
The SKINNY Family of Block Ciphers

Christof Beierle1, Jérémy Jean2, Stefan Kölbl3, Gregor Leander1, Amir Moradi1, Thomas Peyrin2 ,

Yu Sasaki4, Pascal Sasdrich1, and Siang Meng Sim2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{Firstname.Lastname}@rub.de

2 School of Physical and Mathematical Sciences

Nanyang Technological University, Singapore

Jean.Jeremy@gmail.com, Thomas.Peyrin@ntu.edu.sg, SSIM011@e.ntu.edu.sg

3 DTU Compute, Technical University of Denmark, Denmark
stek@dtu.dk

4 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

Abstract. We present a new tweakable block cipher family SKINNY, whose goal is to compete with
NSA recent design SIMON in terms of hardware/software performances, while proving in addition
much stronger security guarantees with regards to differential/linear attacks. In particular, unlike
SIMON, we are able to provide strong bounds for all versions, and not only in the single-key model,
but also in the related-key or related-tweak model. SKINNY has flexible block/key/tweak sizes
and can also benefit from very efficient threshold implementations for side-channel protection.
Regarding performances, it outperforms all known ciphers for ASIC round-based implementations,
while still reaching an extremely small area for serial implementations and a very good efficiency
for software and micro-controllers implementations (SKINNY has the smallest total number of
AND/OR/XOR gates used for encryption process).

Key words: lightweight encryption, low-latency, tweakable block cipher, MILP.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptography is currently a very
active research domain in the symmetric-key cryptography community. In particular, we have recently
seen the apparition of many (some might say too many) lightweight block ciphers, hash functions and
stream ciphers. While the term lightweight is not strictly defined, it most often refers to a primitive that
allows compact implementations, i.e. minimizing the area required by the implementation. While the
focus on area is certainly valid with many applications, most of them require additional performance
criteria to be taken into account. In particular, the throughput of the primitive represents an important
dimension for many applications. Besides that, power (in particular for passive RFID tags) and energy
(for battery-driven device) may be major aspects.

Moreover, the efficiency on different hardware technologies (ASIC, FPGA) needs to be taken into
account, and even micro-controllers become a scenario of importance. Finally, as remarked in [3],
software implementations should not be completely ignored for these lightweight primitives, as in many
applications the tiny devices will communicate with servers handling thousands or millions of them.
Thus, even so research started by focusing on chip area only, lightweight cryptography is indeed an
inherent multidimensional problem.

Investigating the recent proposals in more detail, a major distinction is eye-catching and one can
roughly split the proposals in two classes. The first class of ciphers uses very strong, but less efficient

A more detailed version of this work appears in the proceedings of CRYPTO 2016 [2].

mailto:Sasaki.Yu@lab.ntt.co.jp
mailto:stek@dtu.dk
mailto:Jean.Jeremy@gmail.com
mailto:Firstname.Lastname}@rub.de

components (like the Sbox used in PRESENT [4] or LED [9], or the MDS diffusion matrix in LED or
PICCOLO [19]). The second class of designs uses very efficient, but rather weak components (like the very
small KATAN [5] or SIMON [1] round function).1

From a security viewpoint, the analysis of the members of the first class can be conducted much
easily and it is usually possible to derive strong arguments for their security. However, while the second
class strategy usually gives very competitive performance figures, it is much harder with state-of-the­
art analysis techniques to obtain security guarantees even with regards to basic linear or differential
cryptanalysis. In particular, when using very light round functions, bounds on the probabilities of linear
or differential characteristics are usually both hard to obtain and not very strong. As a considerable
fraction of the lightweight primitives proposed got quickly broken within a few months or years from their
publication date, being able to give convincing security arguments turns out to be of major importance.

Of special interest, in this context, is the recent publication of the SIMON and SPECK family of block
ciphers by the NSA [1]. Those ciphers brought a huge leap in terms of performances. As of today,
these two primitives have an important efficiency advantage against all its competitors, in almost all
implementation scenarios and platforms. However, even though SIMON or SPECK are quite elegant and
seemingly well-crafted designs, these efficiency improvements came at an essential price. Echoing the
above, since the ciphers have a very light round function, their security bounds regarding classical linear
or differential cryptanalysis are not so impressive, quite difficult to obtain or even non-existent. For
example, in [13] the authors provide differential/linear bounds for SIMON, but, as we will see, one needs
a big proportion of the total number of rounds to guarantee its security according to its block size. Even
worse, no bound is currently known in the related-key model for any version of SIMON and thus there
is a risk that good related-key differential characteristics might exist for this family of ciphers (while
some lightweight proposals such as LED [9], PICCOLO [19] or some versions of TWINE [20] do provide such
a security guarantee). One should be further cautious as these designs come from a governmental agency
which does not provide specific details on how the primitives were built. No cryptanalysis was ever
provided by the designers. Instead, the important analysis work was been carried out by the research
community in the last few years and one should note that so far SIMON or SPECK remain unbroken.

It is therefore a major challenge for academic research to design a cipher that can compete with
SIMON’s performances and additionally provides the essential strong security guarantees that SIMON is
clearly lacking. We emphasize that this is both a research challenge and, in view of NSA’s efforts to
propose SIMON into an ISO standard, a challenge that has likely a practical impact.

Lightweight Tweakable Block Ciphers and Side-Channel Protected Implementations. We
note that tiny devices are more prone to be deployed into insecure environments and thus side-channel
protected implementations of lightweight encryption primitives is a very important aspect that should
be taken care of. One might even argue that instead of comparing performances of unprotected imple­
mentations of these lightweight primitives, one should instead compare protected variants (this is the
recent trend followed by ciphers like ZORRO [8] or PICARO [17] and has actually already been taken into
account long before by the cipher NOEKEON [7]). One extra protection against side-channel attacks can
be the use of leakage resilient designs and notably through an extra tweak input of the cipher. Such
tweakable block ciphers are rather rare, the only such candidate being Joltik-BC [11] or the internal
cipher from SCREAM [21]. Coming up with a tweakable block cipher is indeed not an easy task as one
must be extremely careful how to include this extra input that can be fully controlled by the attacker.

