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Abstract 

We present, for the first time, a general strategy for designing ARX symmetric-key prim­
itives with provable resistance against single-trail differential and linear cryptanalysis. The 
latter has been a long standing open problem in the area of ARX design. The wide-trail design 
strategy (WTS), that is at the basis of many S-box based ciphers, including the AES, is not 
suitable for ARX designs due to the lack of S-boxes in the latter. In this paper we address 
the mentioned limitation by proposing the long trail design strategy (LTS) – a dual of the 
WTS that is applicable (but not limited) to ARX constructions. In contrast to the WTS, 
that prescribes the use of small and efficient S-boxes at the expense of heavy linear layers with 
strong mixing properties, the LTS advocates the use of large (ARX-based) S-Boxes together 
with sparse linear layers. With the help of the so-called long-trail argument, a designer can 
bound the maximum differential and linear probabilities for any number of rounds of a cipher 
built according to the LTS. 

To illustrate the effectiveness of the new strategy, we propose Sparx – a family of ARX-
based block ciphers designed according to the LTS. Sparx has 32-bit ARX-based S-boxes and 
has provable bounds against differential and linear cryptanalysis. In addition, Sparx is very 
efficient on a number of embedded platforms. Its optimized software implementation ranks in 
the top 6 of the most software-efficient ciphers along with Simon, Speck, Chaskey, LEA and 
RECTANGLE. 

Keywords: ARX, block ciphers, differential cryptanalysis, linear cryptanalysis, lightweight, 
wide-trail strategy 

Introduction 
ARX, standing for Addition/Rotation/XOR, is a class of symmetric-key algorithms designed us­
ing only the following simple operations: modular addition, bitwise rotation and exclusive-OR. In 
contrast to S-box-based designs, where the only non-linear elements are the substitution tables 
(S-boxes), ARX designs rely on modular addition as the only source of non-linearity. Notable rep­
resentatives of the ARX class include the stream ciphers Salsa20 [Ber08b] and ChaCha20 [Ber08a], 
the SHA-3 finalists Skein [NLS+10] and BLAKE [AHMP10] as well as several lightweight block 
ciphers such as TEA, XTEA [NW97], etc. Dinu et al. recently reported [DLCK+15] that the most 
efficient software implementations on small processors belonged to ciphers from the ARX class: 
Chaskey-cipher [MMH+14] by Mouha et al., speck [BSS+13] by the American National Secu­
rity Agency (NSA) and LEA [HLK+13] by the South Korean Electronic and Telecommunications 
Research Institute.1 

*The work presented in this paper has been published in the proceedings of ASIACRYPT’16 [DPU+16a].

1Speck and the MAC Chaskey are being considered for standardization by ISO.
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For the mentioned algorithms, the choice of using the ARX paradigm was based on three obser­
vations2. First, getting rid of the table look-ups, associated with S-Box based designs, increases the 
resilience against side-channel attacks. Second, this design strategy minimizes the total number of 
operations performed during an encryption, allowing particularly fast software implementations. 
Finally, the computer code describing such algorithms is very small, making this approach espe­
cially appealing for lightweight block ciphers where the memory requirements are the harshest. 

Despite the widespread use of ARX ciphers, the following problem has remained open up until 
now. 

Open Problem 1. Is it possible to design an ARX cipher that is provably secure against single-
trail differential and linear cryptanalysis by design? 

To the best of our knowledge, there has only been one attempt at tackling this issue. In a 
recent paper [BVLC16], Biryukov et al. have proposed several ARX constructions for which it 
is feasible to compute the exact maximum differential and linear probabilities over any number 
of rounds. However, these constructions are limited to 32-bit blocks. The general case of this 
problem, addressing any block size, has still remained without a solution. 

More generally, the formal understanding of the cryptographic properties of ARX is far less 
satisfying than that of, for example, S-Box-based substitution-permutation networks (SPN). In­
deed, the wide-trail strategy [DR01] (WTS) and the wide-trail argument [DR02] provide a way to 
design S-box based SPNs with provable resilience against differential and linear attacks. It relies 
on bounding the number of active S-Boxes in a differential (resp. linear) trail and deducing a lower 
bound on the best expected differential (resp. linear) probability. 

Our Contribution. We propose a strategy to build ARX-based block ciphers with provable 
bounds on the maximum expected differential and linear probabilities, thus providing a solution 
to the open problem stated above. 

This strategy is called the Long Trail Strategy (LTS). It borrows the idea of counting the number 
of active S-Boxes from the wide-trail argument but the overall principle is actually the opposite 
to the wide-trail strategy as described in [DR01]. While the WTS dictates the spending of most 
of the computational resources in the linear layer in order to provide good diffusion between small 
S-boxes, the LTS advocates the use of large and comparatively expensive S-Boxes in conjunction 
with cheaper and weaker linear layers. We formalize this method and describe the long-trail 
argument that can be used to bound the differential and linear trail probabilities of a block cipher 
built using this strategy. 

Using this framework, we build a family of lightweight block ciphers called Sparx. All three 
instances in this family can be entirely specified using only three operations: addition modulo 216 , 
16-bit rotations and 16-bit XOR. These ciphers are, to the best of our knowledge, the first ARX-
based block ciphers for which the probability of both differential and linear trails are bounded. 
Furthermore, while one may think that these provable properties imply a performance degradation, 
we show that it is not the case. On the contrary, Sparx ciphers have very competitive performance 
on lightweight processors. In fact, the most lightweight version – Sparx-64 is in the top 3 for 16-bit 
micro-controllers according to the classification method presented in [DLCK+15]. 

Outline. First, we introduce the notations and concepts used throughout the paper in Section 2. 
In Section 3, we describe how an ARX-based cipher with provable bounds can be built using an 
S-Box-based approach and how the method used is a particular case of the more general Long Trail 
Strategy. Section 4 contains the specification of the Sparx family of ciphers, the description of its 
design rationale and a discussion about the efficiency of its implementation on microcontrollers. 
Finally, Section 5 concludes the paper. 

2For Speck, we can only guess it is the case as the designers have not published the rationale behind their 
algorithm. 
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2 Preliminaries 
We use F2 to denote the set {0, 1}. Let 𝑓 : F𝑛 → F2 

𝑛 , (𝑎, 𝑏) ∈ F𝑛 
2 × F𝑛 and 𝑥 ∈ F𝑛. We denote the 2	 2 2 

𝑑probability of the differential trail (𝑎 → 𝑏) by Pr[𝑓(𝑥) ⊕ 𝑓(𝑥 ⊕ 𝑎) = 𝑏] and the correlation of the (︀	 )︀ℓlinear approximation (𝑎 → 𝑏) by 2 Pr[𝑎 · 𝑥 = 𝑏 · 𝑓 (𝑥)] − 1 where 𝑦 · 𝑧 is the scalar product of 𝑦 
and 𝑧. 

In an iterated block cipher, not all differential (respectively linear) trails are possible. Indeed, 
they must be coherent with the overall structure of the round function. For example, it is well 
known that a 2-round differential trail for the AES with less than 4 active S-Boxes is impossible. 
To capture this notion, we use the following definition. 

Definition 1 (Valid Trail). Let 𝑓 be an 𝑛-bit permutation. A trail 𝑎0 → ... → 𝑎𝑟 for 𝑟 rounds of 
𝑓 is a valid trail if Pr[𝑎𝑖 → 𝑎𝑖+1] > 0 for all 𝑖 in [0, 𝑟 − 1]. The set of all valid 𝑟-round differential 
(respectively linear) trails for 𝑓 is denoted 𝒱𝛿(𝑓)𝑟 (resp. 𝒱ℓ(𝑓)𝑟 ). 

