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Abstract 

We present the construction and implementation of an 8-bit S-box with a differential and 
linear branch number of 3. We show an application by designing Fly, a simple block cipher 
based on bitsliced evaluations of the S-box and bit rotations that targets the same platforms as 
Pride, and which can be seen as a variant of Present with 8-bit S-boxes. The round function 
of Fly achieves the same performance as the one of Pride on 8-bit microcontrollers (in terms 
of number of instructions per round and code size) while having 1.5 times more equivalent active 
S-boxes on average. The S-box also has an efficient implementation with SIMD instructions, a 
low implementation cost in hardware and it can be masked efficiently thanks to its sparing use of 
non-linear gates and to the fact that it has a natural expression in terms of a single 4-bit S-box. 

Keywords. Block cipher design, Lai-Massey S-box, bitsliced implementation, SPN. 

1 Introduction 

Since the late 1990’s and the end of the AES competition, the academic community and the industry 
have been provided with excellent block ciphers. In most cases where a cipher is needed, AES [32] can 
readily be used and there is currently little need for a replacement. Consequently, the symmetric cryp­
tographic community shifted focus to e.g. the wider picture of authenticated encryption through the 
Caesar competition, or to more specific applications of block ciphers. In the latter case, an important 
topic is the design of “lightweight” block ciphers intended to be implemented on low-cost, resource-
constraint devices. An early successful example following this trend is the block cipher Present [10], 
which can be implemented in small hardware circuits. Most lightweight algorithms similarly target one 
(or a few) platform(s) on which they are expected to perform particularly well; good performance in 
other cases are however not usually expected and lightweight ciphers are in general not very versatile. 
Typical platforms of interest include hardware circuits and 8-bit to 32-bit microcontrollers. 

In this work, we design a conceptually simple block cipher targeting efficient light implementations 
on 8-bit microcontrollers1. The chief academic proposal to date for this scenario is the Pride block 
cipher2, that was presented at CRYPTO 2014 [1]. Our block cipher is built around Littlun-1, a 
compact 8-bit S-box with branch number 3. This allows to define a round function similar to a scaled-
up variant of Present, composing the S-box application with a simple bit permutation3. This offers 
a trade-off between hardware and light software implementations: Littlun-1 is more expensive in 
hardware than (two applications of) the S-box of Present, but the bit permutation is simple to 
implement with 8-bit rotations. Owing to Golding, we name our block cipher “Fly”. 

Excluding on-the-fly key expansion, the round function of Fly costs 4 instructions less to implement 
than Pride’s on AVR. Using the good branch number of Littlun-1, we can show that with a similar 
number of rounds, Fly is more resistant than Pride to statistical (differential and linear) attacks. 
This is all the more relevant as the security margin of Pride seems to be quite thin [39]. Taking 
the key-schedule into account, one round of Fly costs 8 more instructions than one round of Pride. 
However, unlike Pride, we do not use an FX construction for the key-schedule and thus the generic 
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security of Fly does not decrease with the amount of data available to the adversary (Dinur also 
showed how the FX construction can lead to more efficient time-memory-data trade-offs [23]). 

As implementations on resource-constraint devices are more likely to be vulnerable to side-channel 
attacks, one should also consider the additional cost of protection against, say, differential power 
analysis when evaluating schemes that target such platforms. In that respect, the small number of 
gates necessary to implement the Littlun-1 S-box, as well as its simple expression in terms of light 
4-bit S-boxes allows one to produce masked implementations of Fly with limited overhead. 

Related work. The block cipher literature is so numerous that most new proposal will bear some 
similarity with past designs. In that respect, apart from Present, Fly is quite similar to Rectan­
gle [38], which also combines a Serpent-like bitsliced application of an S-box [8] with a rotation-
implemented bit permutation. However, the S-box in Rectangle is on 4 bits, it does not have a 
branch number of 3 and the rotations are on 16-bit words. The construction of the Littlun S-box 
uses the Lai-Massey structure from the IDEA block cipher [29]; this structure was already used to 
build the second S-box of the Whirlpool hash function [4] and the S-box of the block cipher Fox 
[27]. 

2 Preliminaries 

We start by defining the main notions that will be used in evaluating the cryptographic properties of 
our construction. Although we will mostly consider S-boxes as defined over binary strings, we may see 
an n-bit S-box as a mapping Fn → Fn whenever convenient. 2 2 

Definition 2.1 (Differential uniformity of an S-box). Let S be an n-bit S-box. We define its difference 
distribution table (or DDT) as the function δS defined extensively by: 

δS (a, b) := #{x ∈ Fn 
2 | S(x) + S(x + a) = b}. 

