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Internet of Things 
Some use cases and features 
 

• Robust architecture 
• Small packets 
• Private data 
• Low power 
• Long term 

 

• Constrained links 
• Device to device 
• Large network 
• Low power 
• Long-term 
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Abstracting 

Device 1 

Server 1 

Device 2 

Server 2 

Device d 

Server s 

Device 3 

Internet 

“Wireless  
network” 

• Low energy (battery or harvesting) 
 

• Small (100s bytes) packet 
 

• Low (100s Kbps) data rate 
 

• Long term (>10 years) 
 

• Relatively slow CPU (10s MHz) 
 

• Limited RAM (<10 KB) 
 

• Limited memory (256 – 1024 KB) 
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Why Security in IoT? 

Your privacy & safety Company image and IPR 

National security Economy 
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Challenges 
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Why is Security Challenging in IoT? 
Main reasons 
• Business case budget constrains  tight resources 
• Application lifecycle  operational constrains  

 
Many technical challenges (from www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt)  
• DoS resistance 
• Protocol translation  
• End-to-end security 
• Bootstrapping security 
• Network access control (IP networks) 
• Group membership and security 
• IP network dynamics 
• Long term security 

 

• Software upgrade 
• Intrusion detection 
• Penetration testing 
• Fine grained access control 
• Re-selling devices 
• System heritage 
• Crypto agility (limited resources) 
• Quantum-resistance 
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• Software upgrade 
• Intrusion detection 
• Penetration testing 
• Fine grained access control 
• Re-selling devices 
• System heritage 
• Crypto agility (limited resources) 
• Quantum-resistance 

Challenge:                     efficient and scalable  
management of keys/credentials of devices 

http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt
http://www.ietf.org/id/draft-irtf-t2trg-iot-seccons-00.txt


10 

Why this challenge? 

Challenge:                     efficient and scalable  
management of keys/credentials of devices 

Device 1 

Server 1 

Device 2 

Server 2 

Device d 

Server s 

Device 3 

Internet 

Simple operation 

Device lifecycle 

Manufacturing 
Distribution 
Installation 
Operation 

Re-configuration 
End-of-life 
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• Intrusion detection 
• Penetration testing 
• Fine grained access control 
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Why is long-term security a challenge? 

Challenge: Long term efficient and scalable  
management of keys/credentials of devices 

Symmetric primitive Security level 

AES128 64 

AES256 128 

ECC 0 

RSA 0 

The construction of a large scale fault tolerant quantum computer would mean: 
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Why is long-term security a challenge? 

Primitive Communication overhead Challenges 

XMSS ~39000 𝑏𝑖𝑡𝑠 (𝑤 = 4) Scheme with short signatures? 

New Hope ~3800 𝑏𝑖𝑡𝑠 
Efficient key exchange? 

Frodo ~22500 𝑏𝑖𝑡𝑠 

AES128 How to upgrade deployed hardware? 

Challenge: Long term efficient and scalable  
management of keys/credentials of devices 

There are some proposed public-key primitives, but there are performance 
challenges: 
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Architecture options 
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Architectural Options  

KDC CA 

PGK TTP 

Configuration 

Operation 
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KDC CA 

PGK TTP 

Architectural Options Configuration 

Operation 
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HIMMO 
Efficient Collusion- and Quantum-Resistant Key Pre-Distribution Scheme 

𝑎 𝑏 
Configuration 
parameters 

𝑎 𝑆𝑎(𝑥) 

 𝐾𝑎,𝑏 
𝑆𝑒𝑐𝑟𝑒𝑡  
𝑹 

 𝐾𝑏,𝑎 

𝐸 𝐾𝑎,𝑏(𝑚) 

𝑎 

1) Setup 2) Keying material extraction 3) Operational protocol 

TTP TTP 

Identity-based key exchange with implicit authentication 
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HIMMO 
www.himmo-scheme.com 

• Efficient collusion- and quantum- resistant 
 
 

• Easy protocol integration (TLS, MAC-layer level protocols, etc) 
 

• Features 
– Key exchange 
– Identity-based 
– Multiple TTP support 
– Credential certification and verification 
– One-way key exchange and authentication in 30 Bytes 

 
 

• Advantages 
– Very low overhead 
– Blacklisting feasible 
– Resilient TTP infrastructure 
– Out-of-the-box secure by factory configuration 
– Architectures able to support both forward secrecy and key escrow 

𝑩 𝑨 TLS 
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HIMMO directions 
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HIMMO directions 