We use the acronyms MEDCP and MELCC to denote resp. maximum expected differential 
characteristic probability and maximum expected linear characteristic correlation – a signature 
introduced earlier in [KS07]. The MEDCP of the keyed function 𝑓𝑘𝑖 : 𝑥 ↦→ 𝑓 (𝑥 ⊕ 𝑘𝑖) iterated over 
𝑟 rounds is defined as follows: 

𝑟−1∏︁ 
𝑑MEDCP(𝑓 𝑟 ) = max Pr[Δ𝑖 → Δ𝑖+1], 

(Δ0→...Δ𝑟 )∈𝒱𝛿 (𝑓 )𝑟 
𝑖=0 

𝑑	 𝑑where Pr[Δ𝑖 → Δ𝑖+1] is the expected value of the differential probability of Δ𝑖 → Δ𝑖+1 for the 
function 𝑓𝑘 when 𝑘 is picked uniformly at random. MELCC(𝑓 𝑟 ) is defined analogously. Note that (︀ )︀𝑟
MEDCP(𝑓 𝑟 ) and MEDCP(𝑓1) are not equal. 

As designers, we thrive to provide upper bounds for both MEDCP(𝑓 𝑟) and MELCC(𝑓 𝑟 ). 
Doing so allows us to compute the number of rounds 𝑓 needed in a block cipher for the probability of 
all trails to be too low to be usable. In practice, we want MEDCP(𝑓 𝑟 ) ≪ 2−𝑛 and MELCC(𝑓 𝑟 ) ≪ 
2−𝑛/2 where 𝑛 is the block size. 

While this strategy is the best known, the following limitations must be taken into account by 
algorithm designers. 

1. The quantities MEDCP(𝑓 𝑟 ) and MELCC(𝑓𝑟 ) are relevant only if we make the Markov 
assumption, meaning that the differential and linear probabilities are independent in each 
round. This would be true if the subkeys were picked uniformly and independently at random 
but, as the master key has a limited size, it is not the case. 

2. These quantities are averages taken over all possible keys: it is not impossible that there 
exists a weak key and a differential trail 𝑇 such that the probability of 𝑇 is higher than 
MEDCP(𝑓𝑟 ) for this particular key. The same holds for the linear probability. 

3. These quantities deal with unique trails.	 However, it is possible that several differential 
trails share the same input and output differences, thus leading to a higher probability for 
said differential transition. This so-called differential effect can be leveraged to decrease 
the data complexity of differential attack. The same holds for linear attacks where several 
approximations may form a linear hull. 

Still, this type of bound is the best that can be achieved in a generic fashion (to the best of our 
knowledge). In particular, this is the type of bound provided by the wide-trail argument used in 
the AES. 

3 ARX-Based Substitution-Permutation Network 
In this section, we present a general design strategy for building ARX-based block ciphers bor­
rowing techniques from SPN design. The general idea is to build a SPN with ARX-based S-boxes 
instead of with S-boxes based on look-up tables (LUT). The proofs for the bound on the MEDCP 
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(a) Marx-2. (b) Speckey. 

Figure 1: Key addition followed by the candidate 32-bit ARX-boxes, Marx-2 and Speckey. The 
branch size is 8 bits for Marx-2, 16 bits for Speckey. 

and MELCC are inspired by the wide-trail argument introduced in the design of the AES [DR02]. 
However, because of the use of large S-Boxes, the method used relies on a different type of in­
teraction between the linear and non-linear layers. We call the corresponding design strategy the 
long trail strategy. It is quite general and could be also applied in other contexts e.g. for non-arx 
constructions. 

First, we present possible candidates for the ARX-based S-Box and, along the way, identify the 
likely reason behind the choice of the rotation constants in SPECK-32. Then, we describe the long 
trail strategy in more details. Finally, we present two different algorithms for computing a bound 
for the MEDCP and MELCC of block ciphers built using a LT strategy. We also discuss how to 
ensure that the linear layer provides sufficient diffusion. 

3.1 ARX-Boxes 
Definition 2 (arx-box). An arx-box is a permutation on 𝑚 bits (where 𝑚 is much smaller than 
the block size) which relies entirely on addition, rotation and XOR to provide both non-linearity 
and diffusion. An arx-box is a particular type of S-Box. 

Possible constructions for arx-boxes can be found in a recent paper by Biryukov et al. [BVLC16]. 
A first one is based on the MIX function of Skein [NLS+10] and is called Marx-2. The rotation 
amounts, namely {1, 2, 7, 3}, were chosen so as to minimize the differential and linear probabil­
ities. The key addition is done over the full state. The second construction is called Speckey 
and consists of one round of Speck-32 [BSS+13] with the key added to the full state instead of 
only to half the state as in the original algorithm. The two constructions Marx-2 and Speckey 
are shown in Fig. 1a and 1b. The differential and linear bounds for them are given in Table 1. 
While it is possible to choose the rotations used in Speckey in such a way as to slightly decrease 
the differential and linear bounds3, such rotations are more expensive on small microcontrollers 
which only have instructions implementing rotations by 1 and by 8 (in both directions). We infer, 
although we cannot prove it, that the designers of Speck-32 made similar observations. 

Table 1: Maximum expected differential characteristic probabilities (MEDCP) and maximum ex­
pected absolute linear characteristic correlations (MELCC) of Marx-2 and Speckey (log2 scale); 
𝑟 is the number of rounds. 

𝑟 1 2 3 4 5 6 7 8 9 10 

Marx-2 
MEDCP(𝑀𝑟 ) 
MELCC(𝑀𝑟 ) 

−0 
−0 

−1 
−0 

−3 
−1 

−5 
−3 

−11 
−5 

−16 
−8 

−22 
−10 

−25 
−13 

−29 
−15 

−35 
−17 

Speckey 
MEDCP(𝑆𝑟 ) 
MELCC(𝑆𝑟 ) 

−0 
−0 

−1 
−0 

−3 
−1 

−5 
−3 

−9 
−5 

−13 
−7 

−18 
−9 

−24 
−12 

−30 
−14 

−34 
−17 

3Both can be lowered by a factor of 2 if we choose rotations (9, 2), (9, 5), (11, 7) or (7, 11) instead of (7, 2). 
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3.2 Naive Approaches and Their Limitations 
A very simple method to build ARX-based ciphers with provable bounds on MEDCP and MELCC 
is to use a SPN structure where the S-boxes are replaced by ARX operations for which we can 
compute the MEDCP and MELCC. This is indeed the strategy we follow but care must be taken 
when actually choosing the ARX-based operations and the linear layer. 

Let us for example build a 128-bit block cipher with an S-Box layer consisting in one iteration 
of Speckey on each 32-bit word and with an MDS linear layer, say a multiplication with the 
MixColumns matrix with elements in 𝐺𝐹 (232) instead of 𝐺𝐹 (28). The MEDCP bound of such a 
cipher, computed using a classical wide-trail argument, would be equal to 1! Indeed, there exists 
probability 1 differentials for 1-round Speckey so that, regardless of the number of active S-Boxes, 
the bound would remain equal to 1. Such an approach is therefore not viable. 

As the problem identified above stems from the use of 1-round Speckey, we now replace 
it with 3-round Speckey where the iterations are interleaved with the addition of independent 
round keys. The best linear and differential probabilities are no longer equal to 1, meaning that 
it is possible to build a secure cipher using the same layer as before provided that enough rounds 
are used. However, such a cipher would be very inefficient. Indeed, the MDS bound imposes that 

5𝑟/25 arx-boxes are active every 2 rounds, so that the MEDP bound is equal to 𝑝 where 𝑟 is the 𝑑 
number of rounds and 𝑝𝑑 is the best differential probability of the arx-box (3-rounds Speckey). 
To push the bound below 2−128 we need at least 18 SPN rounds, meaning 54 parallel applications 
of the basic arx-round! We will show that, with our alternative approach, we can obtain the same 
bounds with much fewer rounds. 

3.3 The Long Trail Design Strategy 
Informed by the shortcomings of the naive design strategies described in the previous section, we 
devised a new method to build ARX-based primitives with provable linear and differential bounds. 
It is based on the following observation. 