Our Contributions. We introduce a new lightweight family of block ciphers: SKINNY. Our goal here is
to provide a competitor to SIMON in terms of hardware/software performances, while proving in addition
much stronger security guarantees with regard to classical attacks.

With SKINNY, we have pushed further the recent trend of having a SPN cipher with locally non-
optimal internal components: SKINNY is an SPN cipher that uses a compact Sbox, a new very sparse

1Actually, this separation is not only valid for lightweight designs. It can well be extended to more classical
ciphers or hash functions as well.

2

diffusion layer, and a new very light key schedule. Yet, by carefully choosing our components and how
they interact, our construction manages to retain very strong security guarantees. For all the SKINNY
versions, we are able to prove using mixed integer linear programming (MILP) very strong bounds with
respect to differential/linear attacks, not only in the single-key model, but also in the much more involved
related-key model. Some versions of SKINNY have a very large key size compared to its block size and this
theoretically renders the bounds search space huge. Therefore, the MILP methods we have devised to
compute these bounds for a SKINNY-like construction can actually be considered a contribution by itself.
As we will see later, compared to SIMON, in the single-key model SKINNY needs a much lower proportion
of its total number of rounds to provide a sufficient bound on the best differential/linear characteristic.
In the related-key model, the situation is even more at SKINNY’s advantage as no such bound is known
for any version of SIMON as of today.

With regard to performance, SKINNY reaches very small area with serial ASIC implementations, yet it
is actually the very first block cipher that leads to better performances than SIMON for round-based ASIC
implementations, arguably the most important type of implementation since it provides a very good
throughput for a reasonably low area cost, in contrary to serial implementations that only minimizes
area. We also exhibit ASIC threshold implementations of our SKINNY variants that compare for example
very favourably to AES-128 threshold implementations. As explained above, this is an integral part of
modern lightweight primitives.

Regarding software, our implementations outperform all lightweight ciphers, except SIMON which
performs slightly faster in the situation where the key schedule is performed only once. However, as
remarked in [3], it is more likely in practice that the key schedule has to be performed everytime,
and since SKINNY has a very lightweight key schedule we expect the efficiency of SKINNY software
implementations to be equivalent to that of SIMON. This shows that SKINNY would perfectly fit a scenario
where a server communicate with many lightweight devices. These performances are not surprising, in
particular for bit-sliced implementations, as we show that SKINNY uses a much smaller total number of
AND/NOR/XOR gates compared to all known lightweight block ciphers. This indicates that SKINNY
will be competitive for most platforms and scenarios. Micro-controllers are no exception, and we show
that SKINNY performs extremely well on these architectures.

We further remark that the decryption process of SKINNY has almost exactly the same description as
the encryption counterpart, thus minimizing the decryption overhead.

We finally note that similarly to SIMON, SKINNY very naturally encompasses 64- or 128-bit block
versions and a wide range of key sizes. However, in addition, SKINNY provides a tweakable capability,
which can be very useful not only for leakage resilient implementations, but also to be directly plugged
into higher-level operating modes, such as SCT [16]. In order to provide this tweak feature, we have
generalized the STK construction [10] to enable more compact implementations while maintaining a high
provable security level.

2 Specifications of SKINNY

Notations and SKINNY Versions. The lightweight block ciphers of the SKINNY family have 64-bit and
128-bit block versions and we denote n the block size. In both n = 64 and n = 128 versions, the internal
state is viewed as a 4 × 4 square array of cells, where each cell is a nibble (in the n = 64 case) or a
byte (in the n = 128 case). We denote ISi,j the cell of the internal state located at Row i and Column
j (counting starting from 0). One can also view this 4 × 4 square array of cells as a vector of cells by
concatenating the rows. Thus, we denote with a single subscript ISi the cell of the internal state located
at Position i in this vector (counting starting from 0) and we have that ISi,j = IS4·i+j .

SKINNY follows the TWEAKEY framework from [10] and thus takes a tweakey input instead of a key
or a pair key/tweak. The user can then choose what part of this tweakey input will be key material
and/or tweak material (classical block cipher view is to use the entire tweakey input as key material
only). The family of lightweight block ciphers SKINNY have three main tweakey size versions: for a block
size n, we propose versions with tweakey size t = n, t = 2n and t = 3n (versions with other tweakey sizes
between n and 3n are naturally obtained from these main versions) and we denote z = t/n the tweakey

3

size to block size ratio. The tweakey state is also viewed as a collection of z 4 × 4 square arrays of cells
of s bits each. We denote these arrays TK1 when z = 1, TK1 and TK2 when z = 2, and finally TK1,
TK2 and TK3 when z = 3. Moreover, we denote TKzi,j the cell of the tweakey state located at Row i
and Column j of the z-th cell array. As for the internal state, we extend this notation to a vector view
with a single subscript: TK1i, TK2i and TK3i. Moreover, we define the adversarial model SK (resp.
TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce differences in the tweakey state.

Initialization. The cipher receives a plaintext m = m0Im1I · · · Im14Im15, where the mi are s-bit cells,
with s = n/16 (we have s = 4 for the 64-bit block SKINNY versions and s = 8 for the 128-bit block
SKINNY versions). The initialization of the cipher’s internal state is performed by simply setting ISi = mi

for 0 ≤ i ≤ 15: ⎤⎡

IS =
⎢⎢⎣

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

⎥⎥⎦

This is the initial value of the cipher internal state and note that the state is loaded row-wise rather
than in the column-wise fashion we have come to expect from the AES; this is a more hardware-friendly
choice, as pointed out in [14].

The cipher receives a tweakey input tk = tk0Itk1I · · · Itk30Itk16z−1, where the tki are s-bit cells. The
initialization of the cipher’s tweakey state is performed by simply setting for 0 ≤ i ≤ 15: TK1i = tki
when z = 1, TK1i = tki and TK2i = tk16+i when z = 2, and finally TK1i = tki, TK2i = tk16+i and
TK3i = tk32+i when z = 3. We note that the tweakey states are loaded row-wise.

Table 1. Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey state.

Block size n n

Tweakey size t

2n 3n

64

128

32 rounds

40 rounds

36 rounds

48 rounds

40 rounds

56 rounds

The Round Function. One encryption round of SKINNY is composed of five operations in the following
order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns (see illustration in
Figure 1). The number r of rounds to perform during encryption depends on the block and tweakey

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells (SC), AddConstants
(AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

sizes. The actual values are summarized in Table 1. Note that no whitening key is used in SKINNY. Thus,
a part of the first and last round do not add any security. We motivate this choice in Section 3.

