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Introducing WalnutDSA
 

A group theoretic digital signature algorithm with the following features: 

• Very fast signature verification: 

Running time is linear in key/signature size. 

Key/Signature size grows linearly with security level. 

• Security is based on the hard problems of solving a novel equation over the braid 
group and reversing a certain representation of the braid group. 

• WalnutDSA appears resistant to known attacks in group theoretic cryptography. 

• Quantum Resistant 
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Background Math 
Braids 

A braid on N strands (BN ) is a collection of N entangled strings. 

We can represent a braid by a left-right crossing sequence of signed nonzero integers 
i1i2 · · · ik , (“Artin generators”) each of which lies between −N and N. 

A positive integer i means “cross the ith strand under the (i + 1)st strand.” 

A negative integer −i means “cross the ith strand over the (i + 1)st strand.” 

1 2 3 1 2 1 3 3̄ 2̄ 2 1 ¯ 3̄ 1̄
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Background Math 
Colored Burau Representation of BN 

Each b±1 
i 

a 
is associated with the ordered pair CB(bi )

±1, σi where σi is the 
transposition (i , i + 1), 

1 1 
⎛ ⎞⎛⎞ 
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 .
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.
.
 .
.
 .
.
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ti+1 ti+1 
1 −
−ti 1
ti .
 

.
 .
.
 .
 .
 
1 1
 

By letting permutations act on the left on the matrices CB(bi ) (by permuting the 
variable entries), the ordered pairs CB(bi )

±1, σi form a semi-direct product which 
satisfy the braid relations. This gives a representation of BN . 

a 

Note the sparsity. This is why complexity scales linearly. It’s also why E-Multiplication 
can execute in one clock cycle in lightweight hardware. 
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E-Multiplication (denoted *)
 

• Fq = finite field of q elements. 

• T = {τ1, . . . , τN } ⊂ (F×)N = set of T -values.q 

• m ∈ GL(N, Fq), σ ∈ SN . 

E-multiplication by one Artin generator 

⎛
⎛
 1 
. . . 
τσ(i) −τσ(i) 

⎟⎟⎠σ · (i , i + 1) 
. . . 

1 

By iterating this computation we can compute the E-Multiplication of (m, σ) with an 
arbitrary braid element (finite product of Artin generators and their inverses). 

⎜⎜⎝

⎜⎜⎝
(m, σ) � bi 1=
 m ·
 ,
 .
 

⎞⎞ ⎟⎟⎠
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Laurent Polynomial entry: Short random word of length 10 in B4 > S4. 
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What E-multiplication erases! 
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WalnutDSA Key Generation 

WalnutDSA allows a signer with a fixed private/public key pair to create a digital 
signature associated to a given message which can be validated by anyone who knows 
the public key of the signer and the verification protocol. 

Public Information: 

• An integer N ≥ 8 and associated braid group BN . 

• A rewriting algorithm R : BN → BN . 

• A finite field Fq of q ≥ 32 elements. 

• T-values = {τ1, τ2, . . . , τN } a set of invertible elements in Fq. 

Signer’s Private Key: Priv(S) ∈ BN . 

a 
Signer’s Public key: Pub(S) = Id, Id Priv(S) 
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WalnutDSA Signature Generation
 

• M is a hash of a message. 

• E (M) is an encoding of M into the pure braid subgroup of BN . 

a 
Step 1: Generate cloaking elements v1 and v2 which cloak Id, Id and Pub(S), 
respectively. a 
Step 2: Compute Sig = R Priv(S)−1 · v1 · E (M) · Priv(S) · v2 , a rewritten braid. 

Step 3: The final signature for the message M is the ordered pair (Sig, M). 
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Cloaking Elements
 

Let m ∈ GL(N, Fq) and σ ∈ SN . An element v in the pure braid subgroup of BN is 
termed a cloaking element of (m, σ) if 

(m, σ) v = (m, σ).
 

The cloaking element is defined by the property that it essentially disappears when 
performing E-Multiplication. 

Remark: When E-Multiplication is viewed as a right action of BN on GL(N, Fq) × SN 

then cloaking elements are stabilizers which form a subgroup of BN . 
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WalnutDSA Signature Verification
 

The signature (Sig, M) is verified as follows: 

Step 1: Generate the encoded message E (M). a 
Step 2: Evaluate Pub(E(M)) := Id, Id E (M).
 

Step 3: Evaluate Pub(S) Sig.
 

Step 4: Verify the equality
 a a a 
MatrixPart Pub(S) Sig = MatrixPart Pub(E(M)) · MatrixPart Pub(S) , 

where the matrix multiplication on the right is performed over the finite field. The 
signature is valid if this equality holds. If the results are not equal then the signature 
validation has failed. 
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Linear Running Time of Signature Verification
 

• The bulk of Signature Verification only requires E-Multiplication computations. 

• E-multiplication by one Artin generator can be performed in one clock cycle. 

• Most of the running time of Signature Verification is taken up by computing L 
successive E-Multiplications, each by one Artin generator, where L is the number of 
Artin generators of the Signature (Sig). 

