Proof. Let B be an algorithm which works as follows. B takes F as input. It first runs A with
F,{⇡0,⇡1} F,{⇡0,⇡1}input H . If A fails to find a collision pair for H , then it aborts. Otherwise, for a IV IV

F,{⇡0,⇡1} F,{⇡0,⇡1}collision pair M and M 0 output by A, it computes H (M) and H (M 0).IV IV
Let B

1 be an adversary trying to find a collision pair for F . Let B
2 be an adversary trying to

find a {⇡
0

, ⇡
1

}-pseudo-collision pair for F . Let B
3 be an adversary trying to find a preimage of

IV , ⇡ -1(⇡
1

(IV)), or ⇡ -1(⇡
0

(IV)) for F . All of them first runs B. From Lemma 1, if A succeeds
0 1

F,{⇡0,⇡1}in finding a collision pair for H , then B
1

, B
2 or B3 succeed. utIV

5

5 Indi↵erentiability from Random Oracle

5.1 In the Random Oracle Model

In this section, to discuss the indi↵erentiability, the compression function F is assumed to be
chosen uniformly at random from all the functions from ⌃n ⇥⌃w to ⌃n .

The following theorem implies that the proposed hash function is indi↵erentiable from a
random oracle up to the birthday bound. The game-playing technique [4] is used for the proof.

Theorem 2. Suppose that the compression function F : ⌃n ⇥⌃w ! ⌃n is chosen uniformly at
F,{⇡0,⇡1}random. Then, for the hash function HIV , there exists a simulator S of F such that, for

any adversary A making at most q queries to its FIL oracle and queries to its VIL oracle which
cost at most (message blocks in total,

Advindi↵ 5((+ q)2 3(q
F,{⇡0,⇡1} (A) + ,

H ,S 2n 2n - 6q + 1IV

and S makes at most q queries.

Proof. Each game provides two interfaces to adversary A: H for the hash function and F for the
compression function. It is assumed without loss of generality that A makes no repeated queries
both to H and to F .

The game G1 is given in Fig. 2. F simply calls F, which implements the compression function
F by lazy evaluation. F uses a partial function F. Initially, F[v, X] = ? for every (v, X) 2 ⌃n⇥⌃w .

F,{⇡0,⇡1}H computes H with the aid of F. Thus, IV

F,{⇡0,⇡1}
Pr

h
AHIV ,F = 1

i
= Pr

⇥
AG1 = 1

⇤
.

Notice that F may receive repeated queries since H also calls F as well as F .
The game G2 is given in Fig. 3a. F and H are not changed and omitted.
In G2, F constructs and maintains a directed graph (V , E) based on the queries to F. It

also uses a function findM, which will be described later. Initially, V = {} and E = {}. For a
new query (v, X), if findM(v, X) 6 ?, then F replaces V= with V [{v}. On the other hand, if
findM(v, X) = ?, then F replaces V with V [{v, F[v, X]} and E with E [{(v, F[v, X])}. The
edge (v, F[v, X]) is labeled with X. T and H are the sets of tails and heads of edges in (V , E),
respectively. Vertices with no adjacent edges in (V , E) are also included in T . Initially, T = {}
and H = {}.

F,{⇡0,⇡1}findM tries to find a path in (V , E) corresponding to the computation H (M) for some IV
M . Given (v, X) as input, findM first searches a path from IV to ⇡ -1(v) or ⇡ -1(v) in (V , E). If

0 1
IV equals ⇡ -1(v) or ⇡ -1(v), then the single vertex IV is regarded as a path. If findM finds a path,

0 1
then let X

1

, X
2

, . . . , Xl be the labels of the edges on the path. If the path is IV , then l = 0, that
is, X

1

kX
2

k · · · kXl = ". If there exists some M 2 ⌃⇤ such that pad(M) = X
1

kX
2

k · · · kXlkX,
which depends on whether the terminal of the path is ⇡ -1(v) or ⇡ -1(v), then findM returns M .

0 1
Otherwise, findM returns ?. It will be shown that findM(v, X) finds at most one path.