4

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For s = 4, SKINNY cipher
uses a Sbox S4 very close to the PICCOLO Sbox [19]. The action of this Sbox in hexadecimal notation
is given by the following Table 2.

Table 2. 4-bit Sbox S4 used in SKINNY when s = 4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1
4 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

Note that S4 can also be described with four NOR and four XOR operations, as depicted in Figure 2.
If x0, x1, x2 and x3 represent the four inputs bits of the Sbox (x0 being the least significant bit),
one simply applies the following transformation:

(x3, x2, x1, x0) → (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times, except for the last iteration
where the bit rotation is omitted.

MSB LSB

MSB LSB

MSB LSB

MSB LSB

Fig. 2. Construction of the Sbox S4. Fig. 3. Construction of the Sbox S8.

For the case s = 8, SKINNY uses an 8-bit Sbox S8 that is built in a similar manner as for the 4-bit
Sbox S4 described above. The construction is simple and is depicted in Figure 3. If x0, . . ., x7

represent the eight inputs bits of the Sbox (x0 being the least significant bit), it basically applies the
below transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0) → (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is just a bit swap between
x1 and x2. Besides, we provide in Appendix A the table of Sbox S8 and its inverse in hexadecimal
notations.

5

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2, rc1, rc0) (with rc0 being
the least significant bit), is used to generate round constants. Its update function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0) → (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given round. The bits from the LFSR
are arranged into a 4 × 4 array (only the first column of the state is affected by the LFSR bits),
depending on the size of internal state: ⎤⎡ ⎢⎢⎢⎣

c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0

⎥⎥⎥⎦ ,

with c2 = 0x2 and

(c0, c1) = (rc3Irc2Irc1Irc0, 0I0Irc5Irc4) when s = 4

(c0, c1) = (0I0I0I0Irc3Irc2Irc1Irc0, 0I0I0I0I0I0Irc5Irc4) when s = 8.

The round constants are combined with the state, respecting array positioning, using bitwise exclusive-
or. The values of the (rc5, rc4, rc3, rc2, rc1, rc0) constants for each round are given in the table below,
encoded to byte values for each round, with rc0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

49 - 62 09,13,26,0C,19,32,25,0A,15,2A,14,28,10,20

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and bitwise exclusive­
ored to the cipher internal state, respecting the array positioning. More formally, for i = {0, 1} and
j = {0, 1, 2, 3}, we have:

• ISi,j = ISi,j ⊕ TK1i,j when z = 1,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 4. The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if any) follows a
similar transformation update, except that no LFSR is applied to TK1.

6

Then, the tweakey arrays are updated as follows (this tweakey schedule is illustrated in Figure 4).
First, a permutation PT is applied on the cells positions of all tweakey arrays: for all 0 ≤ i ≤ 15, we
set TK1i ← TK1PT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

and similarly for TK2 when z = 2, and for TK2 and TK3 when z = 3. This corresponds to the
following reordering of the matrix cells, where indices are taken row-wise:

PT(0, . . . , 15) −→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7)

Finally, every cell of the first and second rows of TK2 and TK3 (for the SKINNY versions where
TK2 and TK3 are used) are individually updated with an LFSR. The LFSRs used are given in
Table 3 (x0 stands for the LSB of the cell).

Table 3. The LFSRs used in SKINNY to generate the round constants. The TK parameter gives the
number of tweakey words in the cipher, and the s parameter gives the size of cell in bits.

TK s LFSR

4 (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)
TK2

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

4 (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)
TK3

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. As in AES, in this layer the rows of the cipher state cell array are rotated, but they are to
the right. More precisely, the second, third, and fourth cell rows are rotated by 1, 2 and 3 positions
to the right, respectively. In other words, a permutation P is applied on the cells positions of the
cipher internal state cell array: for all 0 ≤ i ≤ 15, we set ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

MixColumns. Each column of the cipher internal state array is multiplied by the following binary matrix
M: ⎞⎛

M =
⎜⎜⎜⎝

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

⎟⎟⎟⎠
.

The final value of the internal state array provides the ciphertext with cells being unpacked in the
same way as the packing during initialization. Test vectors for SKINNY are provided in Appendix B.
Note that decryption is very similar to encryption as all cipher components have very simple inverse
(SubCells and MixColumns are based on a generalized Feistel structure, so their respective inverse is
straightforward to deduce and can be implemented with the exact same number of operations).

Extending to Other Tweakey Sizes. The three main versions of SKINNY have tweakey sizes t = n,
t = 2n and t = 3n, but one can easily extend this to any size2 of tweakey n ≤ t ≤ 3n:

2For simplicity we do not include here tweakey sizes that are not a multiple of s bits. However, such cases
can be trivially handled by generalizing the tweakey schedule description to the bit level.

7

•	 for any tweakey size n < t < 2n, one simply uses exactly the t = 2n version but the last 2n − t bits
of the tweakey state are fixed to the zero value. Moreover, the corresponding cells in the tweakey
state TK2 will not be updated throughout the rounds with the LFSR.

•	 for any tweakey size 2n < t < 3n, one simply uses exactly the t = 3n version but the last 3n − t bits
of the tweakey state are fixed to the zero value. Moreover, the corresponding cells in the tweakey
state TK3 will not be updated throughout the rounds with the LFSR.

We note that some of our 64-bit block SKINNY versions allow small key sizes (down to 64-bit). We
emphasize that we propose these versions mainly for simplicity in the description of the SKINNY family of
ciphers. Yet, as advised by the NIST [15], one should not to use key sizes that are smaller than 112 bits.

Instantiating the Tweakey State with Key and Tweak Material. Following the TWEAKEY
framework [10], SKINNY takes as inputs a plaintext or a ciphertext and a tweakey value, which can be
used in a flexible way by filling it with key and tweak material. Whatever the situation, the user must
ensure that the key size is always at least as big as the block size.