Observation 1 (Impact of Long Trails). Let 𝑑(𝑟) and ℓ(𝑟) be the MEDCP and MELCC of some 
arx-box iterated 𝑟 times and interleaved with the addition of independent subkeys. Then, in most 
cases: 

𝑑(𝑞𝑟) ≪ 𝑑(𝑟)𝑞 and ℓ(𝑞𝑟) ≪ ℓ(𝑟)𝑞 . 

In other words, in order to diminish the MEDCP and MELCC of a construction, it is better to 
allow long trails of arx-boxes without mixing. 

For example, if we look at Speckey, the MEDCP for 3 rounds is 2−3 and that of 6 rounds is 
2−15 which is far smaller than (2−3)2 = 2−6 (see Table 1). Similarly, the MELCC for 3 rounds is 
2−1 and after 6 rounds it is 2−7 ≪ (2−1)2 . 

In fact, a similar observation has been made by Nikolić when designing the CAESAR candidate 
family Tiaoxin [Nik15]. It was later generalized to larger block sizes in [JN16], where Jean and 
Nikolić present, among others, the AES-based 𝒜2 permutation family. It uses a partial S-Box ⊕ 
layer where the S-Box consists of 2 AES rounds and a word-oriented linear layer in such a way 
that some of the S-Box calls can be chained within 2-round long trails. Thus, they may use the 
4-round bound on the number of active 8-bit AES S-Boxes, which is 25, rather than twice the 
2-round bound, which would be equal to 10 (see Table 2). Their work on this permutation can be 
interpreted as a particular case of the observation above. 

Table 2: Bound on the number of active 8-bit S-Boxes in a differential (or linear) trail for the AES. 

# R 1 2 3 4 5 6 7 8 9 10 

# Active S-Boxes 1 5 9 25 26 30 34 50 51 55 
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Definition 3 (Long Trail). We call Long Trail (LT) an uninterrupted sequence of calls to an 
arx-box interleaved with key additions. No difference can be added into the trail from the outside. 
Such trails can happen for two reasons. 

1. A Static Long Trail occurs with probability 1 because one output word of the linear layer is 
an unchanged copy of one of its input words. 

2. A Dynamic Long Trail occurs within a specific differential trail because one output word of 
the linear layer consists of the XOR of one of its input words with a non-zero difference and 
a function of words with a zero difference. In this way the output word of the linear layer 
is again equal to the input word as in a Static LT, but here this effect has been obtained 
dynamically. 

Definition 4 (Long Trail Strategy). The Long Trail Strategy is a design guideline: when designing 
a primitive with a rather weak but large S-Box (say, an ARX-based permutation), it is better to 
foster the existence of long trails rather than to have maximum diffusion in each linear layer. 

This design principle has an obvious caveat: although slow, diffusion is necessary! Unlike the 
WTS, in this context it is better to trade some of the power of the diffusion layer in favor of 
facilitating the emergence of long trails. 

The long trail strategy is a method for building secure and efficient ciphers using a large 
but weak S-Box 𝑆 such that we can bound the MEDCP (and MELCC) of several iterations of 
𝑥 ↦→ 𝑆(𝑥 ⊕ 𝑘) with independent round keys. In this paper, we focus on the case where 𝑆 consists 
of arx operations but this strategy could have broader applications such as, as briefly discussed 
above, the design of block ciphers operating on large blocks using the AES round function as a 
building block. 

In a way, this design method is the direct opposite of the wide trail strategy as it is summarized 
by Daemen and Rijmen in [DR01] (emphasis ours): 

Instead of spending most of the resources on large S-boxes, the wide trail strategy 
aims at designing the round transformation(s) such that there are no trails with a low 
bundle weight. In ciphers designed by the wide trail strategy, a relatively large amount 
of resources is spent in the linear step to provide high multiple-round diffusion. 

The long trail approach minimizes the amount of resources spent in the linear layer and does spend 
most of the resources on large S-Boxes. Still, as discussed in the next section, the method used to 
bound the MEDCP and MELCC in the long trail strategy is heavily inspired by the one used in 
the wide trail strategy. 

𝐿 

⊕ 
𝑆 

𝑆 
⊕ 

⊕ 
𝑆 

𝑆 
⊕ 

𝑘0 
0 

𝑘0 
𝑟−1 

𝑘𝑤−1 
0 

𝑘𝑤−1 
𝑟−1 

round 

step 

Figure 2: A cipher structure for the LT strategy. 

3.3.1 A Cipher Structure for the LT Strategy 

We can build block ciphers based on the long trail strategy using the following two-level structure. 
First, we must choose an S-Box layer operating on 𝑤 words in parallel. The composition of a key 
addition in the full state and the application of this S-Box layer is called a round. Several rounds 
are iterated and then a word-oriented linear mixing layer is applied to ensure diffusion between 
the words. The composition of 𝑟 rounds followed by the linear mixing layer is called a step4, as 
described in Fig. 2. The encryption thus consists in iterating such steps. We used this design 
strategy to build a block cipher family, Sparx, which we describe in Section 4. 

4This terminology is borrowed from the specification of LED [GPPR11] which also groups several calls of the 
round function into a step. 
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Figure 3: An example of active LT decomposition. 

3.3.2 Long Trail-Based Bounds 

In what follows we only discuss differential long trails for the sake of brevity. Linear long trails are 
treated identically. 

Definition 5 (Truncated LT Decomposition). Consider a cipher with a round function operating 
on 𝑤 words. A truncated differential trail is a sequence of values of {0, 1}𝑤 describing whether 
an S-Box is active at a given round. The LT Decomposition of a truncated differential trail is 
obtained by grouping together the words of the differential trails into long trails and then counting 
how many active long trails of each length are present. It is denoted {𝑡𝑖}𝑖≥1 where 𝑡𝑖 is equal to 
the number of truncated long trails with length 𝑖. 

Example 1. Consider a 64-bit block cipher using a 32-bit S-Box, one round of Feistel network as 
its linear layer and 4 steps without a final linear layer. Consider the differential trail (𝛿0 

𝐿, 𝛿0 
𝑅) → 

(𝛿1 
𝐿, 𝛿1 

𝑅) → (0, 𝛿2 
𝑅) → (𝛿3 

𝐿 , 0) (see Fig. 3 where the zero difference is dashed). Then this differential 
trail can be decomposed into 3 long trails represented in black, blue and red: the first one has length 
1 and 𝛿𝑅 as its input; the second one has length 2 and 𝛿𝐿 as its input; and the third one has length 0 0 
3 and 𝛿𝐿 as its input so that the LT decomposition of this trail is {𝑡1 = 1, 𝑡2 = 1, 𝑡3 = 1}. Using the 1 
terminology introduced earlier, the first two trails are Static LT, while the third one is a Dynamic 
LT. 

Theorem 1 (Long Trail Argument). Consider a truncated differential trail 𝑇 covering 𝑟 rounds 
consisting of an S-Box layer with S-Box 𝑆 interleaved with key additions and some linear layer. 
Let {𝑡𝑖}𝑖≥1 be the LT decomposition of 𝑇 . Then the probability 𝑝𝐷 of any fully specified differential 
trail fitting in 𝑇 is upper-bounded by ∏︁(︀ )︀𝑡𝑖

𝑝𝐷 ≤ MEDCP(𝑆𝑖)
𝑖≥1 

where MEDCP(𝑆𝑖) is an upper-bound on the probability of a differential trail covering 𝑖 iterations 
of 𝑆. 

𝑑Proof. Let Δ𝑖,𝑠 → Δ𝑗,𝑠+1 denote any differential trail occurring at the S-Box level in one step, so 
𝑑that the S-Box with index 𝑖 at step 𝑠 sees the transition Δ𝑖,𝑠 → Δ𝑗,𝑠+1. By definition of a long 

𝑑 𝑑 𝑑trail, we have in each long trail a chain of differential trails Δ𝑖0,𝑠0 → Δ𝑖1,𝑠0+1 → ... → Δ𝑖𝑡 ,𝑠0+𝑡 

which, because of the lack of injection of differences from the outside, is a valid trail for 𝑡 iterations 
of the S-Box. This means that the probability of any differential trail following the same sequence 
of S-boxes as in this long trail is upper-bounded by MEDCP(𝑆𝑡). We simply bound the product 
by the product of the bounds to derive the theorem. 