The differential uniformity Δ of S is defined as: 

max δS (a, b). 
(a,b) =(0,0) 

Put another way, an n-bit S-box with differential uniformity Δ has a maximal differential probability 
of Δ /2n over its inputs. 

Definition 2.2 (Linearity of an S-box). Let S be an n-bit S-box. We define its linear approximation 
table (or LAT) as the function LS defined extensively by:  

(−1)(b,S(x))+(a,x)LS (a, b) := . 
x∈Fn 

2 

The linearity £ of S is defined as: 
max | LS (a, b)|. 

(a,b) =(0,0) 

Roughly speaking, the linearity measures the maximum (absolute) difference between how many 
times a (non-trivial) linear approximation takes the value 1 and how many times it takes the value 0. 
It is therefore twice the difference between 2n−1 (for an n-bit S-box) and how many times either value 
is taken. In particular, if we define the bias b of a probability p as |p − 1/2|, it means that the bias of 
any linear approximation of an n-bit S-box of linearity £ is upper-bounded by (£ /2)/2n . 

Definition 2.3 (Branch number of an S-box). The differential branch number of an S-box S is: 

min wt(a) + wt(b), 
{(a,b)  =(0,0)| δS (a,b)=0} 

where wt(x) is the Hamming weight of x. 
The linear branch number of an S-box S is: 

min wt(a) + wt(b). 
{(a,b)  =(0,0)| LS (a,b)=0} 

Definition 2.4 (Algebraic normal form). Let f : Fn → F2 be an n-bit Boolean function, its algebraic 2 
normal form (or ANF) is defined as the polynomial g ∈ F2[x0, x1, . . . xn−1]/ < x2 

i − xi >i<n such that 
for all x ∈ Fn 

2 , f(x) = g(x[0], . . . , x[n − 1]). Similarly, the ANF of an n-bit S-box S is the sequence of 
the ANFs of its n constituent Boolean functions projected on the canonical basis of Fn 

2 . 
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3 The Littlun S-box construction 

3.1 The Lai-Massey structure 
Our S-box uses the Lai-Massey structure, which was proposed in 1991 for the design of the block cipher 
IDEA [29]. The structure is similar in its objective to a Feistel or Misty structure (see e.g. [14] for 
definitions) as it allows to construct n-bit functions out of smaller components. It is in particular well­
suited to build efficient 8-bit S-boxes from 4-bit S-boxes all the while amplifying the good cryptographic 
properties of the 4-bit S-boxes. It was already used as such for the design of the second S-box of the 
Whirlpool hash function [4] (an early version of Whirlpool used a randomly-generated S-box), 
using five 4-bit S-boxes and for the design of the S-box of the Fox block cipher [27] which uses a 
3-round iterated structure. In our construction, we use only one round of the more classical variant of 
the structure, with only 3 S-boxes, and the linearity of the underlying 4-bit S-box. 

The choice of the Lai-Massey structure was mainly motivated by our objective of building an S-box 
with a branch number of 34. Indeed, it is easy to see that the S-box will have this property for the 
differential branch number by construction as soon as the 4-bit S-boxes have differential branch number 
3, and such S-boxes are well-known (see e.g. Serpent [8]). So much cannot be said however for the 
linear branch number, as no (differential and linear optimal) 4-bit S-box exists with this property5. In 
fact, we are not aware of previous examples of 8-bit S-boxes with this feature either. 

Other good properties of the structure are that it yields S-boxes with a circuit depth of two S-
boxes and it allows for efficient vector implementations using SIMD instructions. On the downside, it 
requires the 4-bit S-boxes to be permutations if we want the 8-bit S-box to be one. Canteaut, Duval 
and Leurent recently showed how the absence of such a restriction for Feistel structures could be used 
to build compact S-boxes with particularly low differential probability [14]. We should note however 
that for the applications we have in mind (see Sec. 5), the linearity of the S-box is as important as the 
differential probability, and the S-box of Canteaut et al. is average in that respect (and in particular 
not better than ours). 