In the classical setting where only key material is input, we use exactly the specifications of SKINNY
described previously. However, when some tweak material is to be used in the tweakey state, we dedicate
TK1 for this purpose and XOR a bit set to “1” every round to the second bit of the top cell of the
third column (i.e. the second bit of IS0,2). In other words, when there is some tweak material, we add
an extra “1” in the constant matrix from AddConstants). Besides, in situations where the user might
use different tweak sizes, we recommend to dedicate some cells of TK1 to encode the size of the tweak
material, in order to ensure proper separation. Note that these are only recommendations, thus not
strictly part of the specifications of SKINNY.

3 Rationale of SKINNY

Several design choices of SKINNY have been borrowed from existing ciphers, but most of our components
are new, optimized for our goal: a cipher well suited for most lightweight applications. When designing
SKINNY, one of our main criteria was to only add components which are vital for the security of the
primitive, removing any unnecessary operation (hence the name of our proposal). We end up with the
sound property that removing any component or using weaker version of a component from SKINNY
would lead to a much weaker (or actually insecure) cipher. Therefore, the construction of SKINNY has
been done through several iterations, trying to reach the exact spot where good performance meets
strong security arguments. We detail in this section how we tried to follow this direction for each layer
of the cipher.

We note that one could have chosen a slightly smaller Sbox or a slightly sparser diffusion layer,
but our preliminary implementations showed that these options represent worse tradeoff overall. For
example, one could imagine a very simple cipher iterating thousands of rounds composed of only a single
non-linear boolean operation, an XOR and some bit wiring. However, such a cipher will lead to terrible
performance regarding throughput, latency or energy consumption.

When designing a lightweight encryption scheme, several use cases must be taken in account. While
area optimized implementations are important for some very constrained applications, throughput or
throughput-over-area optimized implementations are also very relevant. Actually, looking at recently
introduced efficiency measurements [12], one can see that our designs choices are good for many types of
implementations, which is exactly what makes a good general-purpose lightweight encryption scheme.

3.1 General Design and Components Rationale

A first and important decision was to choose between a Substitution-Permutation Network (SPN), or a
Feistel network. We started from a SPN construction as it is generally easier to provide stronger bounds
on the number of active Sboxes. However, we note that there is a dual bit-sliced view of SKINNY that
resembles some generalized Feistel network. Somehow, one can view the cipher as a primitive in between

8

an SPN and an “AND-rotation-XOR” function like SIMON. We try to get the best of both worlds by
benefiting the nice implementation tradeoffs of the latter, while organizing the state in an SPN view so
that bounds on the number of active Sboxes can be easily obtained.

The absence of whitening key is justified by the reduction of the control logic: by always keeping the
exact same round during the entire encryption process we avoid the control logic induced by having a
last non-repeating layer at the end of the cipher. Besides, this simplifies the general description and
implementation of the primitive. Obviously, having no whitening key means that a few operations of the
cipher have no impact on the security. This is actually the case for both the beginning and the end of
the ciphering process in SKINNY since the key addition is done in the middle of the round, with only half
of the state being involved with this key addition every round.

A crucial feature of SKINNY is the easy generation of several block size or tweakey size versions, while
keeping the general structure and most of the security analysis untouched. Going from the 64-bit block
size versions to the 128-bit block size versions is simply done by using a 8-bit Sbox instead of a 4-bit
Sbox, therefore keeping all the structural analysis identical. Using bigger tweakey material is done by
following the STK construction [10], which allows automated analysis tools to still work even though
the input space become very big (in short, the superposition trick makes the TK2 and TK3 analysis
almost as time consuming as the normal and easy TK1 case). Besides, unlike previous lightweight block
ciphers, this complete analysis of the TK2 and TK3 cases allows us to dedicate a part of this tweakey
material to be potentially some tweak input, therefore making SKINNY a flexible tweakable block cipher.
Also, we directly obtain related-key security proofs using this general structure.

SubCells. The choice of the Sbox is obviously a crucial decision in an SPN cipher and we have spent
a lot of efforts on looking for the best possible candidate. For the 4-bit case, we have designed a tool
that searches for the most compact candidate that provides some minimal security guarantees. Namely,
with the bit operations cost estimations given previously, for all possible combinations of operations
(NAND/NOR/XOR/XNOR) up to a certain limit cost, our tool checks if certain security criterion of the
tested Sbox are fulfilled. More precisely, we have forced the maximal differential transition probability of
the Sbox to be 2−2 and the maximal absolute linear bias to be 2−2. When both criteria are satisfied, we
have filtered our search for Sbox with high algebraic degree.

Our results is that the Sbox used in the PICCOLO block cipher [19] is close to be the best one: our 4-bit
Sbox candidate S4 is essentially the PICCOLO Sbox with the last NOT gate at the end being removed
(see Figure 2). We believe this extra NOT gate was added by the PICCOLO designers to avoid fixed points
(actually, if fixed points were to be removed at the Sbox level, the PICCOLO candidate would be the best
choice), but in SKINNY the fixed points are handled with the use of constants to save some extra GE.
Yet, omitting the last bit rotation layer removes already a lot of fixed points (the efficiency cost of this
omission being null).

The Sbox S4 can therefore be implemented with only 4 NOR gates and 4 XOR gates, the rest being
only bit wiring (basically free in hardware). According to our previously explained estimations, this
should cost 14.68 GE, but as remarked in [19], some libraries provide special gates that further save area.
Namely, in our library the 4-input AND-NOR and 4-input OR-NAND gates with two inputs inverted
cost 2 GE and they can be used to directly compute a XOR or an XNOR. Thus, S4 can be implemented
with only 12 GE. In comparison, the PRESENT Sbox [4] requires 3 AND, 1 OR and 11 XOR gates, which
amounts to 27.32 GE (or 34.69 GE without the special 4-input gates).

All in all, our 4-bit Sbox S4 has the following security properties: maximal differential transition
probability of 2−2, maximal absolute linear bias of 2−2, branching number 2, algebraic degree 3 and one
fixed point S4(0xF) = 0xF.