F of G2 di↵ers from F of G1 only if bad gets true in G2. This is because F[v, X] is chosen
uniformly at random in G2 until bad gets true. For the i-th call to F, |B| 6i - 1 since

B = T [⇡ -1(T) [⇡ -1(T) [H [⇡ -1(⇡
1

(H)) [⇡ -1(⇡
0

(H)) [
0 1 0 1 {
IV , ⇡ -1(IV), ⇡ -1(IV), ⇡ -1(⇡

1

(IV)), ⇡ -1(⇡
0

(IV)) ,
0 1 0 1

6

|T | i - 1 and |H| i - 1. F is called at most ((+ q) times. Thus,

Pr
⇥
AG1 = 1

⇤- Pr
⇥
AG2 = 1

⇤ Pr
⇥
AG2 sets bad

⇤

�+q
6i - 1 3((+ q)2 + 2((+ q)

X
= .

2n 2n
i=1

For the game G3 in Fig. 3b, the lines from 605 to 609 in G2 are replaced with the line 605
in G3. Since they are equivalent, Pr

⇥
AG2 = 1

⇤
= Pr

⇥
AG3 = 1

⇤
.

The game G4 is given in Fig. 4. It introduces a variable-input-length random oracle H, which
is implemented by lazy evaluation. Initially, H[M] = ? for every M 2 ⌃⇤ . H may receive repeated
queries since it is called by both H and F . Di↵erent from F of G3, F assigns H(M) to F[v, X] at
the line 603 in G4. Di↵erent from H of G3, H(M) returns H(M) in G4. We will see that G4 is
actually equivalent to G3 in spite of these changes.

First, let us see some properties of the graph (V , E). Both in G3 and in G4, at the beginning
of each run of F with (v, X) such that F[v, X] = ?, V ✓ T [H. Then, whenever this run adds
F[v, X] to both V and H, F[v, X] is chosen from ⌃n \ B, where {IV } [T [H ✓ B. Thus,
every vertex in (V , E) has at most one incoming edge, and IV has no incoming edge. It implies
that every vertex in (V , E) has at most one simple path from IV . In addition, for every path
(v

1

, v
2

, . . . , vl) with v
1 = IV , vi’s are added to (V , E) in this order. Furthermore, before vl is

added to (V , E), neither (⇡
0

(vl), X 0) nor (⇡
1

(vl), X 0) were asked to F for any X 0 2 ⌃w since
{⇡ -1(IV), ⇡ -1(IV)} [⇡ -1(T) [⇡ -1(T) ✓ B.

0 1 0 1
Suppose that findM(v, X) finds two paths in (V , E). Then, one is from IV to ⇡ -1(v) and

0
⇡ -1the other is from IV to ⇡ -1(v). Notice that ⇡ -1(v) = (v) since ⇡

0

(u) 6 ⇡
1

(u) for every 6 =
1 0 1

u 2 ⌃n. Suppose that both paths have two or more vertices. Then, both ⇡ -1(v) and ⇡ -1(v) are
0 1

elements of H, which implies that one was added to H after the other since at most one vertex
is added to H during each run of F. It contradicts ⇡ -1 (⇡b(H)) ✓ B for b 2 ⌃. Suppose that

1�b

one path is the single vertex IV and the other has two or more vertices. ⇡ -1(v) = IV contradicts b
⇡ -1
1�b(⇡b(IV)) ✓ B for b 2 ⌃. Thus, findM(v, X) finds at most a single path in (V , E).
In G4, for a new query (v, X) to F, suppose that findM finds a path in (V , E) and returns

M corresponding to the path and (v, X). Then, M is a new query to H, that is H[M] = ?,
and it is assigned an element chosen uniformly at random from ⌃n. On the other hand, for H,
vx = H(M). Thus, G4 is equivalent to G3, and Pr

⇥
AG4 = 1

⇤
= Pr

⇥
AG3 = 1

⇤
.

From G4 to G5, only F changes, which is given in Fig. 5. F of G5 is augmented with the
lines from 600 to 606 and the lines from 614 to 616. HA is the set of heads of edges in (V , E)
in the view of A. Initially, HA = {}. These changes do not a↵ect the output of F. Thus, G5 is
equivalent to G4, and Pr

⇥
AG5 = 1

⇤
= Pr

⇥
AG4 = 1

⇤
.