In Appendix B, we describe how to bound the linear and differential probabilities when linear 
layers with a specific structure are used. We also investigate how to ensure resilience against 
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Figure 4: A high level view of step 𝑠 of Sparx. 

integral attacks. Indeed, it is well known that the latter are an important class of attacks against 
Substitution-Permutation Networks, a special case of which is the proposal presented next. 

4 The Sparx Family of Ciphers 
In this Section, we describe a family of block ciphers built using the framework laid out in the 
previous section. The instance with block size 𝑛 and key size 𝑘 is denoted Sparx-𝑛/𝑘. 

4.1 High Level View 
The plaintexts and ciphertexts consist of 𝑤 = 𝑛/32 words of 32 bits each and the key is divided into 
𝑣 = 𝑘/32 such words. The encryption consists of 𝑛𝑠 steps, each composed of an arx-box layer of 𝑟𝑎 

rounds and a linear mixing layer. In the arx-box layer, each word of the internal state undergoes 
𝑟𝑎 rounds of Speckey, including key additions. The 𝑣 words in the key state are updated once 𝑟𝑎 

arx-boxes have been applied to one word of the internal state. The linear layers 𝜆𝑤 for 𝑤 = 2, 4 
provide linear mixing for the 𝑤 words of the internal state. 

This structure is summarized by the pseudo-code in Algorithm 1. The structure of one round 
is represented in Fig. 4, where 𝐴 is the 32-bit arx-box consisting in one unkeyed Speck-32 round. 
We also use 𝐴𝑎 to denote 𝑎 rounds of Speckey with the corresponding key additions (see Fig. 5a). 

Algorithm 1 Sparx encryption
 
Inputs plaintext (𝑥0, ..., 𝑥𝑤−1); key (𝑘0, ..., 𝑘𝑣−1)
 
Output ciphertext (𝑦0, ..., 𝑦𝑤−1)
 

Let 𝑦𝑖 ← 𝑥𝑖 for all 𝑖 ∈ [0, ..., 𝑤 − 1] 
for all 𝑠 ∈ [0, 𝑛𝑠 − 1] do 

for all 𝑖 ∈ [0, 𝑤 − 1] do 
for all 𝑟 ∈ [0, 𝑟𝑎 − 1] do
 

𝑦𝑖 ← 𝑦𝑖 ⊕ 𝑘𝑟
 

𝑦𝑖 ← 𝐴(𝑦𝑖)
 
end for (︀ )︀
(𝑘0, ..., 𝑘𝑣−1) ← 𝐾𝑣 (𝑘0, ..., 𝑘𝑣−1) ◁ Update key state 

end for (︀ )︁
(𝑦0, ..., 𝑦𝑤−1) ← 𝜆𝑤 (𝑦0, ..., 𝑦𝑤−1) ◁ Linear mixing layer 

end for 
Let 𝑦𝑖 ← 𝑦𝑖 ⊕ 𝑘𝑖 for all 𝑖 ∈ [0, ..., 𝑤 − 1] ◁ Final key addition 
return (𝑦0, ..., 𝑦𝑤−1) 

The different versions of Sparx all share the same definition of 𝐴. However, the permutations 
𝜆𝑤 and 𝐾𝑣 depend on the block and key sizes. The different members of the Sparx-family are 
specified below. The round keys can either be derived on the fly by applying 𝐾𝑣 on the key state 
during encryption or they can be precomputed and stored. The first option requires less RAM, 
while the second is faster. The only operations needed to implement any instance of Sparx are: 
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∙ addition modulo 216, denoted , 

∙ 16-bit exclusive-or (XOR), denoted ⊕, and 

∙ 16-bit rotation to the left or right by 𝑖, denoted respectively 𝑥 𝑖 and 𝑥 𝑖. 

We claim that no attack using less than 2𝑘 operations exists against Sparx-𝑛/𝑘 in neither the 
single-key nor in the related-key setting. We also faithfully declare that we have not hidden any 
weakness in these ciphers. Sparx is free for use and its source code is available in the public 
domain 5 . 

4.2 Specification 
Table 3 summarizes the different Sparx instances and their parameters. The quantity minsecure(𝑛𝑠) 
corresponds to the minimum number of steps for which we can prove that the MEDCP is below 
2−𝑛, that the MELCC is below 2−𝑛/2 for the number of rounds per step chosen and for which we 
cannot find integral distinguishers covering this amount of steps. 

Table 3: The different Sparx instances. 

Sparx-64/128 Sparx-128/128 Sparx-128/256 

# State words 𝑤 2 4 4 
# Key words 𝑣 
# Rounds/Step 𝑟𝑎 

# Steps 𝑛𝑠 

Best Attack (# rounds) 

4 
3 
8 

15/24 

4 
4 
8 

22/32 

8 
4 
10 

24/40 

minsecure(𝑛𝑠) 5 5 5 

4.2.1 SPARX-64/128 

The lightest instance of Sparx is Sparx-64/128. It operates on two words of 32 bits and uses 
a 128-bit key. There are 8 steps and 3 rounds per step. As it takes 5 steps to achieve provable 
security against linear and differential attacks, our security margin is at least equal to 37% of the 
rounds. Furthermore, while our long trail argument proves that 5 steps are sufficient to ensure 
that there are no single-trail differential and linear distinguishers, we do not expect this bound to 
be tight. 

The linear layer 𝜆2 simply consists of a Feistel round using ℒ as a Feistel function. The general 
structure of a step of Sparx-64/128 is provided in Fig. 5b. The 128-bit permutation used in the 
key schedule has a simple definition summarized in Fig. 6, where the counter 𝑟 is initialized to 0. 
It corresponds to the pseudo code given in Algorithm 2, where (𝑧)𝐿 and (𝑧)𝑅 are the 16-bit left 
and right halves of the 32-bit word 𝑧. 

The ℒ function is borrowed from Noekeon [DPVAR00] and can be defined using 16- or 32­(︀
bit rotations. It is defined as a Lai-Massey structure mapping a 32-bit value 𝑥||𝑦 to 𝑥 ⊕ (𝑥 ⊕)︀ (︀ )︀
𝑦) 8 ||𝑦 ⊕ (𝑥 ⊕ 𝑦) 8 . Alternatively, it can be seen as a mapping of a 32-bit value 𝑧 to 
𝑧 ⊕ (𝑧 32 8) ⊕ (𝑧 32 8) where the rotations are over 32 bits. 

𝑘0 𝑘1 𝑘2 𝑘3 

𝐴 𝑟 + 1 

𝑟 ← 𝑟 + 1 
𝑘0 ← 𝐴(𝑘0) 
(𝑘1)𝐿 ← (𝑘1)𝐿 + (𝑘0)𝐿 mod 216 

(𝑘1)𝑅 ← (𝑘1)𝑅 + (𝑘0)𝑅 mod 216 

(𝑘3)𝑅 ← (𝑘3)𝑅 + 𝑟 mod 216 

𝑘0, 𝑘1, 𝑘2, 𝑘3 ← 𝑘3, 𝑘0, 𝑘1, 𝑘2 

Algorithm 2: Pseudo-code of 𝐾64 
4Figure 6: 𝐾64 (used in Sparx-64/128).4 

5See https://www.cryptolux.org/index.php/SPARX 
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𝑥𝑠 𝑥𝑠 
0 1𝑘𝑅 0 1𝑘𝐿 ⊕ ⊕0 0 

𝐴3 𝐴3 

ℒ0 
1 

⊕ 

⊕ 
𝑘2𝑠+1𝑘2𝑠 

8 
𝑘𝐿 𝑘𝑅 

𝐴 

⊕ ⊕𝑟−1 

𝐴 

𝑟−1 ⊕ 
⊕ ⊕ 

(a) 𝐴𝑟
𝑘 . (c) ℒ.(b) Step structure. 