Regarding the 8-bit Sbox, the search space was too wide for our automated tool. Therefore, we instead
considered a subclass of the entire search space: by reusing the general structure of S4, we have tested all
possible Sboxes built by iterating several times a NOR/XOR combination and a bit permutation. Our
search found that the maximal differential transition probability and maximal absolute linear bias of the
Sboxes are larger than 2−2 when we have less than 8 iterations of the NOR/XOR combination and bit
permutation. With 8 iterations of the NOR/XOR combination and bit permutation, we found Sboxes

9

with desired maximal differential transition probability of 2−2 and maximal absolute linear bias of 2−2

with algebraic degree 6. However, the algebraic degree of the inverse Sboxes of all these candidates is 5
rather than 6. In addition, having 8 iterations may result in higher latency when we consider a serial
hardware implementation. Therefore, we considered having 2 NOR/XOR combinations in every iteration
and reduce the number of iteration from 8 to 4. As a result, we found several Sboxes with the desired
maximal differential probability and absolute linear bias, while reaching algebraic degree 6 for both the
Sbox and its inverse (thus better than the 8 iterations case). Although such Sbox candidates have 3 fixed
points when we omit the last bit permutation layer like the 4-bit case, we can easily reduce the number
of fixed points by introducing a different bit permutation from the intermediate bit permutations to the
last layer without any additional cost.

With 2 NOR/XOR combinations and a bit permutation iterated 4 times, S8 can be implemented
with only 8 NOR gates and 8 XOR gates (see Figure 3), the rest being only bit wiring (basically free
in hardware). The total area cost should be 24 GE according to our previously explained estimations
and using special 4-input AND-NOR and 4-input OR-NAND gates. In comparison, while ensuring a
maximal differential transition probability (resp. maximum absolute linear bias) of 2−6 (resp. 2−4), the
AES Sbox requires 32 AND/OR gates and 83 XOR gates to be implemented, which amounts to 198 GE.
Even recent lightweight 8-bit Sbox proposal [6] requires 12 AND/OR gates and 26 XOR gates, which
amounts to 64 GE, for a maximal differential transition probability (resp. maximum linear bias) of 2−5

(resp. 2−2), but their optimization goal was different from ours.
All in all, we believe our 8-bit Sbox candidate S8 provides a good tradeoff between security and

area cost. It has maximal differential transition probability of 2−2, maximal absolute linear bias of 2−2 ,
branching number 2, algebraic degree 6 and a single fixed point S8(0xFF) = 0xFF (for the Sbox we have
chosen, swapping two bits in the last bit permutation was probably the simplest method to achieve only
a single fixed point).

Note that both our Sboxes S4 and S8 have the interesting feature that their inverse is computed
almost identically to the forward direction (as they are based on a generalized Feistel structure) and
with exactly the same number of operations. Thus, our design reasoning also holds when considering the
decryption process.

AddConstants. The constants in SKINNY have several goals: differentiate the rounds, differentiate the
columns and avoid symmetries, complicate subspace cryptanalysis and attacks exploiting fixed points
from the Sbox. In order to differentiate the rounds, we simply need a counter, and since the number of
rounds of all SKINNY versions is smaller than 64, the most hardware friendly solution is to use a very
cheap 6-bit affine LFSR (like in LED [9]) that requires only a single XNOR gate per update. The 6 bits
are then dispatched to the two first rows of the first column (this will maximize the constants spread
after the ShiftRows and MixColumns), which will already break the columns symmetry.

In order to avoid symmetries, fixed points and more generally subspaces to spread, we need to
introduce different constants in several cells of the internal state. The round counter will already naturally
have this goal, yet, in order to increase that effect, we have added a “1” bit to the third row, which is
almost free in terms of implementation cost. This will ensure that symmetries and subspaces are broken
even more quickly, and in particular independently of the round counter.

AddRoundTweakey. The tweakey schedule of SKINNY follows closely the STK construction from [10] (that
allows to easily get bounds on the number of active Sboxes in the related-tweakey model). Yet, we have
changed a few parts. Firstly, instead of using multiplications by 2 and 3 in a finite field, we have instead
replaced these tweakey cells updates by cheap 4-bit or 8-bit LFSRs (depending on the size of the cell)
to minimize the hardware cost. All our LFSRs require only a single XOR for the update, and we have
checked that the differential cancellation behavior of these interconnected LFSRs is as required by the
STK construction: for a given position, a single cancellation can only happen every 15 rounds for TK2,
and same with two cancellations for TK3.

Another important generalization of the STK construction is the fact that every round we XOR only half
of the internal cipher state with some subtweakey. The goal was clearly to optimize hardware performances

10

of SKINNY, and it actually saves an important amount of XORs in a round-based implementation. The
potential danger is that the bounds we obtain would dramatically drop because of this change. Yet,
surprisingly, the bounds remained actually good and this was a good security/performance tradeoff to
make. Another advantage is that we can now update the tweakey cells only before they are incorporated
to the cipher internal state. Thus, half of tweakey cells only will be updated every round and the period
of the cancellations naturally doubles: for a certain cell position, a single cancellation can only happen
every 30 rounds for TK2 and two cancellations can only happen every 30 rounds for TK3.

The tweakey permutation PT has been chosen to maximize the bounds on the number of active
Sboxes that we could obtain in the related-tweakey model (note that it has no impact in the single-key
model). Besides, we have enforced for PT the special property that all cells located in third and fourth
rows are sent to the first and second rows, and vice-versa. Since only the first and second rows of the
tweakey states are XORed to the internal state of the cipher, this ensures that both halves of the tweakey
states will be equally mixed to the cipher internal state (otherwise, some tweakey bytes might be more
involved in the ciphering process than others). Finally, the cells that will not be directly XORed to the
cipher internal state can be left at the same relative position. On top of that, we only considered those
variants of PT that consist of a single cycle.

We note that since the cells of the first tweakey word TK1 are never updated, they can be directly
hardwired to save some area if the situation allows.

ShiftRows and MixColumns. Competing with SIMON’s impressive hardware performance required
choosing an extremely sparse diffusion layer for SKINNY, which was in direct contradiction with our
original goal of obtaining good security bounds for our primitive. Note that since our Sboxes S4 and S8

have a branching number of two, we cannot use only a bit permutation layer as in the PRESENT block
cipher: differential characteristics with only a single active Sbox per round would exist. After several
design iterations, we came to the conclusion that binary matrices were the best choice. More surprisingly,
while most block cipher designs are using very strong diffusion layers (like an MDS matrix), and even
though a 4 × 4 binary matrices with branching number four exist, we preferred a much sparser candidate
which we believe offers the best security/performance tradeoff (this can be measured in terms of Figure
Of Adversarial Merit [12]).