3.2 An instantiation: Littlun-1 

We now define Littlun-1, a concrete instantiation of the Lai-Massey structure which achieves a 
differential and linear branch number of 3. Although we have seen that we could guarantee this in the 
differential case by using a 4-bit S-box of differential branch number 3, this is actually not necessary 
and we use instead a very compact member of the class 13 of Ullrich et al. [36]. This S-box uses only 
4 non-linear and 4 XOR gates, which is minimal for an optimal S-box of this size. This leads to an 
8-bit S-box using 12 non-linear and 24 XOR gates. We give the table of the 4-bit S-box “Littlun-S4” 
in Fig. B.1 and of the complete 8-bit S-box in Fig. B.2, in App. B.1, and conclude this section by a 
summary of the cryptographic properties of Littlun-1. 

Proposition 3.1 (Statistical properties). The differential uniformity of Littlun-1 and of its inverse 
is 16 and its linearity is 64. 

In essence, Prop. 3.1 means that the probability (taken over all the inputs) of any non-trivial 
differential relation going through the S-box is upper-bounded by 2−4 and the bias of any non-trivial 
linear approximation is upper-bounded by 2−3 . 

Proposition 3.2 (Diffusion properties). The differential and linear branch number of Littlun-1 and 
of its inverse is 3. 

Proposition 3.3 (Algebraic properties). The maximal degree of (the ANF of) Littlun-1 is 5 in 4 
of the 8 output bits, 4 in two other and 3 in the remaining two. The maximal degree of its inverse is 
5 in 6 of the 8 output bits and 4 in the other 2. 

4This will in turn be useful to design a good lightweight round function.
 
5As demonstrated by an exhaustive search we performed on the optimal classes described e.g. in [31].
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4 Implementation of Littlun-1 

4.1 Hardware implementation 
We give a circuit (using OR, AND and XOR gates) implementing Littlun-S4 in Fig. B.3 in App. B.2. 
A hardware implementation of the entire S-box can easily be deduced by plugging this circuit into the 
one of a Lai-Massey construction. As previously mentioned, Littlun-1 can be implemented with 12 
non-linear (OR and AND) gates and 24 XOR gates. With a typical cell library such as the Virtual 
Silicon standard cell library, OR and AND gates cost 1.33 gate equivalent (GE), and XOR gates 2.67 
GE. Thus synthesising the S-box with this library would cost 80 GE. 

4.2 Bitsliced software implementation 
One of our main objective w.r.t. implementation was to obtain an S-box with an efficient bitsliced 
implementation in software. This is closely related to the simplicity of the circuit of the S-box, though 
not exactly equivalent. We purposefully chose a 4-bit S-box from the class 13 of Ullrich et al. [36] 
because of its very efficient bitsliced implementation that requires only 9 instructions on a wide variety 
of platforms. Such an implementation is given in Fig. 4.1. From this, it is easy to obtain an efficient 
bitsliced implementation for the whole S-box, as shown in Fig. 4.2. This implementation typically 
requires 43 instructions and 13 registers. 

t = b; b |= a; b ^= c; // (B): c ^ (a | b) 
c &= t; c ^= d; // (C): d ^ (c & b) 
d &= b; d ^= a; // (D): a ^ (d & B) 
a |= c; a ^= t; // (A): b ^ (a | C) 

Figure 4.1: Snippet for a bitsliced C implementation of Littlun-S4 with input and output in registers 
a, b, c, d (the word holding the most significant bit is taken to be a), using one extra register t. 

t = a ^ e; 
u = b ^ f; 
v = c ^ g; 
w = d ^ h; 
S4 (t,u,v,w); // uses one more extra register x 
a ^= t; e ^= t; 
b ^= u; f ^= u; 
c ^= v; g ^= v; 
d ^= w; h ^= w; 
S4 (a,b,c,d); // reuses t as extra 
S4 (e,f,g,h); // reuses u as extra 

Figure 4.2: Snippet for a bitsliced C implementation of Littlun-1, using the code of Fig. 4.1 as 
subroutine. The input and output registers are a, b, c, d, e, f, g, h (with the most significant bit in word 
a), the 5 extra registers are t, u, v, w, x. 

4.3 Masking 
The low number of non-linear gates needed to implement Littlun-1 makes it a suitable choice for 
applications where counter-measures against side-channel attacks are required. Indeed, it directly im­
plies a lower cost when using Boolean masking schemes (both hardware and software), which represent 
the primitive to be masked as a circuit [25, 15]. In particular, Littlun-1 is competitive with the 
S-boxes proposed by Grosso et al. [24]: it has the same gate count as the S-box used for Robin and 
only one more non-linear (and one less XOR) gate than the one used for Fantomas. All 3 S-boxes 
are comparable in terms of cryptographic properties. 