• WalnutDSA Signature Verification is extremely fast and the running time is linear in 
the Signature length. 
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Security Discussion 
Reversing E-Multiplication Is Hard 
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• Braid group BN and symmetric group SN with N ≥ 8. 
• Finite field Fq with q ≥ 32. 
• β ∈ BN . 
• (m, σ) = (Id , Id) β ∈ GL(N, Fq) × SN . 

Conjecture: It is infeasible to determine β from (m, σ) if the normal form of β is 
sufficiently long. 

Quantum Resistance: As the length of the word β increases, the complexity of the 
Laurent polynomials occurring in the E-multiplication increases exponentially. It does 
not seem to be possible that E-Multiplication exhibits any type of simple periodicity, so 
it is very unlikely that inverting E-Multiplication can be achieved with a polynomial 
quantum algorithm. 
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Security Discussion 
Cloaked Conjugacy Search Problem (CCSP)) 
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• The braid group BN and symmetric group SN with N ≥ 8. 

• Y , v1, v2 ∈ BN . 

• Assume v1 cloaks (Id, Id) and v2 cloaks (Id, Id) Y . 

Conjecture (CCSP): Assume A ∈ BN and Y −1 v1 A Y v2 are known. Then it is 
infeasible to determine Y if the normal forms of Y , v1, v2 are sufficiently long. 



Security Discussion 
Quantum Resistance of CCSP 

Hidden Subgroup Problem The Hidden Subgroup Problem asks to find an unknown 
subgroup H ≤ G using calls to a known function on G which takes distinct constant 
values on distinct cosets of G /H. 

• Shor’s quantum attack breaking RSA and other public key protocols such as ECC are 
essentially equivalent to the fact that there is a successful quantum attack on the 
Hidden Subgroup Problem for finite cyclic groups. 

• Since the braid group does not contain any non-trivial finite subgroups at all, there 
does not seem to be any viable way to connect CCSP with HSP. 
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Security Discussion 
Grover’s Quantum Search Algorithm (GQSA) a1 

• GQSA finds an element in an unordered N element set in time O N 2 . 

• GQSA can find the private key in a cryptosystem with a square root speed-up in 
running time and cuts the security in half. 

• GQSA can be defeated by increasing the key size. 

• WalnutDSA Signature Verification runs in linear time in the signature length. GQSA 
can be defeated by doubling the signature length, which results in double the 
computation time. 

• By comparison ECDSA runs in quadratic time. Defeating GQSA requires a four fold 
increase in computation time. 
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Security Discussion 

• The recent attack of Ben-Zvi–Blackburn–Tsaban (BBT) (“A practical cryptanalysis 
of the Algebraic Eraser,” CRYPTO 2016, see also “Defeating the Ben-Zvi, Blackburn, 
and Tsaban Attack on the Algebraic Eraser”) does not to apply to WalnutDSA 
because the signature is a braid and there are no commuting subgroups involved, 
Hence, the linear algebraic attacks as proposed in BBT to solve CCSP or to forge a 
signature are not applicable. 

• Length attacks of the type proposed by Myasnikov–Ushakov (2009) or 
Garber-Kaplan-Teicher-Tsaban-Vishnu (2005) do not appear to facilitate solving CCSP 
if the keys are sufficiently large. First of all, as pointed out by Gunnells (2011), the 
length attack only works effectively for short conjugates, which are not used an 
implementations. Secondly, the placement of the unknown cloaking elements v1, v2 in 
the braid word Y −1 v1 AY v2 seems to completely thwart any type of length attack for 
the conjugacy problem. 
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Security Discussion
 

• Note that if the cloaking elements v1, v2 are trivial then CCSP reduces to the 
ordinary conjugacy search problem (CSP). If an attacker can determine the cloaking 
elements v1, v2 then it is easy to see that CCSP again reduces to CSP and fast 
methods for solving for Y were obtained in Gebhardt “A new approach to the 
conjugacy problem in Garside groups,” (2005) provided the super summit set of the 
conjugate Y was not too large. In applications one should never use cloaking elements 
that are trivial or close to trivial. 
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Performance of WalnutDSA Verification
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B8F32, 2128 Security level (equivalent to ECC P256) 
Platform Clock WalnutDSA ECDSA Gain 

MHz ROM1 RAM1 Time2 ROM1 RAM1 Time2 (Time) 
MSP430 8 3244 236 46 3 20-30K 2-5K 1000-3000 21-63x 
8051 24.5 3370 312 35.3 

ARM M3 48 2952 272 5.7 4 7168 540 233 40.8x 
FPGA 50 0.05 5 2.08 41.6x 

1 ROM/RAM in Bytes 
2 Time is in milliseconds. 
3 C.P.L. Gouvêa and J. López, Software implementation of Pairing-Based Cryptography on sensor 
networks using the MSP430 micro controller, Progress in Cryptology, Indocrypt 2009 
4 Wenger, Unterluggauer, and Werner in 8/16/32 Shades of Elliptic Curve Cryptography on Embedded 
Processors in Progress in Cryptology, Indocrypt 2013 
5 Jian Huang, Hao Li, and Phil Sweany, An FPGA Implementation of Elliptic Curve Cryptography for 
Future Secure Web Transaction, 2007. 
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