Due to its strong sparseness, SKINNY binary diffusion matrix M has only a differential or linear
branching number of two. This seems to be worrisome as it would again mean that differential charac­
teristics with only a single active Sbox per round would exist (it would be the same for PRESENT block
cipher if its Sbox did not have branching number three, which is the reason of the relatively high cost of
the PRESENT Sbox). However, we designed M such that when a branching two differential transition
occurs, the next round will likely lead to a much higher branching number. Looking at M, the only
way to meet branching two is to have an input difference in either the second or the fourth input only.
This leads to an input difference in the first or third element for the next round, which then diffuses to
many output elements. The differential characteristic with a single active Sbox per round is therefore
impossible, and actually we will be able to prove at least 96 active Sboxes for 20 rounds. Thus, for the
very cheap price of a differential branching two binary diffusion matrix, we are in fact getting a better
security than expected when looking at the iteration of several rounds. The effect is the same with linear
branching (for which we only need to look at the transpose of the inverse of M, i.e. (M−1)T).

We have considered all possibilites for M that can be implemented with at most three XOR operations
and eventually kept the MixColumns matrices that, in combination with ShiftRows, guaranteed high
diffusion and led to strong bounds on the minimal number of active Sboxes in the single-key model.

Note that another important criterion came into play regarding the choice of the diffusion layer of
SKINNY: it is important that the key material impacts as fast as possible the cipher internal state. This
is in particular a crucial point for SKINNY as only half of the state is mixed with some key material
every round, and since there is no whitening keys. Besides, having a fast key diffusion will reduce the
impact of meet-in-the-middle attacks. Once the two first rows of the state were arbitrarily chosen to
receive the key material, given a certain subtweakey, we could check how many rounds were required
(in both encryption and decryption directions) to ensure that the entire cipher state depends on this

11

subtweakey. Our final choice of MixColumns is optimal: only a single round is required in both forward
and backward directions to ensure this diffusion.

4 Implementations, Performance and Comparison

4.1 ASIC Round-Based Implementations

This section is dedicated to the description of the different hardware implementations of all variants of
SKINNY. We used Synopsys DesignCompiler version A-2007.12-SP1 to synthesize the designs considering
UMCL18G212T3 [22] standard cell library, which is based on the UMC L180 0.18µm 1P6M logic process
with a typical voltage of 1.8 V. For the synthesis, we advised the compiler to keep the hierarchy and use
a clock frequency of 100 KHz, which allows a fair comparison with the benchmark of other block ciphers
reported in literature.

We designed round-based implementations for all SKINNY variants providing a good trade-off between
performance and area. All implementations compute a single round of SKINNY within a clock cycle.
Besides, our designs take advantage of dedicated scan flip-flops rather than using simple flip-flops and
additional multiplexers placed in front in order to hold round states and keys. Note that this approach
leads to savings of 1 GE per bit to be stored. In order to allow a better and fairer comparison, we provide
both throughput at a maximally achievable frequency and throughput at a frequency of 100KHz.

Table 4. Round-based implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 1223 1.77 32 200.00 1130.00 New

SKINNY-64-128 1696 1.87 36 177.78 951.11 New

SKINNY-64-192 2183 2.02 40 160.00 792.00 New

SKINNY-128-128 2391 2.89 40 320.00 1107.20 New

SKINNY-128-256 3312 2.89 48 266.67 922.67 New

SKINNY-128-384 4268 2.89 56 228.57 790.86 New

SIMON-64-128 1751 1.60 46 145.45 870.00 [1]

SIMON-128-128 2342 1.60 70 188.24 1145.00 [1]

SIMON-128-256 3419 1.60 74 177.78 1081.00 [1]

LED-64-64 2695 - 32 198.90 - [9]

LED-64-128 3036 - 48 133.00 - [9]

PRESENT-64-128 1884 - 32 200.00 - [4]

PICCOLO-64-128 1773i - 33 193.94 - [19]

i This number includes 576 GE for key storage that is not considered in the original work.

4.2 Software Implementations

In this section, we detail how the ciphers in the SKINNY family can be implemented in software. More
precisely, we consider four of the latest Intel processors using SIMD instruction sets to perform efficient
parallel computations of several input blocks. We give in particular the performance figures for a bit-sliced
implementations of SKINNY.

12

Bit-Sliced Implementations of SKINNY. Since the design of SKINNY has been made with hardware
implementations in mind, the conversion to bit-sliced implementations seems natural. In the following,
we target different sets of instructions, namely SSE4 and AVX2, which provide shuffling instructions on
byte level, as well as several wide 128-bit resp. 256-bit registers, commonly referred as XMM or YMM
registers. From our perspective, the main differences between SSE4 and AVX2 are the width of the
available registers and the possibility to use 3-operand instructions.

In the Table 5, we give the detailed performance figures of our implementations in the case of
SKINNY-64 and compare it with other ciphers. Note that these implementations take into account all
data transformations which are required. The bit-sliced implementations for SIMON processing 32 resp.
64 blocks have been provided by the designers to allow us a fair comparison in the same setting.

Table 5. Bit-sliced implementations of SKINNY-64, SKINNY-128 and other 64-bit block lightweight
ciphers. Performances are given in cycles per byte, with pre-expanded subkeys. For SKINNY-64 and
SIMON we encrypted 2000 64-bit blocks to obtain the results. Cells with dashes (-) represent non-existing
implementations to date.

Haswell Skylake Ref.

Parallelization ρ 16 32 64 16 32 64

SKINNY-128-128 - - 4.32 - - 3.96 New

SKINNY-64-128 - - 3.05 - - 2.78 New

SIMON-64-128 - 3.42 1.93 - 3.29 1.81

LED-128 22.6 13.7 - 23.1 13.3 - [3]

PRESENT-128 10.8 - - 10.3 - - [3]

Piccolo-128 9.2 - - 9.2 - - [3]

Counter Mode Implementations of SKINNY-64-128. We also evaluate the speed of SKINNY-64-128
in the same conditions as the benchmarks provided in [1]. Namely, the goal is to generate the keystream
from the counter mode using SKINNY-64-128 as the underlying block cipher. The main difference to the
previous scenario is that many blocks of a non-repeating value (counter) are encrypted. This allows to
save the costs for data packing, as the values are known in advance and can already be provided in the
correct format.