One could alternatively consider that the chief non-linear component to take into account in that 
context is actually Littlun-S4, the 4-bit S-box underlying Littlun-1, rather than the full S-box. 
Indeed, any cryptosystem using Littlun-1 (in combination with an arbitrary linear layer) can be 
re-written as using only Littlun-S4 for its non-linear part. In that respect, the number of non-linear 
gates to consider for masking would only be 46 . 

6One could object that additional factors need to be taken into account, such as for instance the total number of 
application of the S-box in an execution of the cipher. Yet if we jump a little ahead and consider the block cipher Fly of 
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The ability to express Littlun-1 only in terms of a 4-bit S-box is also convenient when considering 
threshold implementations (although these chiefly apply to hardware implementations, which are not 
the focus of this article). For instance, it allows one to benefit from the recent progresses in such 
protected implementations of small S-boxes [9]. 

We further discuss the cost of masking a concrete block cipher instance using Littlun-1 in Sec. 5.3. 

4.4 Inverse S-box 
The inverse Littlun-1−1 of Littlun-1 is slightly costlier to implement, because of a more expensive 
inverse for Littlun-S4. As a circuit, the latter requires 5 XOR gates, 4 non-linear (OR and AND) 
gates and one NOT gate (costing 0.67 GE). The total hardware cost of Littlun-1−1 is thus 90 GE. 

Software bitsliced implementations are also more expensive. We give a snippet for the inverse of 
Littlun-S4 in Fig. A.1 in App. A. 

5 An application: the Fly block cipher 

In this section, we present the Fly block cipher as an application of the Littlun-1 S-box. It is a 
64-bit block cipher with 128-bit keys. Thanks to the branch number of the S-box, it is easy to design 
a round function with good resistance to statistical attacks by combining its bitsliced application with 
a simple bit permutation. This results in a cipher with a structure similar to Present [10] with a 
tradeoff: the S-box is bigger (and thus more expensive to implement, in particular in hardware) but 
the permutation is simpler (and thus cheaper to implement in software). This cipher was designed to 
be used in the same cases as Pride, and its chief implementation target is 8-bit microcontrollers. 

5.1 Specifications 
We first give the specification of the round function RFly of Fly. It takes a 64-bit block and 64-bit 
round key as input. Let x := (x0||x1||x2||x3||x4||x5||x6||x7), rk := (rk0||rk1||rk2||rk3||rk4||rk5||rk6||rk7) 
be such an input, with xi, rki 8-bit words7 . 

Let us first define fi(t) := ιi(t0)||κ(t1)||t2||t3||t4||t5||t6||t7, with κ(x) := x ⊕ 0xFF; ιi(x) := x ⊕L(i), 
L(i) being a round constant produced as the ith iteration of the LFSR shown in Fig 5.1, initialized 
with zero. Algebraically speaking, this LFSR implements the mapping x �→ α(x + α7) in F2[α]/α

8 + 
α7 + α3 + α2 +1. Note however that the mapping of elements of this field to the state of the LFSR (or 
equivalently 8-bit machine words) uses the inverse ordering of the usual convention, i.e. the highest 
coefficient is stored in the LSB. This (as well as the addition of α7 prior to the multiplication by α) 
is done to ease software implementations of this round constant generation. An example of such an 
implementation is given in Fig. C.1. 

flip = r[0] ^ 1; r[n] = r[n + 1], n = 6...0; r[7] = 0;
 
r[0] = r[0] ^ flip ; r[4] = r[4] ^ flip ;
 
r[5] = r[5] ^ flip ; r[7] = r[7] ^ flip ;
 

Figure 5.1: The LFSR which ith iteration (starting from a zero state) defines the ith round constant. 
This pseudo-code assumes an 8-bit state r, which entry r[0] maps to the LSB in a machine represen­
tation. 

