
SIMON, SPECK and NISTIR 8114 

Presented by
 
Louis Wingers, National Security Agency
 

NIST Lightweight Workshop 2016
 
October 17-18, 2016
 



The Big Picture
 

What are the goals of a lightweight cryptography standard? 

A major goal is securing the “Internet of Things”, which consists 
of many small, constrained devices operating in heterogeneous 
networks. Technology is changing rapidly, and we can’t predict 
what future devices will look like. Flexibility is important to cope 
with unforeseen circumstances. 

We take a broad view of the IoT — devices don’t necessarily 
need to communicate through the Internet (or even a hub). 



Profiles
 

The “profiles” approach taken in the NISTIR document seems 
sensible in the near term. But in the long term, it might run 
counter to the goal of supporting IoT security. 

•	 It could lead to fragmentation, where different algorithms 
are identified for every use case. If we take a longer view, 
support for heterogeneous networks should be of prime 
importance, where flexible algorithms would be preferred. 

•	 Identification of very specific thresholds for size, power, 
throughput, latency, etc., could lead to standards which are 
obsolete even before they are published. 



Profiles
 

It might be better to have more generic profiles, created with 
input from the industries involved, and which will remain 
relevant in 10 years or more. For this, it’s best if they’re not 
strongly tied to current systems. 

Care should be taken so that profiles aren’t misused, i.e., 
written to carve out a space for a particular algorithm. 
Characteristics should not be unnecessarily restricted. 



Profiles
 

On sample profile #2: Why is a 20 ns latency required for the 
automobile CAN application, when car systems operate on a 
time scale of tens of milliseconds— a million times slower? 

Even if a profile makes sense today, will it make sense in 2030? 

In 2030 it seems reasonable that the time to deploy an airbag 
will still be in milliseconds, even if the CAN no longer operates 
at 50 MHz (i.e. 20 ns per clock cycle). 

The platforms will change, the physics won’t. 



Block Size 

Should there be a minimum block size? 

•	 Small block sizes might be necessary for many highly 
constrained applications. This is why so many lightweight 
ciphers have 64-bit blocks. 

•	 Small block sizes have security issues as the amount of 
encrypted plaintext approaches O(2n/2). While the key is 
not recoverable, plaintext may be leaked. 

•	 How do we prevent misuse of a cipher with a small block 
size? Once standardized a cryptographic algorithm may be 
used in unintended ways. Are written guidelines enough? 



Block Size
 

•	 Using a block cipher in a tweak mode solves these issues. 
This is easy for some ciphers, e.g., SKINNY. 

•	 Classical block ciphers can be made into tweakable block 
ciphers in various ways.1 Some performance degradation 
may occur. 

•	 When not used in a tweak mode, restricting the amount of 
data to be encrypted is effective. For many lightweight 
applications the amount of data encrypted for a fixed key 
will be relatively small. Can data restrictions be enforced? 

What’s the cutoff — 32, 48, 64, 80, 96 bits? 

1
How to Build Fully Secure Tweakable Blockciphers from Classical Blockciphers by Wang, Guo, Zhang, Zhao 

and Gu, eprint 2016/876 



Key Size and Security 
NISTIR 8114 states (line 451): The security against
 
key-recovery attacks should be at least 112 bits.
 

Even-Mansour schemes such as PRINCE and Chaskey 
assume a weakened security model. Allowing 2d data, the key 
can be recovered with 2k −d work. For a 128-bit key, a 216 block 
data limit must be enforced (across all users on common key). 

Mavromati showed that with 232 different keys each producing 
232 plain/cipher pairs, we can recover 2 of the keys with O(264) 
total work2. The Chaskey documentation recommends a data 
limit of 248 message blocks, so this is a reasonable amount of 
data for each key. 

2C. Mavromati, “Key-recovery attacks against the MAC algorithm
 
Chaskey”, ePrint 2015/811, 2015.
 