Figure 5: A high level view of Sparx-64/128. Branches have a width of 16 bits (except for the 
keys in the step structure). 

𝑘4𝑠 

𝑥𝑠 
0 𝑥𝑠 

1 𝑥𝑠 
2 𝑥𝑠 

3 

𝑘4𝑠+1 𝑘4𝑠+2 𝑘4𝑠+3𝐴4 𝐴4 𝐴4 𝐴4 

ℒ ′ 
⊕⊕ 

⊕⊕ 

0 
1 

2 
3 

⊕ 

⊕ 
⊕ ⊕ 

⊕ 

8 

0 1 2 3 

(a) Step structure. (b) ℒ ′ . 

Figure 7: The step structure of both Sparx-128/128 and Sparx-128/256. 

4.2.2 SPARX-128/128 and SPARX-128/256 

For use cases in which a larger block size can be afforded, we provide Sparx instances with a 
128-bit block size and 128- or 256-bit keys. They share an identical step structure which is fairly 
similar to Sparx-64/128. Indeed, the linear layer relies again on a Feistel function except that ℒ is 
replaced by ℒ ′, a permutation of {0, 1}64. Both Sparx-128/128 and Sparx-128/256 use 4 rounds 
per step but the first uses 8 steps while the last uses 10. 

The Feistel function ℒ ′ can be defined as follows. Let 𝑎||𝑏||𝑐||𝑑 be a 64-bit word where each 
𝑎, ..., 𝑑 is 16-bit long. Let 𝑡 = (𝑎⊕𝑏⊕𝑐⊕𝑑) 8. Then ℒ ′ (𝑎||𝑏||𝑐||𝑑) = 𝑐⊕𝑡 || 𝑏⊕𝑡 || 𝑎⊕𝑡 || 𝑑⊕𝑡. This 
function can also be expressed using 32-bit rotations. Let 𝑥||𝑦 be the concatenation of two 32-bit (︀ )︀ (︀ )︀

32 8 32 8words and ℒ ′ 𝑏 denote ℒ ′ without its final branch swap. Let 𝑡 = (𝑥⊕𝑦) ⊕ (𝑥⊕𝑦) , 
then ℒ ′ 𝑏(𝑥||𝑦) = 𝑥 ⊕ 𝑡||𝑦 ⊕ 𝑡. Alternatively, we can use ℒ to compute ℒ ′ 𝑏 as follows: ℒ ′ 𝑏(𝑥||𝑦) = 
𝑦 ⊕ ℒ(𝑥 ⊕ 𝑦)||𝑥 ⊕ ℒ(𝑥 ⊕ 𝑦). 

These two ciphers, Sparx-128/128 and Sparx-128/256, differ only by their number of steps 
and by their key schedule. The key schedule of Sparx-128/128 needs a 128-bit permutation 𝐾4

128 

described in Fig. 8 and Algorithm 3 while Sparx-128/256 uses a 256-bit permutation 𝐾256, which 4 
is presented in both Fig. 9 and Algorithm 4. 

𝑟 ← 𝑟 + 1 

𝐴 𝐴 𝑟 + 1 

Figure 8: 𝐾128 (used in Sparx-128/128).4 

𝑘0 𝑘1 𝑘2 𝑘3 𝑘0 ← 𝐴(𝑘0) 
(𝑘1)𝐿 ← (𝑘1)𝐿 + (𝑘0)𝐿 mod 216 

(𝑘1)
𝑅 ← (𝑘1)𝑅 + (𝑘0)𝑅 mod 216 

𝑘2 ← 𝐴(𝑘2) 
(𝑘3)𝐿 ← (𝑘3)𝐿 + (𝑘2)𝐿 mod 216 

(𝑘3)𝑅 ← (𝑘3)𝑅 + (𝑘2)𝑅 + 𝑟 mod 216 

𝑘0, 𝑘1, 𝑘2, 𝑘3 ← 𝑘3, 𝑘0, 𝑘1, 𝑘2 

Algorithm 3: Pseudo-code of 𝐾4
128 
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𝑘0 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑟7 

𝐴 𝐴 𝑟 + 1 

Figure 9: 𝐾256 (used in Sparx-128/256).8 

Algorithm 4 Sparx-128/256 key schedule permutation. 
𝑟 ← 𝑟 + 1 
𝑘0 ← 𝐴(𝑘0) 
(𝑘1)𝐿 ← (𝑘1)𝐿 + (𝑘0)𝐿 mod 216 

(𝑘1)𝑅 ← (𝑘1)𝑅 + (𝑘0)𝑅 mod 216 

𝑘4 ← 𝐴(𝑘4) 
(𝑘5)𝐿 ← (𝑘5)𝐿 + (𝑘4)𝐿 mod 216 

(𝑘5)𝑅 ← (𝑘5)𝑅 + (𝑘4)𝑅 + 𝑟 mod 216 

𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝑘7 ← 𝑘5, 𝑘6, 𝑘7, 𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4 

4.3 Design Rationale 
The rationale behind our choice of Feistel functions (used in the linear layer) and key schedules is 
explained in Appendix C. 

4.3.1 Choosing the arx-box 

We chose the round function of Speckey/Speck-32 over Marx-2 because of its superior imple­
mentation properties. Indeed, its smaller total number of operations means that a cipher using 
it needs to do fewer operations when implemented on a 16-bit platform. Ideally, we would have 
used an arx-box with 32-bit operations but, at the time of writing, no such function has known 
differential and linear bounds (cf. Table 1) for sufficiently many rounds. 

We chose to evaluate the iterations of the arx-box over each branch rather than in parallel 
because such an order decreases the number of times each 32-bit branch must be loaded in CPU 
registers. This matters when the number of registers is too small to contain both the full key and 
the full internal state of the cipher and does not change anything if it is not the case. 

4.3.2 Mixing Layer, Number of Steps and Rounds per Step 

Our main approach for choosing the mixing layer was exhaustive enumeration of all matrices 
suitable for our long trail bounding algorithm from Appendix B.1 and selecting the best linear 
layer structure according to various criteria, which we will discuss later. 

For Sparx-64/128, there is only one linear layer structure fulfilling our design criteria: one 
corresponding to a Feistel round. For such a structure, we found that the best integral covers 4 
steps (without the last linear layer) and that, with 3 rounds per step, the MEDCP and MELCC 
are bounded by 2−75 and 2−38. These quantities imply that no single trail differential or linear 
distinguisher exists for 5 or more steps of Sparx-64/128. 

For Sparx instances with 128-bit block we implemented an exhaustive search on a large subset 
of all possible linear layers. After some filtering, we arrived at roughly 3000 matrices. For each 
candidate, we ran our algorithm from Section B.1 to obtain bounds on MEDCP and MELCC for 
different values of the number of rounds per step (𝑟𝑎). We also ran the algorithm for searching 
integral characteristics described in Section B.2. 

Then, we analyzed the best candidate and found that one corresponds to a Feistel-like linear 
layer with the best differential/linear bound for 𝑟𝑎 = 4. This choice also offered good compromise 
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between other parameters, such as diffusion, strength of the ARX-box, simplicity and easiness/­
efficiency of implementation. It also generalizes elegantly the linear layer of Sparx-64/128. We 
thus settled for this Feistel-like function. 

For more details on the selection procedure and other interesting candidates for the linear layer 
we refer the reader to the full version of our ASIACRYPT paper [DPU+16b]. 

4.4 Security Analysis 
4.4.1 Single Trail Differential/Linear Attack 

By design and thanks to the long trail argument, we know that there is no differential or linear 
trail covering 5 steps (or more) with a useful probability for any instance of Sparx. Therefore, 
the 8 steps used by Sparx-64/128 and Sparx-128/128 and the 10 used by Sparx-128/256 are 
sufficient to ensure resilience against such attacks. 

4.4.2 Attacks Exploiting a Slow Diffusion 

We consider several attacks in this category, namely impossible and truncated differential attacks, 
meet-in-the middle attacks as well as integral attacks. 