We write Arki the addition of the ith round key: Arki(rki, x) := fi(x ⊕ rki); Bls(x) a bitsliced 
application of Littlun-1 (such as e.g. the one shown in Fig 4.2), with x0 holding the most significant 
bits of the input to the S-boxes; and Rot the “Shiftrow” word-wise rotation (with � denoting bitwise 
rotation to the left) 

Rot(x) := (x0||x1 � 1||x2 � 2||x3 � 3||x4 � 4||x5 � 5||x6 � 6||x7 � 7) 

which can alternatively be defined at the bit level as the permutation π(i) := (i + 8 × (i mod 8)) 
mod 64, applied to a suitable binary representation of x := b0 . . . b63. Then we simply have RFly(·, ·) := 
Rot ◦ Bls ◦ Ark. We give a (slightly simplified) graphical representation of the SPN structure of this 
round function at the bit level in Fig. 5.2. 

Sec. 5, we can see that in terms of the 4-bit S-box, Fly needs 20 × 8 × 3 = 480 calls to Littlun-S4, which is comparable 
to the 31 × 16 = 496 of Present (discounting the key-schedule). 

7The big endian convention is used to convert from x and rk to the xis and rkis. 
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Figure 5.2: The round function of Fly. Bits are numbered left to right from 0 to 63 (w.r.t. the bit 
permutation). The addition of the round constant is omitted. 

We propose two key-schedules, KS1 and KS2, depending on whether resistance to related-key 
attacks is required (in the case of KS2) or not. In order to distinguish between the two block ciphers, 
we write Fly for the (default) case where KS1 is used and FlyRK when KS2 is used. We describe 
KS1 first, which in fact performs only an elementary scheduling: let k := k0||k1 be the 128-bit master 
key, and k0 (resp. k1) its first (resp. second) half; then the sequence (rk) of round keys of KS1 is the 
simple alternation of k0 and k0 ⊕ k1 defined as rki := k0 ⊕ i × k1 

8. A round constant is also added in 
Ark through the function fi to prevent self-similarity attacks. 

For Fly to be resistant to related-key attacks, we use the same approach as Noekeon [22] to define 
KS2 as follows. Let us denote by Fly(0, ·)/12 twelve applications of the round function of Fly with 
the all-zero 128-bit key and define kb := kb0||kb = Fly(0, k0)/12||Fly(0, k1)/12. Then KS2 is defined 1 
through FlyRK as FlyRK (k, ·) := Fly(kb, ·). 

The round function of Fly is applied 20 times, the same as Pride. The entire cipher can thus 
finally be defined as Fly(k, ·) := Ark(rk20, ·) ◦ RFly(rk19, ·) ◦ . . . ◦ RFly(rk1, ·) ◦ RFly(rk0, ·). 

Design rationale 

The core of Fly is the Littlun-1 S-box, which was designed to have a branch number of 3. This 
allows to achieve a good diffusion when combining the S-box application with a simple bit permutation. 
The latter was chosen so that all eight bits at the output of an S-box go to one different S-box each 
(similarly, all input bits come from a different S-box). Unlike in Present, this permutation also has 
cycles of different lengths (discounting fixed points), namely 2 (on 8 values), 4 (on 16) and 8 (on 32). 
This might reduce the impact of (linear and differential) characteristic clustering. The round constants 
break the self-similarity and self-symmetry of the round function (through ι) and the self-symmetry of 
the S-box (through κ)9 . 

The two components of the round function can be efficiently implemented on an 8-bit architecture 
through a bitsliced application of the S-box and word rotations respectively (cf. Sec 5.3). 

The two key-schedules were designed according to different possible scenarios. Most applications 
do not require resistance to related-key attacks and a simple alternating key-schedule is enough in that 
case. We chose not to use an FX construction as in Pride as we did not consider the slight gain in 
efficiency it offers to be worth the generic security loss it implies. In the spirit of Noekeon, we propose 
a second key-schedule to offer resistance to related-key attacks that consists in “scrambling” the master 
key with a permutation of good differential uniformity before it is used as in the first key-schedule. 

5.2 Preliminary security analysis 
We now analyse the security of Fly against various types of attacks. Considering the similarity of the 
design with Present and the published analysis on this cipher, the most efficient attacks on Fly are 
likely to be (variants of) classical statistical (differential and linear) attacks, which we analyse first (in 
the single-key setting). We then give an overview of the resistance against other attack techniques. 