Key Size and Security 

Some questions about Even-Mansour schemes — 

•	 What do these designs (developed in a weaker security 
model) buy us relative to more traditional designs? 

•	 Will developers be confused by what a 128-bit key means? 
Will they think that a 128-bit Even-Mansour block cipher 
with a 128-bit key has security equal to AES-128? 

•	 Should there be a minimum amount of data which a block 
cipher needs to be able to encrypt under a fixed key? 



Security Update 
SIMON and SPECK were released in June 2013. 
About 60 cryptanalysis papers. 

Algorithm Atk/Tot Margin Algorithm Atk/Tot Margin 
SIMON 64/96 30/42 29% SPECK 64/96 19/26 27% 
SIMON 64/128 31/44 30% SPECK 64/128 20/27 26% 
SIMON 96/96 37/52 29% SPECK 96/96 20/28 29% 
SIMON 96/144 38/54 30% SPECK 96/144 21/29 28% 
SIMON 128/128 49/68 28% SPECK 128/128 23/32 28% 
SIMON 128/192 51/69 26% SPECK 128/192 24/33 27% 
SIMON 128/256 53/72 26% SPECK 128/256 25/34 26% 

AES-128 has a 30% security margin (7 of 10 rounds attacked). 

Design rationale found in “The SIMON and SPECK Lightweight 
Block Ciphers”, DAC 2016. 



Software and Hardware
 

For hardware, we think the most important attributes are 

• size (related to power and cost) 
• throughput (related to energy). 

These seem to be important for some RFID applications. 

For software, code size, RAM usage and throughput 
are all important. 



Algorithm Flexibility 

SIMON was optimized for hardware
 
SPECK was optimized for software
 

Nevertheless, 

• SIMON is among the best algorithms in software 
• SPECK is among the best algorithms in hardware 

They prove that it is not necessary to design highly specialized 
algorithms for specific platforms. 



SIMON 64/128 1416 139.1
SPECK 64/128 1247 27.6
SKINNY 64/128 1399 8.1

For comparable or smaller size —
SPECK has higher throughput than SKINNY.

Small ASIC Comparisons 
We compare hardware performance of SPECK against SKINNY 
(a good hardware-optimized design). 

Area (GE) Tput@100kHz (kbps) 
SIMON 64/128 958 4.2 
SPECK 64/128 996 3.4 
SKINNY 64/128 1172 2.0 



Small ASIC Comparisons 
We compare hardware performance of SPECK against SKINNY 
(a good hardware-optimized design). 

Area (GE) Tput@100kHz (kbps) 
SIMON 64/128 958 4.2 
SPECK 64/128 996 3.4 
SKINNY 64/128 1172 2.0 

SIMON 64/128 1416 139.1 
SPECK 64/128 1247 27.6 
SKINNY 64/128 1399 8.1 

For comparable or smaller size —
 
SPECK has higher throughput than SKINNY.
 



SIMON 128/128 2097 182.9
SPECK 128/128 1732 48.5
SKINNY 128/128 1840 14.7

AES-128 2400 56.6

Up to around 60 MHz, SPECK seems to outperform SKINNY.
Beyond that SKINNY will probably have better ASIC efficiency.

Small ASIC Comparisons
 
For 128-bit variants 

Area (GE) Tput@100kHz (kbps) 
SIMON 128/128 1242 5.7 
SPECK 128/128 1280 3.0 
SKINNY 128/128 1481 1.8 



Small ASIC Comparisons
 
For 128-bit variants 

Area (GE) Tput@100kHz (kbps) 
SIMON 128/128 1242 5.7 
SPECK 128/128 1280 3.0 
SKINNY 128/128 1481 1.8 

SIMON 128/128 2097 182.9 
SPECK 128/128 1732 48.5 
SKINNY 128/128 1840 14.7 

AES-128 2400 56.6 

Up to around 60 MHz, SPECK seems to outperform SKINNY. 
Beyond that SKINNY will probably have better ASIC efficiency. 