When we chose the linear layers, we ensured that they prevented division-property-based in­
tegral attacks, meaning that they provide good diffusion. Furthermore, the Feistel structure of 
the linear layer makes it easy to analyse and increases our confidence in our designs. In the case 
of 128-bit block sizes, the Feistel function ℒ ′ has branching number 3 in the sense that if only 
one 32-bit branch is active then the two output branches are active. This prevents attacks trying 
to exploit patterns at the branch level. Finally, this Feistel function also breaks the 32-bit word 
structure through a 16-bit branch swap which frustrates the propagation of integral characteristics. 

Meet-in-the-middle attacks are further hindered by the large number of key additions. This 
liberal use of the key material also makes it harder for an attacker to guess parts of it to add 
rounds at the top or at the bottom of, say, a differential characteristic. 

4.4.3 Best Attacks 

The best attacks we could find are integral attacks based on Todo’s division property. The attack 
against Sparx-64/128 covers 15/24 rounds and recovers the key in time 2101 using 237 chosen 
plaintexts and 264 blocks of memory. For 22-round Sparx-128/128, we can recover the key in 
time 2105 using 2102 chosen plaintexts and 272 blocks of memory. Finally, we attack 24-round 
Sparx-128/256 in time 2233, using 2104 chosen plaintexts and 2202 blocks of memory. 

A description of these attacks as well as the description of some time/data tradeoffs are provided 
in the full version of our ASIACRYPT paper [DPU+16b]. 

4.5 Software Implementation 
Next we describe how Sparx can be efficiently implemented on three resource constrained mi­
crocontrollers widely used in the Internet of Things (IoT), namely the 8-bit Atmel ATmega128, 
the 16-bit TI MSP430, and the 32-bit ARM Cortex-M3. We support the described optimization 
strategies with performance figures extracted from assembly implementations of Sparx-64/128 
and Sparx-128/128 using the FELICS open-source benchmarking framework [DBG+15]. We use 
the same tool to get the most suitable implementations of Sparx for the two IoT-specific usage 
scenarios described in [DLCK+15]. The first scenario uses a block cipher to encrypt 128 bytes of 
data using CBC mode, while the second encrypts 128 bits of data using a cipher in CTR mode. 
The most suitable implementation for a given usage scenario is selected using the Figure of Merit 
(FOM) defined in [DLCK+15]: 

𝑝𝑖1,𝐴𝑉 𝑅 + 𝑝𝑖2,𝑀𝑆𝑃 + 𝑝𝑖3 ,𝐴𝑅𝑀 
FOM(𝑖1, 𝑖2, 𝑖3) = ,

3 

where the performance parameter 𝑝𝑖,𝑑 aggregates the code size, the RAM consumption, and the 
execution time for implementation 𝑖 according to the requirements of the usage scenario. The 
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smaller the FOM value of an implementation in a certain use case, the better (more suitable) is the 
implementation for that particular use case. Finally, we compare the results of our implementations 
with the results available on the tool’s website.6 

4.5.1 Implementation Aspects 

Table 4: Performance characteristics of the main components of Sparx 

AVR MSP ARMComponent cycles registers cycles registers cycles registers 

𝐴 16 4 + 1 9 2 11 1 + 3 
𝐴−1 19 4 9 2 12 1 + 3 

𝜆2 – 1-step 24 8 + 1 11 4 + 3 5 2 + 1 
𝜆2 – 2-steps 12 8 7 4 + 1 3 2 

𝜆4 – 1-step 48 16 + 2 36 8 + 1 16 4 + 5 
𝜆4 – 2-steps 24 16 + 2 13 8 + 1 12 4 + 4 

In order to efficiently implement Sparx on a resource constrained embedded processor, it is 
important to have a good understanding of its instruction set architecture (ISA). The number of 
general-purpose registers determines whether the entire cipher’s state can be fitted into registers 
or whether a part of it has to be spilled to RAM. Memory operations are generally slower than 
register operations, consume more energy and increase the vulnerability of an implementation 
to side channel attacks [BDG16]. Thus, the number of memory operations should be reduced 
as much as possible. Ideally the state should only be read from memory at the beginning of the 
cryptographic operation and written back at the end. Concerning the three targets we implemented 
Sparx for, they have 32 8-bit, 12 16-bit, and 13 32-bit general-purpose registers, which result in a 
total capacity of 256 bits, 192 bits, and 416 bits for AVR, MSP, and ARM, respectively. 

The Sparx family’s simple structure consists only of three components: the arx-box 𝐴 and its 
inverse 𝐴−1, the linear layer 𝜆2 or 𝜆4 (depending on the version), and the key addition. The key 
addition (bitwise XOR) does not require additional registers and its execution time is proportional 
to the ratio between the operand width and the target device’s register width. The execution time 
in cycles and the number of registers required to perform 𝐴, 𝐴−1 , 𝜆2, and 𝜆4 on each target device 
are given in Table 4. 

The costly operation in terms of both execution time and number of required registers is the 
linear layer. The critical point is reached for the 128-bit linear layer 𝜆4 on MSP, which requires 13 
registers. Since this requirement is above the number of available registers, a part of the state has 
to be saved onto the stack. Consequently, the execution time increases by 5 cycles for each push 
– pop instruction pair. 

A 2-step implementation uses a simplified linear layer without the most resource demanding 
part – the branch swaps. It processes the result of the left branch after the first step as the right 
branch of the second step and similarly the result of the right branch after the first step as the left 
branch of the second step. This technique reduces the number of required registers and improves 
the execution time at the cost of an increase in code size. The performance gain is a factor of 2 
on AVR, 2.7 on MSP, and 1.3 on ARM. 

The linear transformations ℒ and ℒ ′ exhibit interesting implementation properties. For each 
platform there is a different optimal way to perform them. The optimal way to implement the 
linear layers on MSP is using the representations from Fig. 5c and Fig. 7b. On ARM the optimal 
implementation performs the rotations directly on 32-bit values. The function ℒ can be executed 
on AVR using 12 XOR instructions and no additional registers. On the other hand, the optimal 

6We submitted our implementations of Sparx to the FELICS framework. Up to date results are available at 
https://www.cryptolux.org/index.php/FELICS. 
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Table 5: Different trade-offs between the execution time and code size for encryption of a block 
using Sparx-64/128 and Sparx-128/128. Minimal values are given in bold. 

Implementation Block 
size Time 

AVR 
Code RAM Time 

MSP 
Code RAM Time 

ARM 
Code RAM 

[bits] [cyc.] [B] [B] [cyc.] [B] [B] [cyc.] [B] [B] 

1-step rolled 64 1789 248 2 1088 166 14 1370 176 28 
1-step unrolled 64 1641 424 1 907 250 12 1100 348 24 
2-steps rolled 64 1677 356 2 1034 232 10 1331 304 28 
2-steps unrolled 64 1529 712 1 853 404 8 932 644 24 

1-step rolled 128 4553 504 11 2809 300 26 3463 348 44 
1-step unrolled 128 4165 1052 10 2353 584 24 2784 884 40 
2-steps rolled 128 4345 720 11 2593 432 18 3399 620 40 
2-steps unrolled 128 3957 1820 10 2157 1004 16 2377 1692 36 

implementation of ℒ ′ on AVR requires 2 additional registers and takes 24 cycles. 7 

The linear layer performed after the last step of Sparx can be dropped without affecting the 
security of the cipher, but it turns out that it results in poorer overall performances. The only 
case when this strategy helps is when top execution time is the main and only concern of an 
implementation. Thus we preferred to keep the symmetry of the step function and the overall 
balanced performance figures. 

The salient implementation-related feature of Sparx family of ciphers is given by the simple 
and flexible structure of the step function depicted in Fig. 4, which can be implemented using 
different optimization strategies. Depending on specific constraints, such as code size, speed, or 
energy requirements to name a few, the rounds inside the step function can be rolled or unrolled; 
one or two step functions can be computed at once. The main possible trade-offs between the 
execution time and code size are explored in Table 5. 