• Running challenge with HIMMO design according to 
https://eprint.iacr.org/2016/152.pdf  
 

• We have kept analyzing HIMMO and also ways of optimizing design 

https://eprint.iacr.org/2016/152.pdf
https://eprint.iacr.org/2016/152.pdf
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Current HIMMO design (online challenges) 

Alice (a) Bob (b) 

sa=  aRi qi

m−1

i=0
N

 sb 

𝑠𝑎,𝑏 = 𝒔𝒂𝒃
𝑇
𝑁 2𝑏

 

𝑘𝑎,𝑏 =
𝑠𝑎,𝑏 
2𝑢

 

ℎ = 𝑠𝑎,𝑏 2𝑢  

𝑠𝑏,𝑎 = 𝒔𝒃𝒂
𝑇
𝑁 2𝑏

 

𝑘𝑎,𝑏 =
𝑠𝑎,𝑏 
2𝑢

 

𝐸 𝐾𝑎,𝑏(𝑚), h 

𝑠𝑎,𝑏 = 𝑓(𝑠𝑏,𝑎 , ℎ) 

𝑁: odd integer of bit length 3𝑏 
𝑚 numbers 𝑞𝑖 = 𝑁 − 𝛽𝑖2

𝑏 for 𝛽𝑖 a secret 𝑏 bits number 

𝑹𝒊 be a random symmetric 𝑡 𝑥 𝑡 matrix over 𝑍𝑞𝑖, for 0 ≤ 𝑖 ≤  𝑚 − 1  

𝒂, 𝒃 ∈ 0,2𝑏 − 1 𝑡 

Setup 

Keying  
material  
extraction 

Operation 

TTP 

As in https://eprint.iacr.org/2016/152.pdf  but with different notation 

https://eprint.iacr.org/2016/152.pdf
https://eprint.iacr.org/2016/152.pdf
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Simplifying the HIMMO design 
 

sa= 𝒂𝑹 + 𝝐𝒂 N sb 

𝑠𝑎,𝑏 = 𝒔𝒂𝒃
𝑇
𝑁 

𝑘𝑎,𝑏 =
𝑠𝑎,𝑏 
22𝑏+𝑢

 

ℎ =
𝑠𝑎,𝑏 
22𝑏 2𝑢

 

𝑠𝑏,𝑎 = 𝒔𝒃𝒂
𝑇
𝑁 

𝑘𝑎,𝑏 =
𝑠𝑎,𝑏 
22𝑏+𝑢

 

𝐸 𝐾𝑎,𝑏(𝑚), h 

𝑠𝑎,𝑏 = 𝑓(𝑠𝑏,𝑎 , ℎ) 

        𝑁 be an integer of bit length 3𝑏 

𝑹 be a random symmetric 𝑡 𝑥 𝑡 matrix over 𝑍𝑁 

𝒂, 𝒃, 𝝐𝒂, 𝝐𝒃 ∈ 0,2
𝑏 − 1 𝑡 

Setup 

Keying  
material  
extraction 

Operation 

TTP 

Alice (a) Bob (b) 

 Note: Before 𝝐𝒂 determined by 𝛽𝑖, 𝑹𝒊 and a. Now random 



25 

About the simplified design 
 

• Operationally equivalent to existing HIMMO design (eprint 2016/152) 
 

• For work done so far, same attacks and security parameters seem to apply. 
 

• It shares some similarities with LWE, but it is not LWE. 
 
– Key difference: identity vector is not evenly distributed in 𝑍𝑁 since it is 

short. 
– The fact that the identities are shorter implies that a larger value of 𝑡 is 

required to deal with existing attacks 
 

• Further simplifications are feasible. 
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Parameters and performance 

• Security notion 
– Information-theoretically secure: attacker needs 𝑐 > 3𝑡/2 nodes to attack 

a system. In a small network with 𝑑 devices, we can use small 𝑡 = 2𝑑/3 
– Computational security: for 𝑏 parameter (e.g., 16) and a relatively large 𝑡 

(e.g., 2000) a high quality (slow) lattice reduction algorithm is needed to 
obtain a lattice basis with a small enough root Hermit factor (e.g., < 1.005) 

• Estimated performance 
 

 
Inf.-theor. Security Computational security 

Parameters (t/b) 200/32 2000/16 

Network size e.g., 𝑑 = 300 Any 

Communication overhead 48 𝐵 96 𝐵 

Keying material size 6.25 𝐾𝐵 30 − 60 𝐾𝐵 

Code / RAM size <  500 𝐵, ~ 40 𝐵 

Security level 128 bits long key Up to 256 bit long key 
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Conclusions 