From G5 to G6, only H changes. H of G6 is identical to that of G7, which is given in Fig. 6.
In G6, H(M) does not call F and just returns H(M). In G6, F is called only by F and it does
not receive any repeated queries, which implies that bad never gets true. On the other hand,
bad may get true in G5. If bad gets true in G5, then A may trace some computation path of

F,{⇡0,⇡1}H in (V , E) from its middle. |B
a

| 3(since B
a = (H \HA)[⇡0(H \HA)[⇡1(H \HA)IV

and |H \ HA| (. A knows at most 6q - 1 elements in B. Thus,

3(q
Pr

⇥
AG5 = 1

⇤- Pr
⇥
AG6 = 1

⇤ Pr
⇥
AG5 sets bad

⇤ .
2n - 6q + 1

From G6 to G7, only F changes. G7 is given in Fig. 6. F of G7 is obtained from F of G6 by
removing the lines from 600 to 606 and the lines from 614 to 616. Since F does not receive any
repeated queries, the lines 607 and 619 are also removed. These changes do not a↵ect the output
of F. Thus, Pr

⇥
AG7 = 1

⇤
= Pr

⇥
AG6 = 1

⇤
. F of G7 works as a simulator S of F .

7

From the discussion above, we have

Advindi↵ (A) = Pr
⇥
AG1 = 1

⇤- Pr
⇥
AG7 = 1

⇤
F,{⇡0,⇡1}HIV ,S

 Pr ⇥AG2 sets bad
⇤
+ Pr

⇥
AG5 sets bad

⇤

3((+ q)2 + 2((+ q) 3(q +
2n 2n - 6q + 1

5((+ q)2 3(q + .
2n 2n - 6q + 1

ut

Interface H(M): Interface F(v, X):

100: X1kX2k · · · kXx pad(M) 200: return F(v, X)
101: v0 IV
102: for 1 i x - 1 do Function F(v, X):

103: v

i F(v
i-1, Xi

) 600: if F[v, X] = ? then
104: end for 601: F[v, X] ⌘ ⌃n

105: if |M | > 0 and |M | ⌘ 0 (mod w) then 602: end if
106: v

x F(⇡0(vx-1), Xx

) 603: return F[v, X]
107: else
108: v

x F(⇡1(vx-1), Xx

)
109: end if
110: return v

x

Fig. 2: Game G1. For the partial function F used in F, initially, F[v, X] = ? for every (v, X) 2
⌃n ⇥ ⌃w .

Function F(v, X):

600: if F[v, X] = ? then
601: M findM(v, X)
602: if M 6= ? then

Function F(v, X):603: F[v, X] ⌘ ⌃n

604: else 600: if F[v, X] = ? then
605: F[v, X] ⌘ ⌃n 601: M findM(v, X)
606: if F[v, X] 2 B then 602: if M 6= ? then
607: bad true 603: F[v, X] ⌘ ⌃n

608: F[v, X] ⌘ ⌃n \B 604: else
609: end if 605: F[v, X] ⌘ ⌃n \B
610: H H [{F[v, X]} 606: H H [{F[v, X]}
611: end if 607: end if
612: T T [{v} 608: T T [{v}
613: end if 609: end if
614: return F[v, X] 610: return F[v, X]

(a) F of G2 (b) F of G3

Fig. 3: Games G2 and G3. F and H are omitted, which are identical to
those of G1. B = T [⇡ -1(T) [⇡ -1(T) [H [⇡ -1(⇡

1

(H)) [⇡ -1(⇡
0

(H)) [
0 1 0 1

{IV , ⇡ -1(IV), ⇡ -1(IV), ⇡ -1(⇡
1

(IV)), ⇡ -1(⇡
0

(IV))}. Initially, T = {} and H = {}.
0 1 0 1

8

Interface H(M):

100: X1kX2k · · · kXx pad(M)
101: v0 IV
102: for 1 i x - 1 do
103: v

i F(v
i-1, Xi

)
104: end for
105: if |M | > 0 and |M | ⌘ 0 (mod w) then
106: v

x F(⇡0(vx-1), Xx

)
107: else
108: v

x F(⇡1(vx-1), Xx

)
109: end if
110: return H(M)

Function H(M):

500: if H[M] = ? then
501: H[M] ⌘ ⌃n

502: end if
503: return H[M]

Fig. 4: Game G4. Initially, H[M] = ?