We can use the branch number of Littlun-1 together with the properties of the bit permutation 
Rot to easily derive a lower bound on the number of (differentially and linearly) active S-boxes. Indeed, 

8By writing i × k1, we mean the all-zero key for even values of i and k1 otherwise. 
9This symmetry is actually already broken by ι and (most of the times) by the round keys, but using an extra constant 

allows for a simple and clean argument at a negligible cost. 
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as the branch number is 3, we are guaranteed to have at least 6 active S-boxes every 4 rounds of any 
non-trivial differential or linear characteristic. This is a consequence of the following proposition: 

Proposition 5.1. There is no 3-round characteristic on Fly activating 1, then n, then 1 S-box, for 
any value of n. 

Proof. In a round following one round with a single active S-box, all n active S-boxes are active in a 
single bit of their input, and consequently each of their output activates at least 2 S-boxes. 

The block size of Fly being 64 bits, we want any differential characteristic to have a probability 
p ≈ 2−64 when averaged over the key and message space. Similarly, we want any linear characteristic 
to have an average bias b ≈ 2−32. From the Prop. 3.1 of Littlun-1, by multiplying the differential 
probabilities and applying the piling-up lemma respectively, this means that we want a differential 
(respectively linear) characteristic to have at least 16 active S-boxes. This happens at the latest 
after 12 rounds, for which at least 18 S-boxes are guaranteed to be active. Even by discounting the 
additional 2 S-boxes and assuming that a distinguisher can be found for this amount of rounds, this 
gives a very comfortable margin of 8 rounds, which we estimate to be much beyond the ability of an 
attacker to convert the distinguisher into, say, key-recovery (in particular, this is twice the number of 
rounds needed for full diffusion). This also leaves some margin to ensure that even in the case where 
Fly would exhibit a strong differential or linear hull it would be unlikely for an attacker to be able to 
mount a meaningful attack. For instance, after 16 rounds, an attacker would need about 232 “optimal” 
contributing characteristics to obtain a distinguisher with non-trivial probability, and would still be 
facing 4 rounds to mount an attack. 

Thus, we conjecture that Fly with 20 rounds offers good resistance to statistical attacks. 

Brief comparison with Present. The best attacks to date on Present are based on multidi­
mensional linear cryptanalysis [16, 11]. These attacks exploit the presence of linear characteristics that 
constantly activate only one S-box per round (i.e. “single-bit characteristics”). As there are no such 
characteristics in Fly, we believe that these attacks would be less effective on the latter. Similarly, 
some other good attacks on Present exploit the fact that half of the bits of some groups of S-boxes 
remain in the same group [18], and there is no such property for Fly. 

Algebraic attacks. We would like to estimate how many rounds of Fly are necessary for the degree 
of the cipher to reach the maximum of 63, as a lower degree could be exploited in “algebraic” attacks. 
Computing the exact degree of an iterated function is a difficult problem in general, but we should 
at least compute the upper bound of Boura, Canteaut and De Cannière to estimate how quickly the 
degree increases [13]. In our case, this bound states that deg(G◦F ) ≤ n−(n−deg(G))/(n0 −2), where 
n is the block size and n0 the size of the S-box. Combining this bound with the fact that the degree of 
the S-box is 5 (and thus that deg(Bls ◦F ) ≤ 5 · deg(F )), we can see that 5 rounds of Fly are necessary 
to reach a full degree. If we assume this bound to be an equality, any (algebraic) distinguisher on 
more than about twice this number of rounds is unlikely to exist. Even when (necessarily) relaxing 
this latter (strong) assumption, 20 rounds seem to be well enough to make Fly resistant to algebraic 
attacks. 

Meet-in-the-middle attacks. We analysed how many rounds are necessary to ensure that every 
bit of the (intermediate) ciphertext depends on every bit of the key, as a basic way to estimate the 
resistance of Fly to meet-in-the-middle (MitM) attacks, which typically exploit the opposite effect. We 
did this by performing random trials with 220 pairs of random keys and random plaintexts and found 
that this happens after at most 5 rounds. Any MitM attack on more than about twice this number of 
rounds is unlikely to exist, and we therefore conjecture that Fly is resistant to such attacks10 . 

Invariant subspace attacks. Invariant subspace attacks exploit the propensity of a round function 
to map inputs from a certain (non-trivial) affine coset to another, when in addition a trivial key-schedule 
and sparse round constants are used [30]. As the two latter points appear in Fly, we analysed its round 
function in order to see if it could also meet the first, critical condition. We ran the automated search 
tool provided by the authors of [30]11 for about 236 iterations without finding any invariant subspace; 

10Which key-schedule (KS1 or KS2) is used is irrelevant, as KS2 is equivalent to using KS1 with a different “effective” 
master key, which a MitM attacker can recover in the exact same way as the “true” master key produced by KS1. 