 
• The IoT covers a plethora of use cases with very diverse needs 

 
• IoT has many security challenges ahead; many more in the advent of 

quantum computers: efficiency, transition, key/credential 
management 
 

• The key challenge: efficient and scalable long-term management of 
keys/credentials of devices through their lifecycle 
 

• HIMMO (www.himmo-scheme.com)  is an efficient collusion- and 
quantum-resistant scheme overcoming this problem 
 

http://www.himmo-scheme.com/
http://www.himmo-scheme.com/
http://www.himmo-scheme.com/
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Many Requirements 

Energy efficiency Small and real-time 

Simple operation Long term security Device lifecycle 

Manufacturing 
Distribution 
Installation 
Operation 

Re-configuration 
End-of-life 
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Attacks Paths and Security Analysis 

• Eve has any set of 𝑐 compromised keying materials 𝒔𝒙𝟏 , … , 𝒔𝒙𝒄 . Eve’s goal is to find 
the key shared between Alice and Bob, 𝑘𝑎,𝑏. 

 
• Attack paths: 

 
– Try to recover 𝑘𝑎,𝑏 by attacking the TTP: recovers 𝑹, 𝒔𝒙, and any 𝑘𝑥,𝑦. 

 
– Try to recover 𝑘𝑎,𝑏 by attacking Alice’s 𝒔𝒂 (or Bob): recovers 𝒔𝒂, and any 𝑘𝑎,𝑦. 

 
– Try to recover 𝑘𝑎,𝑏 only. 

 
• Security analysis for the above attack paths is described here 

 
O. Garcia-Morchon, R. Rietman, L. Tolhuizen, J.L. Torre-Arce, M.S. Lee, D. Gomez-
Perez, J. Gutierrez, B. Schoenmakers, "Attacks and parameter choices in 
HIMMO", ", IACR ePrint Archive, Report 2016-152 
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About the HIMMO Contest 

• No time limit, you can take as much time as you need  
• Five challenges for 𝑏 = 32 
• 1000 Euros per solved challenge 
 

 
 
 
 
 
 
 
 
 
 
 

Challenge 𝑡  

HIMMO1 2000 

HIMMO2 4000 

HIMMO3 8000 

HIMMO4 16000 

HIMMO5 32000 
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+ Information and Contest for Open Verification 

 
www.himmo-scheme.com  
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Key Pre-Distribution Scheme 

A key pre-distribution scheme involves a trusted third party TTP and nodes 
𝑁1, … , 𝑁𝑙 and consists of the following three components. 

 
• Setup. An algorithm run by TTP for generating secret root keying material 
𝑅 and public system parameter 𝑃, given a security parameter. 
 

• Extract. An algorithm run by TTP for generating secret keying material 𝑠𝑥 for a 
given node 𝑁𝑥, given root keying material 𝑅 and system parameter 𝑃. 
 

• Key establishment. A protocol run by node 𝑁𝑥 and 𝑁𝑦 for generating shared 

key 𝑘𝑥,𝑦, given secret keying material 𝑠𝑥 and 𝑠𝑦, and system parameter 𝑃. 
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Rationale 

Features of KPS 
Efficient 
Any node can directly obtain a pairwise key with any 

other any node 
Based on identities so that it is possible to verify them 
Multiple TTP support so that a single TTP does not 

have access to all keys 
X KPS collusion resistance 
 

Our goal with HIMMO was to achieve collusion resistance 
while keeping the rest of nice features 
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HIMMO in Practice 
 Extraction 

 

𝑥,𝒔𝒙 

TTP I 

𝑹𝒊
𝑰 𝑞𝑖

𝐼 

𝒔𝒙 
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HIMMO in Practice 
One-way key exchange and entity authentication 

𝑦,𝒔𝒚 
𝐴𝐸𝑘𝑥,𝑦 𝑀 , ℎ 

𝑘𝑦,𝑥 𝑥,𝒔𝒙 𝑘𝑥,𝑦 
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HIMMO in Practice 
Implicit certification and verification of parameters 

𝑘𝑦,𝑥 

TTP I 

𝐴𝐸𝑘𝑥,𝑦 𝑀 , ℎ 𝑘𝑥,𝑦 

x (and any parameters (e.g., access roles) in it) is implicitly verified  

𝑦,𝒔𝒚 𝑥,𝒔𝒙  

𝑹𝒊
𝑰 𝑞𝑖

𝐼 
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HIMMO in Practice 
Multiple TTP support 