Function F(v, X):

600: if F[v, X] 6 then = ?
601: if (v, X) is from F then
602: if v 2 Ba then
603: bad true
604: end if
605: end if
606: end if
607: if F[v, X] = ? then
608: M findM(v, X)
609: if M 6= ? then
610: F[v, X] H(M)
611: else
612: F[v, X] ⌘ ⌃n \B
613: H H [{F[v, X]}
614: if (v, X) is from F then
615: H

A H
A [{F[v, X]}

616: end if
617: end if
618: T T [{v}
619: end if
620: return F[v, X]

Fig. 5: F of G5 and G6. B
a = (H \HA)[⇡0(H \

HA) [⇡
1

(H \ HA). Initially, HA = {}.

Interface F(v, X):

200: return F(v, X)

Function F(v, X):

600: if F[v, X] = ? then
601: M findM(v, X)
602: if M 6= ? then
603: F[v, X] H(M)
604: else
605: F[v, X] ⌘ ⌃n \B
606: H H [{F[v, X]}
607: end if
608: T T [{v}
609: end if
610: return F[v, X]

for every M 2 ⌃⇤ .

Interface H(M):

100: return H(M)

Function H(M):

500: if H[M] = ? then
501: H[M] ⌘ ⌃n

502: end if
503: return H[M]

Interface F(v, X):

200: return F(v, X)

Function F(v, X):

600: M findM(v, X)
601: if M 6 then = ?
602: F[v, X] H(M)
603: else
604: F[v, X] ⌘ ⌃n \B
605: H H [{F[v, X]}
606: end if
607: T T [{v}
608: return F[v, X]

Fig. 6: Game G7

9

5.2 In the Ideal Cipher Model

In this section, F : ⌃n ⇥⌃w ! ⌃n is assumed to be the Davies-Meyer compression function [29]
using a block cipher E : ⌃w ⇥ ⌃n ! ⌃n, where the key space of E is ⌃w. Namely, F (V,X) =
E(X,V) E V . E is assumed to be chosen uniformly at random.

Theorem 3. Suppose that the compression function F : ⌃n ⇥ ⌃w ! ⌃n is the Davies-Meyer
mode of a block cipher E chosen uniformly at random. Let D be the decryption function of

F,{⇡0,⇡1}E. Then, for the hash function H , there exists a simulator S of (E,D) such that, for IV
any adversary A making at most q

e queries to its FIL encryption oracle, q
d queries to its FIL

decryption oracle, and queries to its VIL oracle which cost at most (message blocks in total,

Advindi↵ 12((+ q
e + q

d

)2 3((q
e + q

d

)
F,{⇡0,⇡1} (A) + ,

HIV ,S 2n 2n - 6(q
e + q

d

) - 5

and S makes at most q
e queries.

6 Pseudorandom Function

F,{⇡0,⇡1}It is shown in [20] that one can produce a pseudorandom function (PRF) from H simplyIV
F,{⇡0,⇡1}by replacing IV with a secret key. More precisely, H keyed via IV is a PRF if F with key IV

space ⌃n is a PRF against {id ,⇡
0

,⇡
1

}-restricted related key attacks, where id is the identity
permutation on ⌃n .

7 Application to Sponge Construction

7.1 Scheme

Let P : ⌃b ! ⌃b be a permutation and b = w + c, where b, w and c are positive integers.
The sponge hash function using the proposed domain extension consists of the permutation P ,
permutations ⇡