Except for the 1-step implementation of Sparx-128/128 on MSP, which needs RAM memory 
to save the cipher’s state, all other RAM requirements are determined only by the process of 
saving the context onto the stack at the begging of the measured function. Thus, the RAM 
consumption of a pure assembly implementation would be zero, except for the 1-step rolled and 
unrolled implementations of Sparx-128/128 on MSP. 

Due to the 16-bit nature of the cipher, performing 𝐴 and 𝐴−1 on a 32-bit platform requires a 
little bit more execution time and more auxiliary registers than performing the same operations 
on a 16-bit platform. The process of packing and unpacking a state register to extract and store 
back the two 16-bit branches of 𝐴 or 𝐴−1 adds a performance penalty. The cost is amplified by 
the fact that the flexible second operand can not be used with a constant to extract the least or 
most significant 16 bits of a 32-bit register. Thus an additional masking register is required. 

The simple key schedules of Sparx-64/128 and Sparx-128/128 can be implemented in different 
ways. The most efficient implementation turns out to be the one using the 1-iteration rolled 
strategy. Another interesting approach is the 4-iterations unrolled strategy, which has the benefit 
that the final permutation is achieved for free by changing the order in which the registers are 
stored in the round keys. This strategy increases the code size by up to a factor of 4, while the 
execution time is on average 25% better. 

Although we do not provide performance figures for Sparx-128/256, we emphasize that the only 
differences with respect to implementation aspects between Sparx-128/256 and Sparx-128/128 
are the key schedules and the different number of steps. 

4.5.2 Evaluation and Comparison 

We evaluate the performance of our implementations of Sparx using FELICS in the two afore­
mentioned usage scenarios. 

The key performance figures are given in the full version of our ASIACRYPT paper [DPU+16b]. 
7For more details please see the implementations submitted to the FELICS framework (https://www.cryptolux. 

org/index.php/FELICS). 
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The balanced results are achieved using the 1-step implementations of Sparx-64/128 and 
Sparx-128/128. 

Table 6: Top 10 best implementations in Scenario 1 (encryption key schedule + encryption and 
decryption of 128 bytes of data using CBC mode) ranked by the Figure of Merit (FOM) defined 
in FELICS. The results for all ciphers are the current ones from the Triathlon Competition at the 
moment of submission. The smaller the FOM, the better the implementation. 

Rank Cipher Block 
size 

Key 
size 

Scenario 1 
FOM 

1 Speck 64 128 5.0 
2 Chaskey-LTS 128 128 5.0 
3 Simon 64 128 6.9 
4 RECTANGLE 64 128 7.8 
5 LEA 128 128 8.0 
6 Sparx 64 128 8.6 
7 Sparx 128 128 12.9 
8 HIGHT 64 128 14.1 
9 AES 128 128 15.3 

10 Fantomas 128 128 17.2 

Then we compare the performance of Sparx with the current results available on the Triathlon 
Competition at the time of submission.8 As can be seen in Table 6 the two instances of Sparx 
perform very well across all platforms and rank very high in the FOM-based ranking. The forerun­
ners are the NSA designs Simon and Speck, Chaskey, RECTANGLE and LEA, but, apart from 
RECTANGLE, none of them provides provable bounds against differential and linear cryptanalysis. 

Besides the overall good performance figures in the two usage scenarios, the following results 
are worth mentioning: 

∙	 the execution time of Sparx-64/128 on MSP is in the top 3 of the fastest ciphers in both 
scenarios thanks to its 16-bit oriented operations; 

∙	 the code size of the 1-step rolled implementations of Sparx-64/128 and Sparx-128/128 on 
MSP is in the top 5 in both scenarios as well as in the small code size and RAM table for 
scenario 2; 

∙	 the 1-step rolled implementation of Sparx-64/128 breaks the previous minimum RAM con­
sumption record on AVR in scenario 2; 

∙	 the execution time of the 2-steps implementation of Sparx-64/128 in scenario 2 is in the 
top 3 on MSP, in the top 5 on AVR, and in the top 7 on ARM; it also breaks the previous 
minimum RAM consumption records on AVR and MSP. 

Given its simple and flexible structure as well as its very good overall ranking in the Triathlon 
Competition of lightweight block ciphers, the Sparx family of lightweight ciphers is suitable for 
applications on a wide range of resource constrained devices. The absence of look-up tables reduces 
the memory requirements and provides, according to [BDG16], some intrinsic resistance against 
power analysis attacks. 

Conclusion 
In this paper we presented, for the first time, a general strategy for designing ARX primitives with 
provable bounds against differential (DC) and linear cryptanalysis (LC) – a long standing open 
problem in the area of ARX design. 

8Up to date results are available at https://www.cryptolux.org/index.php/FELICS. 
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To illustrate the effectiveness of the LTS we have proposed a new family of lightweight block ci­
phers, called SPARX, designed using the new approach. With the help of the Long Trail Argument 
we prove resistance against single-trail DC and LC for each of the three instances of Sparx. 

Beside (provable) security the members of the Sparx family are also very efficient. According 
to the FELICS open-source benchmarking framework our implementations of Sparx-64/128 and 
Sparx-128/128 rank respectively 6 and 7 in the list of top 10 most software efficient lightweight 
ciphers. To the best of our knowledge, this paper is the first to propose a practical ARX design 
that has both arguments for provable security and competitive performance. 
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A	 Test Vectors for Sparx 

Test vectors are shown as 16-bit words in hexadecimal notation. 

Sparx-64/128 
key 0011 2233 4455 6677 8899 aabb ccdd eeff 
plaintext 0123 4567 89ab cdef 
ciphertext 2bbe f152 01f5 5f98 

Sparx-128/128 
key 0011 2233 4455 6677 8899 aabb ccdd eeff 
plaintext 0123 4567 89ab cdef fedc ba98 7654 3210 
ciphertext 1cee 7540 7dbf 23d8 e0ee 1597 f428 52d8 

Sparx-128/256 

key 0011 2233 
ffee ddcc 

4455 6677 
bbaa 9988 

8899 aabb 
7766 5544 

ccdd eeff 
3322 1100 

plaintext 0123 4567 89ab cdef fedc ba98 7654 3210 
ciphertext 3328 e637 14c7 6ce6 32d1 5a54 e4b0 c820 

B	 Choosing the Linear Layer: Bounding the MEDCP and 
MELCC while Providing Diffusion 

In order to remain as general as possible, in this section we do not consider the details of a specific 
S-Box but instead we focus on fleshing out design criteria for the linear layer. All the information 
for the S-Box that is necessary to follow the explanation is the MEDCP and MELCC of its 𝑟-fold 
iterations including the key additions e.g. the data provided in Table 1 for our arx-box candidates. 

As the linear layers we consider may be weaker than usual designing spn, it is also crucial that 
we ensure that ciphers built using such a linear layer are not vulnerable to integral attacks [KW02], 
in particular those based on the division property [Tod15]. Incidentally, this gives us a criteria 
quantifying the diffusion provided by several steps of the cipher. 

In this section, we propose two methods for bounding the MEDCP and MELCC of several 
steps of a block cipher. The first one is applicable to any linear layer but is relatively inefficient, 
while the second one works only for a specific subset of linear layers but is very efficient. 

When considering truncated differential trails, it is hard to bound the probability of the event 
that differences in two or more words cancel each other in the linear layer i.e. the event that a 
Dynamic LT occurs. Therefore, for simplicity we assume that such cancellations happen for free 
i.e. with probability 1. Due to this simplification, we expect our bounds to be higher (i.e. looser) 
than the tight bounds. In other words, we underestimate the security of the cipher. Note that 
we also exclude the cases where the full state at some round has zero difference as the latter is 
impossible due to the cipher being a permutation. 

B.1 Algorithms for Bounding MEDCP and MELCC of a cipher. 
In this sub-section we propose generic approaches that do not depend on the number of rounds 
per step. In fact, to fully avoid the confusion between rounds and steps in what follows we shall 
simply refer to SPN rounds. 

One way to bound the MEDCP and MELCC of a cipher is as follows: 
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1. Enumerate all possible truncated trails composed of active/inactive S-boxes. 