𝐴𝐸𝑘𝑥,𝑦 𝑀 , ℎ 
𝑘𝑦,𝑥 𝑘𝑥,𝑦 

TTP I TTP II TTP III 

  
Single TTP does not have access to communication 

O. Garcia-Morchon, R. Rietman, S. Sharma, L. Tolhuizen, J.L., Torre-Arce. DTLS-HIMMO Efficiently Securing a Post-Quantum World with a Fully-
Collusion Resistant KPS. In ESORICS 2015; also presented at NIST workshop on Cybersecurity in a Post-Quantum World, 2015. 

𝑦,𝒔𝒚 𝑥,𝒔𝒙  

𝑹𝒊
𝑰 𝑞𝑖

𝐼 𝑹𝒊
𝑰𝑰 𝑞𝑖

𝐼𝐼 𝑹𝒊
𝑰𝑰𝑰 𝑞𝑖

𝐼𝐼𝐼 

x (and any parameters (e.g., access roles) in it) is implicitly verified  



39 

HIMMO in Practice 
HIMMO for certification of public-keys 

𝑀𝐴𝐶𝑘𝑝𝑢𝑥,𝑝𝑢𝑦 𝑝𝑢𝑥 , ℎ 𝑘𝑝𝑢𝑥,𝑝𝑢𝑦 

TTP I TTP II TTP III 

Single TTP cannot fake the MAC that verifies x’s public key (𝑝𝑢𝑥) 

𝑘𝑝𝑢𝑥,𝑝𝑢𝑦 

O. Garcia-Morchon, R. Rietman, L. Tolhuizen, J.L. Torre-Arce, S. Bhattacharya and M. Bodlaender "Efficient quantum-resistant trust Infrastructure 
based on HIMMO", IACR ePrint Archive, Report 2016-410  

𝑝𝑢𝑦,  

𝒔𝒑𝒖𝒚   
𝑝𝑢𝑥, 
𝒔𝒑𝒖𝒙  

𝑹𝒊
𝑰 𝑞𝑖

𝐼 𝑹𝒊
𝑰𝑰 𝑞𝑖

𝐼𝐼 𝑹𝒊
𝑰𝑰𝑰 𝑞𝑖

𝐼𝐼𝐼 
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Device Lifecycle and Security Needs 

Device 1 

Server 1 

Device 2 

Device d 

Server s 

Device 3 

Root of 
trust 

Root of 
trust 

Device 2 

Device d 

Device 3 
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Server s 

Device 3 

Root of 
trust 

Root of 
trust 

Network access 

Manufacturing 

Operation 

Security infrastructure 



42 

Device Lifecycle and Security Needs 

Device 1 

Server 1 

Device 2 

Device d 

Server s 

Device 3 

Root of 
trust 

Root of 
trust 

Network access 

Manufacturing 

Operation 

Security infrastructure 
Infrastructure 
• Out-of-band (secure manufacturing) 

and in-band (Internet) provisioning 
• Efficient resistance to root capture 
• Long term security 
• Key escrow 
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Device Lifecycle and Security Needs 

Device 1 

Server 1 

Device 2 

Device d 

Server s 

Device 3 

Root of 
trust 

Root of 
trust 

Network access 

Manufacturing 

Operation 

Security infrastructure 

Network access 
• Backend authentication/authorization 
• Device authentication/authorization 
• Device identification/blacklisting 
• DoS prevention 

Infrastructure 
• Out-of-band (secure manufacturing) 

and in-band (Internet) provisioning 
• Efficient resistance to root capture 
• Long term security 
• Key escrow 
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Device Lifecycle and Security Needs 

Device 1 

Server 1 

Device 2 

Device d 

Server s 

Device 3 

Root of 
trust 

Root of 
trust 

Network access 

Manufacturing 

Operation 

Security infrastructure 

Network access 
• Backend authentication/authorization 
• Device authentication/authorization 
• Device identification/blacklisting 
• DoS prevention 

 
Operation 
• Key agreement 
• Collusion resistance 
• Quantum resistance 
• Easy protocol integration 
• Forward security and key escrow 
• Credential verification, e.g., public-keys 

 

Infrastructure 
• Out-of-band (secure manufacturing) 

and in-band (Internet) provisioning 
• Efficient resistance to root capture 
• Long term security 
• Key escrow 
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