0 and ⇡
1 over ⌃c, and an initialization vector IV 2 ⌃b . For ⇡

0 and ⇡
1

, it is
assumed that ⇡

0

(u) 6 6 6 .= u, ⇡
1

(u) = u and ⇡
0

(u) = ⇡
1

(u) for every u 2 ⌃c

For y 2 ⌃b, let y = y
r

ky
c

, where y
r 2 ⌃w and y

c 2 ⌃c. In the remaining parts, some notations
are abused for simplicity. For permutation ⇡ over ⌃c and string y 2 ⌃b , ⇡(y) represents y

r

k⇡(y
c

).
Namely, ⇡ is applied to the c least significant bits (LSBs) of y. For strings y 2 ⌃b and X 2 ⌃w ,
y EX represents (y

r EX)ky
c

.
Let ⇡ be a permutation over ⌃c . For 1 i x, let Xi 2 ⌃w . The tweaked sponge con

struction SP,⇡ : (⌃w)+ ! ⌃n is defined as follows: SP,⇡(X
1

kX
2

k · · · kXx) = v̂x, where v
0 IV ,IV IV

vi P (vi-1 EXi) for 1 i x - 1, vx P (⇡(vx-1

) EXx), and v̂x is the n most significant
bits (MSBs) of vx.

P,{⇡0,⇡1}The sponge hash function G : ⌃⇤ ! ⌃n based on the proposed domain extension is IV
defined as follows:

(
SP,⇡0

P,{⇡0,⇡1} (pad(M)) if |M | > 0 and |M | ⌘ 0 (mod w),IVG (M) =IV SP,⇡1 (pad(M)) otherwise. IV

It is also depicted in Fig. 7.

10

M1 M2 Mm−1 Mm

π0
IV P P P P

(a) For M such that |M | > 0 and |M | ⌘ 0 (mod w). |M
m

| = w.

M1 M2 Mm−1 Mm∥10*

π1
IV P P P P

(b) For M such that |M | = 0 or |M | 6⌘ 0 (mod w). |M
m

| = 0 if |M | = 0 and 1 |M
m

|
w - 1 otherwise.

Fig. 7: The sponge hash function based on the proposed domain extension. M =
M

1

kM
2

k · · · kMm, where |Mi| = w for 1 i m - 1.

7.2 IRO in the Ideal Permutation Model

In this section, P : ⌃b ! ⌃b is assumed to be chosen uniformly at random. The following
theorem implies that the proposed hash function is indi↵erentiable from a random oracle up to
the birthday bound.

Theorem 4. Suppose that the permutation P : ⌃b ! ⌃b is chosen uniformly at random. Then,
P,{⇡0,⇡1}for the hash function G , there exists a simulator S of (P, P-1) such that, for any ad-IV

versary A making at most q
f queries to its FIL forward oracle, q

b queries to its FIL backward
oracle, and queries to its VIL oracle which cost at most (message blocks in total,

Advindi↵ 12((+ q
f + q

b

)2 3((q
f + q

b

)
P,{⇡0,⇡1} (A) +	 ,

GIV ,S 2c 2c - 6(q
f + q

b

) - 5

and S makes at most q
f queries.

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP16H02828.

References

1.	 N. Bagheri, P. Gauravaram, L. R. Knudsen, and E. Zenner. The sufx-free-prefix-free hash function construc
tion and its indi↵erentiability security analysis. International Journal of Information Security, 11(6):419–434,
2012.

2.	 M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In N. Koblitz,
editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

3.	 M. Bellare and T. Ristenpart. Multi-property-preserving hash domain extension and the EMD transform. In
Lai and Chen [23], pages 299–314.

4.	 M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Vaudenay [32], pages 409–426.

5.	 G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sakura: A flexible coding for tree hashing. In
I. Boureanu, P. Owesarski, and S. Vaudenay, editors, Applied Cryptography and Network Security - 12th
International Conference, ACNS 2014, volume 8479 of Lecture Notes in Computer Science, pages 217–234.
Springer, 2014.

11

6.	 G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Sufcient conditions for sound tree and sequential
hashing modes. International Journal of Information Security, 13(4):335–353, 2014.

7.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. ECRYPT Hash Workshop, 2007.
8.	 G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge: Single-pass authenticated

encryption and other applications. In A. Miri and S. Vaudenay, editors, Selected Areas in Cryptography
18th International Workshop, SAC 2011, volume 7118 of Lecture Notes in Computer Science, pages 320–337.
Springer, 2011.

9.	 J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message authentication. In L. R.
Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory and
Applications of Cryptographic Techniques, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer, 2002.

10.	 A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. spongent: A lightweight
hash function. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of Lecture Notes in Computer
Science, pages 312–325. Springer, 2011.