2. Find an optimal decomposition of each trail into long trails (LT). 

3. Bound the probability of each trail using the product of the MEDCP (resp. MELCC) 
of all active long trails i.e. by applying the Long Trail Argument (see Theorem 1) on the 
corresponding optimal trail decomposition. 

4. The maximum bound over all trails is the final upper bound. 

This approach is feasible only for a small number of rounds, because the number of trails grows 
exponentially. The algorithm is based on a recursive dynamic programming approach and has time 
complexity 𝑂(𝑤𝑟2), where 𝑤 is the number of S-Boxes applied in parallel in each S-Box layer and 
𝑟 is the number of rounds. 

As noted, the most complicated step in the above procedure is finding an optimal decomposition 
of a given truncated trail into long trails. The difficulty arises from the so-called branching: 
situation in which a long trail may be extended in more than one way. Recall that our definition of 
LT (cf. Definition 3) relies on the fact that there is no linear transformation on a path between two 
S-Boxes in a LT. The only transformations allowed are some XORs. Therefore, branching happens 
only when some output word of the linear layer receives two or more active input words without 
modifications. In order to cut off the branching effect (and thus to make finding the optimal 
decomposition of a LT feasible), we can put some additional linear functions that will modify the 
contribution of (some of) the input words. Equivalently, when choosing a linear layer we simply 
do not consider layers which cause branching of LTs. As we will show later, this restriction has 
many advantages. 

To simplify our study of the linear layer, we introduce a matrix representation for it. In a 
block cipher operating on 𝑤 words, a linear layer may be expressed as a 𝑤 × 𝑤 block matrix. We 
will denote zero and identity sub-matrices by 0 and 1 respectively and an unspecified (arbitrary) 
sub-matrices by 𝐿. This information is sufficient for analyzing the high-level structure of a cipher. 
Using this notation, the linear layers to which we restrict our analysis have matrices where each 
column has at most one 1. 

For the special subset of linear layers outlined above, we present an algorithm for obtaining 
MEDCP and MELCC bounds, that is based on a dynamic programming approach. Since there 
is no LT branching, any truncated trail consists of disjoint sequences of active S-Boxes. By Obser­
vation 1, we can treat each such sequence as a LT to obtain an optimal decomposition. Because 
of this simplification, we can avoid enumerating all trails by grouping them in a particular way. 

We proceed round by round and maintain a set of best trails up to an equivalence relation, 
which is defined as follows. For all S-Boxes at the current last round 𝑠, we assign a number, which 
is equal to the length of the LT that covers this S-Box, or zero if the S-Box is not active. We say 
that two truncated trails for 𝑠 steps are equivalent if the tuples consisting of those numbers (current 
round 𝑠 and length of LT) are the same for both trails. This equivalence captures the possibility to 
replace some prefix of a trail by an equivalent one without breaking the validity of the trail or its 
LT decomposition. The total probability, however, can change. The key observation here is that 
from two equivalent trails we can keep only the one with the highest current probability. Indeed, 
if the optimal truncated trail for all 𝑟 rounds is an extension of the trail for 𝑠 rounds with lower 
probability, we can take the first 𝑠 rounds from the trail with higher probability without breaking 
anything and obtain a better trail, which contradicts the assumed optimality. 

The pseudo-code for the algorithm is given in the full version of this paper [DPU+16b]. 
This algorithm can be used to bound the probability of linear trails. Propagation of a linear 

mask through some linear layer can be described by multiplying the mask by the transposed 
inverse of the linear layer’s matrix. In our matrix notation we can easily transpose the matrix but 
inversion is harder. However, we can build the linear trails bottom-up (i.e. starting from the last 
round): in this case we need only the transposed initial matrix. Our algorithm does not depend 
on the direction, so we obtain bounds on linear trails probabilities by running the algorithm on 
the transposed matrix using the linear bounds for the iterated S-box. 
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B.2 Ensuring Resilience Against Integral Attacks 
As illustrated by the structural attack against SASAS and a recent generalization [BK15] to ciphers 
with more rounds, a spn with few rounds may be vulnerable to integral attacks. This attack 
strategy has been further improved by Todo [Tod15] who proposed the so-called division property 
as a means to track which bit should be fixed in the input to have a balanced output. He also 
described an algorithm allowing an attacker to easily find such distinguishers. 

We implemented this algorithm to search for division-property-based integral trails covering as 
many rounds as possible. With it, for each matrix candidate we compute a maximum number of 
rounds covered by such a distinguisher. This quantity can then be used by the designer of the 
primitive to see if the level of protection provided against this type of attack is sufficient or not. 

Tracking the evolution of the division property through the linear layer requires special care. In 
order to do this, we first make a copy of each word and apply the required XORs from the copy to 
the original words. Due to such state expansion, the algorithm requires both a lot of memory and 
time. In fact, it is even infeasible to apply on some matrices. To overcome this issue, we ran the 
algorithm with reduced word size. During our experiments, we observed that such an optimization 
may only result in longer integral characteristics and that this side effect occurs only for very small 
word sizes (4 or 5 bits). In light of this, we conjecture that the values obtained in these particular 
cases are upper bounds and are very close to the values which could be obtained without reducing 
the word size. 

C Design Rationale 

C.1 The Linear Feistel Functions 
The linear layer obtained using the steps described above is only specified at a high level, it remains 
to define the linear Feistel functions ℒ and ℒ ′. The function ℒ that we have chosen has been used 
in the Lai-Massey round constituting the linear layer of Noekeon [DPVAR00]. We reuse it here 
because it is cheap on lightweight processors as it only necessitates one rotation by 8 bits and 3 
XORs. It also provides some diffusion as it has branching number 3. Its alternative representation 
using 32-bit rotations allows an optimized implementation on 32-bit processors. 

Used for a larger block size, the Feistel function ℒ ′ is a generalization of ℒ: it also relies on 
a Lai-Massey structure as well as a rotation by 8 bits. The reason behind these choices are the 
same as before: efficiency and diffusion. Furthermore, ℒ ′ must also provide diffusion between the 
branches. While this is achieved by the XORs, we further added a branch swap in the bits of 
highest weight. This ensures that if only one 32-bit branch is active at the input of ℒ ′ then two 
branches are active in its output. Indeed, there are two possibilities: either the output of the 
rotation is non-zero, in which case it gets added to the other branch and spreads to the whole state 
through the branch swap. Otherwise, the output is equal to 0, which means that the two 16-bit 
branches constituting the non-zero 32-bit branch hold the same non-zero value. These will then be 
spread over the two output 32-bit branches by the branch swap. The permutation ℒ ′ also breaks 
the 32-bit word structure, which can help prevent the spread of integral patterns. 

C.2 Key Schedule 
The key schedules of the different versions of Sparx have been designed using the following general 
guidelines. 

First, we look at criteria related to the implementation. To limit code size, components from 
the round function of Sparx are re-used in the key-schedule itself. To accommodate cases where 
the memory requirements are particularly stringent, we allow an efficient on-the-fly computation 
of the key. 

We also consider cryptographic criteria. For example, we need to ensure that the keys used 
within each chain of 3 or 4 arx-boxes are independent from one another. As we do not have enough 
entropy from the master key to generate truly independent round keys, we must also ensure that 
the round-keys are as different as possible from one another. This implies a fast mixing of the 
master key bits in the key schedule. Furthermore, in order to prevent slide attacks [BW99], we 
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chose to have the round keys depend on the round index. Finally, since the subkeys are XOR-ed 
in the key state, we want to limit the presence of high probability differential pattern in the key 
update. Diffusion in the key state is thus provided by additions modulo 216 rather than exclusive-
or. While there may be high probability patterns for additive differences, these would be of little 
use because the key is added by an XOR to the state. 

As with most engineering tasks, some of these requirements are at odds against each other. For 
example, it is impossible to provide extremely fast diffusion while also being extremely lightweight. 
Our designs are the most satisfying compromises we could find. 
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