The designers of SIMON achieve a very high performances, by taking advantage of this mode, in their
implementation available on GitHub.3 We would like to note that this CTR-mode implementation does
not process the same amount of blocks as given in Table 5 and we expect the performance of SIMON to
be closer to these figures for an optimized implementation.

In our case, we devise a very similar implementation that considers 64 blocks in parallel and reaches
a maximal speed of 2.63 cpb in the same setting on the latest Intel platform Skylake. We note that the
key is pre-expanded prior to encrypting the blocks, and the 64 blocks are stored in 16 registers of 256
bits in a bit-sliced way. In detail, the four first registers contain the four first bits of each first row of the
64 blocks. The same holds for the 12 others registers with the remaining three rows of the states.

Then, for all the 36 rounds of SKINNY-64-128, the application of SubCells, AddConstants, AddRoundTweakey,
and MixColumns can be easily done with bit-wise operations on registers. As for ShiftRows, we imple­
ment it as a shuffle on bytes within each register. The benchmarks conducted on our four platforms are
shown in Table 6.

3Available at https://github.com/lrwinge/simon_speck_supercop/.

13

https://github.com/lrwinge/simon_speck_supercop/

Table 6. Counter mode implementations of SKINNY-64-128, SKINNY-128-128, SIMON-64-128 and
SIMON-128-128. Performances are given in cycles per byte, with pre-expanded subkeys, encrypting 16384
bytes and obtained using SUPERCOP.

Instruction Set

Westmere

sse4

Ivy Bridge

sse4

Haswell

sse4 avx2

Skylake

sse4 avx2

Ref.

SKINNY-64-128

SIMON-64-128

7.87

7.64

5.27

5.85

5.14

5.93

2.92

3.12

4.79

5.26

2.63

2.71

New

[23]

SKINNY-128-128

SIMON-128-128

-

11.52

-

8.87

7.41

8.70

4.05

4.39

7.02

7.99

3.76

4.00

New

[23]

References

1.	 Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and speck: Block
ciphers for the internet of things. ePrint/2015/585 (2015)

2.	 Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.:
The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS. In Robshaw, M., Katz, J.,
eds.: Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. Volume 9815 of Lecture Notes in Computer
Science., Springer (2016) 123–153

3.	 Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block ciphers on x86 architectures.
In Lange, T., Lauter, K., Lisonek, P., eds.: SAC 2013. Volume 8282 of LNCS., Springer, Heidelberg (August
2014) 324–351

4.	 Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C.: PRESENT: An ultra-lightweight block cipher. In Paillier, P., Verbauwhede, I., eds.: CHES 2007. Volume
4727 of LNCS., Springer, Heidelberg (September 2007) 450–466

5.	 Cannière, C.D., Dunkelman, O., Knežević, M.: KATAN and KTANTAN - a family of small and efficient
hardware-oriented block ciphers. In Clavier, C., Gaj, K., eds.: CHES 2009. Volume 5747 of LNCS., Springer,
Heidelberg (September 2009) 272–288

6.	 Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes using Feistel and MISTY
structures (Full Version). ePrint/2015/711 (2015)

7.	 Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: the Block Cipher Noekeon. Nessie
submission (2000) http://gro.noekeon.org/.

8.	 Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that are easier to mask: How
far can we go? In Bertoni, G., Coron, J.S., eds.: CHES 2013. Volume 8086 of LNCS., Springer, Heidelberg
(August 2013) 383–399

9.	 Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. [18] 326–341
10.	 Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY framework. In Sarkar,

P., Iwata, T., eds.: ASIACRYPT 2014, Part II. Volume 8874 of LNCS., Springer, Heidelberg (December
2014) 274–288

11.	 Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 (2015) Submission to the CAESAR competition, http:
//www1.spms.ntu.edu.sg/~syllab/Joltik.

12.	 Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: Searching for hardware-optimal SPN structures
and components with a fair comparison. In Batina, L., Robshaw, M., eds.: CHES 2014. Volume 8731 of
LNCS., Springer, Heidelberg (September 2014) 433–450

13.	 Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In Gennaro, R.,
Robshaw, M.J.B., eds.: CRYPTO 2015, Part I. Volume 9215 of LNCS., Springer, Heidelberg (August 2015)
161–185

14.	 Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a
Threshold Implementation of AES. In: Advances in Cryptology - EUROCRYPT 2011. Volume 6632 of
Lecture Notes in Computer Science., Springer (2011) 69–88

15.	 National Institute of Standards and Technology: Recommendation for Key Management – NIST SP-800-57
Part 3 Revision 1. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

14

http://gro.noekeon.org/
http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

16.	 Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block Ciphers.
ePrint/2015/1049 (2015)

17.	 Piret, G., Roche, T., Carlet, C.: PICARO - a block cipher allowing efficient higher-order side-channel
resistance. In Bao, F., Samarati, P., Zhou, J., eds.: ACNS 12. Volume 7341 of LNCS., Springer, Heidelberg
(June 2012) 311–328

18.	 Preneel, B., Takagi, T., eds.: CHES 2011. In Preneel, B., Takagi, T., eds.: CHES 2011. Volume 6917 of
LNCS., Springer, Heidelberg (September / October 2011)

19.	 Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight
blockcipher. [18] 342–357

20.	 Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: twine : A lightweight block cipher for multiple
platforms. In Knudsen, L.R., Wu, H., eds.: SAC 2012. Volume 7707 of LNCS., Springer, Heidelberg (August
2013) 339–354

21.	 Vincent Grosso and Gaëtan Leurent and François-Xavier Standaert and Kerem Varici and Anthony Journault
and François Durvaux and Lubos Gaspar and Stéphanie Kerckhof: SCREAM v3 (2015) Submission to the
CAESAR competition.