Fast FPGA Comparison
 

On Virtex-7 XC7VX330T
 

Area (Luts) FF’s T’put (Gbps) 
SIMON 64/128 3298 4290 45.5 
SPECK 64/128 4369 4940 37.8 
SKINNY 64/128 4247 6720 25.8 

For comparable or smaller size —
 
SPECK has higher throughput than SKINNY.
 



Fast FPGA Comparison
 

For 128-bit variants
 

Area (Luts) FF’s T’put (Gbps) 
SIMON 128/128 8579 8898 87.5 
SPECK 128/128 10237 8151 56.1 
SKINNY 128/128 13389 10048 41.0 



Microcontroller Comparisons
 
AVR MSP 

cipher ROM RAM Time ROM RAM Time FOM 
Chaskey-8 770 84 1597 490 86 1351 4.7 

SPECK 64/96 448 53 2829 328 48 1959 4.8 
SPECK 64/128 452 53 2917 332 48 2013 4.8 
Chaskey-16 770 84 2413 492 86 2064 5.3 
SIMON 64/96 600 57 4269 460 56 2905 6.5 
SIMON 64/128 608 57 4445 468 56 3015 6.7 

LEA 906 80 4023 722 78 2814 7.5 
RECTANGLE 64/128 602 56 4381 480 54 2651 8.0 
RECTANGLE 64/80 606 56 4433 480 54 2651 8.0 

+15 more entries 

FOM score also based on ARM implementation (not shown). Smaller FOM is better. 

FELICS table (scenario 2) encrypting 128 bits in counter mode. Note that 
SIMON (a hardware-optimized design) scores very highly. It surpasses many 
software designs (e.g., LEA (FOM 7.5) and PRIDE (FOM 24.0)). 



Algorithm Westmere Haswell
SPECK 128/128 2.91 1.29
SIMON 128/128 6.14 2.26
SKINNY 128/128 N/A 3.66

SIMON outperforms SKINNY.

Fast x86 Comparison 
Counter mode (long messages).
 
Numbers in cycles/byte (smaller is better).
 

Algorithm Westmere Haswell 
SPECK 64/128 2.59 1.11 
SIMON 64/128 4.13 1.57 
SKINNY 64/128 7.45 2.47 



Fast x86 Comparison 
Counter mode (long messages).
 
Numbers in cycles/byte (smaller is better).
 

Algorithm 
SPECK 64/128 
SIMON 64/128 
SKINNY 64/128 

Westmere 
2.59 
4.13 
7.45 

Haswell 
1.11 
1.57 
2.47 

Algorithm 
SPECK 128/128 
SIMON 128/128 
SKINNY 128/128 

Westmere 
2.91 
6.14 
N/A 

Haswell 
1.29 
2.26 
3.66 

SIMON outperforms SKINNY. 



Parting thoughts
 

•	 The goals of a lightweight standard should be carefully 
considered. 

•	 There is value in selecting algorithms which perform well in 
multiple environments, rather than “stovepipe” algorithms. 

•	 Security models, block sizes, and data limits are important, 
and usage guidance should be given. Security should align 
with NIST’s stated security targets. 



Questions/Comments?
 


	Structure Bookmarks
	AES-128 2400 56.6 
	Area (Luts) FF’s T’put (Gbps) SIMON 64/128 3298 4290 45.5 SPECK 64/128 4369 4940 37.8 SKINNY 64/128 4247 6720 25.8 
	Area (Luts) FF’s T’put (Gbps) SIMON 128/128 8579 8898 87.5 SPECK 128/128 10237 8151 56.1 SKINNY 128/128 13389 10048 41.0 
	Algorithm Westmere Haswell SPECK 64/128 2.59 1.11 SIMON 64/128 4.13 1.57 SKINNY 64/128 7.45 2.47 