11.	 G. Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
volume 435 of Lecture Notes in Computer Science. Springer, 1990.

12.	 D. Chang, S. Lee, M. Nandi, and M. Yung. Indi↵erentiable security analysis of popular hash functions with
prefix-free padding. In Lai and Chen [23], pages 283–298.

13.	 D. Chang and M. Nandi. Improved indi↵erentiability security analysis of chopMD hash function. In K. Nyberg,
editor, Fast Software Encryption, 15th International Workshop, FSE 2008, volume 5086 of Lecture Notes in
Computer Science, pages 429–443. Springer, 2008.

14.	 J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash
function. In V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 430–448.
Springer, 2005.

15.	 I. Damg̊ard. A design principle for hash functions. In Brassard [11], pages 416–427.
16.	 FIPS PUB 180-4. Secure hash standard (SHS), Mar. 2012.
17.	 FIPS PUB 202. SHA-3 standard: Permutation-based hash and extendable-output functions, 2015.
18.	 J. Guo, T. Peyrin, and A. Poschmann. The PHOTON family of lightweight hash functions. In P. Rogaway,

editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 222–239. Springer, 2011.
19.	 S. Hirose, J. H. Park, and A. Yun. A simple variant of the Merkle-Damg̊ard scheme with a permutation. In

Kurosawa [22], pages 113–129.
20.	 S. Hirose and A. Yabumoto. A tweak for a PRF mode of a compression function and its applications.

Cryptology ePrint Archive, Report 2016/638, 2016. http://eprint.iacr.org/2016/638.
21.	 J. Kelsey. A comment on draft FIPS 180-2. Public Comments on the Draft Federal Information Processing

Standard (FIPS) Draft FIPS 180-2, Secure Hash Standard (SHS), 2001.
22.	 K. Kurosawa, editor. Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the

Theory and Application of Cryptology and Information Security, volume 4833 of Lecture Notes in Computer
Science. Springer, 2007.

23.	 X. Lai and K. Chen, editors. Advances in Cryptology - ASIACRYPT 2006, 12th International Conference
on the Theory and Application of Cryptology and Information Security, volume 4284 of Lecture Notes in
Computer Science. Springer, 2006.

24.	 U. M. Maurer, R. Renner, and C. Holenstein. Indi↵erentiability, impossibility results on reductions, and
applications to the random oracle methodology. In M. Naor, editor, TCC, volume 2951 of Lecture Notes in
Computer Science, pages 21–39. Springer, 2004.

25.	 R. C. Merkle. One way hash functions and DES. In Brassard [11], pages 428–446.
26.	 M. Nandi. Characterizing padding rules of MD hash functions preserving collision security. In C. Boyd

and J. M. G. Nieto, editors, Information Security and Privacy, 14th Australasian Conference, ACISP 2009,
volume 5594 of Lecture Notes in Computer Science, pages 171–184. Springer, 2009.

27.	 M. Nandi. Fast and secure CBC-type MAC algorithms. In O. Dunkelman, editor, Fast Software Encryption,
16th International Workshop, FSE 2009, volume 5665 of Lecture Notes in Computer Science, pages 375–393.
Springer, 2009.

28.	 NIST Special Publication 800-38B. Recommendation for block cipher modes of operation: The CMAC mode
for authentication, 2005.

29.	 J. Quisquater and M. Girault. 2n-bit hash-functions using n-bit symmetric block cipher algorithms. In
J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology - EUROCRYPT ’89, Workshop on the
Theory and Application of of Cryptographic Techniques, volume 434 of Lecture Notes in Computer Science,
pages 102–109. Springer, 1989.

30.	 P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and collision resistance. In B. K. Roy and W. Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE 2004, volume 3017 of Lecture Notes in
Computer Science, pages 371–388. Springer, 2004.

12

http://eprint.iacr.org/2016/638

31.	 P. Sarkar. Domain extender for collision resistant hash functions: Improving upon Merkle-Damg̊ard iteration.
Discrete Applied Mathematics, 157(5):1086–1097, 2009.

32.	 S. Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, volume 4004 of Lecture Notes in Computer Science.
Springer, 2006.

13