22.	 Virtual Silicon Inc.: 0.18 µm VIP Standard Cell Library Tape Out Ready, Part Number: UMCL18G212T3,
Process: UMC Logic 0.18 µm Generic II Technology: 0.18µm (July 2004)

23.	 Wingers, L.: Software for SUPERCOP Benchmarking of SIMON and SPECK. https://github.com/
lrwinge/simon_speck_supercop (2015)

A 8-bit Sbox for SKINNY-128

/* SKINNY-128	 Sbox */
uint8_t S8[256] = {
0x65 ,0x4c ,0x6a ,0x42 ,0x4b ,0x63 ,0x43 ,0x6b ,0x55 ,0x75 ,0x5a ,0x7a ,0x53 ,0x73 ,0x5b ,0x7b ,
0x35 ,0x8c ,0x3a ,0x81 ,0x89 ,0x33 ,0x80 ,0x3b ,0x95 ,0x25 ,0x98 ,0x2a ,0x90 ,0x23 ,0x99 ,0x2b ,
0xe5 ,0xcc ,0xe8 ,0xc1 ,0xc9 ,0xe0 ,0xc0 ,0xe9 ,0xd5 ,0xf5 ,0xd8 ,0xf8 ,0xd0 ,0xf0 ,0xd9 ,0xf9 ,
0xa5 ,0x1c ,0xa8 ,0x12 ,0x1b ,0xa0 ,0x13 ,0xa9 ,0x05 ,0xb5 ,0x0a ,0xb8 ,0x03 ,0xb0 ,0x0b ,0xb9 ,
0x32 ,0x88 ,0x3c ,0x85 ,0x8d ,0x34 ,0x84 ,0x3d ,0x91 ,0x22 ,0x9c ,0x2c ,0x94 ,0x24 ,0x9d ,0x2d ,
0x62 ,0x4a ,0x6c ,0x45 ,0x4d ,0x64 ,0x44 ,0x6d ,0x52 ,0x72 ,0x5c ,0x7c ,0x54 ,0x74 ,0x5d ,0x7d ,
0xa1 ,0x1a ,0xac ,0x15 ,0x1d ,0xa4 ,0x14 ,0xad ,0x02 ,0xb1 ,0x0c ,0xbc ,0x04 ,0xb4 ,0x0d ,0xbd ,
0xe1 ,0xc8 ,0xec ,0xc5 ,0xcd ,0xe4 ,0xc4 ,0xed ,0xd1 ,0xf1 ,0xdc ,0xfc ,0xd4 ,0xf4 ,0xdd ,0xfd ,
0x36 ,0x8e ,0x38 ,0x82 ,0x8b ,0x30 ,0x83 ,0x39 ,0x96 ,0x26 ,0x9a ,0x28 ,0x93 ,0x20 ,0x9b ,0x29 ,
0x66 ,0x4e ,0x68 ,0x41 ,0x49 ,0x60 ,0x40 ,0x69 ,0x56 ,0x76 ,0x58 ,0x78 ,0x50 ,0x70 ,0x59 ,0x79 ,
0xa6 ,0x1e ,0xaa ,0x11 ,0x19 ,0xa3 ,0x10 ,0xab ,0x06 ,0xb6 ,0x08 ,0xba ,0x00 ,0xb3 ,0x09 ,0xbb ,
0xe6 ,0xce ,0xea ,0xc2 ,0xcb ,0xe3 ,0xc3 ,0xeb ,0xd6 ,0xf6 ,0xda ,0xfa ,0xd3 ,0xf3 ,0xdb ,0xfb ,
0x31 ,0x8a ,0x3e ,0x86 ,0x8f ,0x37 ,0x87 ,0x3f ,0x92 ,0x21 ,0x9e ,0x2e ,0x97 ,0x27 ,0x9f ,0x2f ,
0x61 ,0x48 ,0x6e ,0x46 ,0x4f ,0x67 ,0x47 ,0x6f ,0x51 ,0x71 ,0x5e ,0x7e ,0x57 ,0x77 ,0x5f ,0x7f ,
0xa2 ,0x18 ,0xae ,0x16 ,0x1f ,0xa7 ,0x17 ,0xaf ,0x01 ,0xb2 ,0x0e ,0xbe ,0x07 ,0xb7 ,0x0f ,0xbf ,
0xe2 ,0xca ,0xee ,0xc6 ,0xcf ,0xe7 ,0xc7 ,0xef ,0xd2 ,0xf2 ,0xde ,0xfe ,0xd7 ,0xf7 ,0xdf ,0xff

};

B Test Vectors

The keys are given as the concatenation of (up to) three tweakey words: TK1, TK1ITK2, or TK1I TK2I TK3.

/* Skinny -64 -64 */	 /* Skinny -128 -128 */
Key:	 f5269826fc681238 Key: 4f55cfb0520cac52fd92c15f37073e93
Plaintext:	 06034 f957724d19d Plaintext: f20adb0eb08b648a3b2eeed1f0adda14
Ciphertext:	 bb39dfb2429b8ac7 Ciphertext: 22 ff30d498ea62d7e45b476e33675b74

/* Skinny -64 -128 */	 /* Skinny -128 -256 */
Key:	 9eb93640d088da63 Key: 009 cec81605d4ac1d2ae9e3085d7a1f3

76 a39d1c8bea71e1 1ac123ebfc00fddcf01046ceeddfcab3
Plaintext: cf16cfe8fd0f98aa Plaintext: 3a0c47767a26a68dd382a695e7022e25
Ciphertext: 6ceda1f43de92b9e Ciphertext: b731d98a4bde147a7ed4a6f16b9b587f

/* Skinny -64 -192 */	 /* Skinny -128 -384 */
Key:	 ed00c85b120d6861 Key: df889548cfc7ea52d296339301797449

8753 e24bfd908f60 ab588a34a47f1ab2dfe9c8293fbea9a5
b2dbb41b422dfcd0 ab1afac2611012cd8cef952618c3ebe8

Plaintext: 530 c61d35e8663c3 Plaintext: a3994b66ad85a3459f44e92b08f550cb
Ciphertext: dd2cf1a8f330303c Ciphertext: 94 ecf589e2017c601b38c6346a10dcfa

15

https://github.com/lrwinge/simon_speck_supercop
https://github.com/lrwinge/simon_speck_supercop

	Introduction
	Specifications of SKINNY
	Rationale of SKINNY
	General Design and Components Rationale

	Implementations, Performance and Comparison
	ASIC Round-Based Implementations
	Software Implementations

	8-bit Sbox for SKINNY-128
	Test Vectors