11Available at http://invariant-space.gforge.inria.fr/. 
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this shows that with good probability, no such subspace of dimension greater than 64 − 36 = 28 exists. 

Integral attacks, impossible differentials, zero correlation. We did not analyse in detail the 
security of Fly against integral attacks, nor against impossible differentials and zero correlation at­
tacks. Indeed, none of these techniques seem to be able to attack a significant number of rounds of 
bit-oriented ciphers such as Present (see e.g. [37, 21, 12], where the obtained distinguishers reach 
significantly less rounds than the best statistical ones) or Fly and we do not consider them to be a 
threat for our cipher. 

Related-key attacks. We now study the resistance of Fly against (XOR-induced, differential) 
related-key attacks. Fly equipped with the simple key-alternating key-schedule KS1 offers (nearly) no 
resistance to related-key attacks. With KS2, however, an attacker is unable to control the differences 
between two distinct effective master keys k0b ||kb kb ||kband � with a probability much better than 1 0 1 

2−2·64, as each difference pair (k0, k�0) and (k1, k�1) goes through a permutation with maximum expected 
differential probability not significantly above 2−64. Furthermore, unlike single-key differential attacks, 
which introduce differences on the plaintext, we do not expect an attacker to easily be able to force a 
change of (related) keys if their effective master keys fail to verify a difference relation. Thus, even if a 
differential on KS2 with probability p higher than 2−128 were found, it would only lead to a related-key 
attack on a weak-key class (of size ≈ p/2−128) or to an attack requiring a huge amount of keys. Putting 
everything together, we believe FlyRK to be resistant to XOR-induced related-key attacks. 

5.3 Implementation 
5.3.1 Microcontrollers implementations 

The S-box application can take advantage of the bitsliced expression of Littlun-1 from Sec. 4, which 
can easily be implemented with instructions available on the cheapest ATtiny chips [2]. It is even 
possible to save 2 instructions from the 43 quoted in Sec. 4 on higher-end architectures such as the 
ATmega family [3] by using word-wise 16-bit movw instructions, resulting in the implementation given 
in Fig. C.3 of App. C. A straightforward implementation of the inverse S-box application requires 
59 instructions —a significant overhead of 44%. However, as a lightweight cipher is precisely used 
in cases where the available resources are limited, we would mostly expect it to be used in a mode 
of operation that only uses encryption, such as e.g. CTR (for encryption only) or CLOC [26] (for 
authenticated-encryption). Hence we do not believe that a slower inverse is a significant drawback. 

Even though the AVR instruction set does not include rotations by an arbitrary constant, the 
permutation Rot can still be compactly implemented with only 11 instructions, as shown in Fig. C.2 
of App. C. 

The entire substitution and permutation layers of Fly can therefore be implemented with only 52 
instructions on ATmega (54 on ATtiny), which is 4 less than the 56 of Pride [1], while at the same 
time having at least 1.5 times more equivalent active S-boxes every 4 rounds12 . 

On-the-fly computation of one round-key of the key-schedule KS1 can be done in 8 instructions. 
The complete key expansion and round constant addition can be done in 24 instructions as shown in 
Fig. C.1. 

The complete round function of Fly including the key-schedule can thus be implemented in 76 
instructions, which is eight more than Pride. Note however that the conjectured security margin of 
Fly is much bigger, and unlike Pride, its resistance to generic attacks does not decrease with the 
amount of data available to the adversary13. Furthermore, as the key schedules of Fly and Pride are 
rather similar, one could consider using the round function of Fly with the key schedule of Pride. 
This would result in a cipher slightly more efficient than both, with the same profile as the latter; we 
do not expect such a swap to introduce any specific weakness. 

12There are at least 4 active 4-bit S-boxes of maximum differential probability 2−2 and best linear correlation 2−1 

every two rounds of Pride and there are at least 3 active 8-bit S-boxes of maximum differential probability 2−4 and 
best linear correlation 2−2 every two rounds of Fly. 

13Pride uses an FX construction, where one half of its 128-bit key is only used for pre- and post-whitening. This leads 
to a simple way to merge on-the-fly round-key generation with the round function, but significantly degrades the security 
of the cipher to generic attacks from 128 bits to 128 − log(D), with D the amount of data available to an attacker [28], 
while also leading to more efficient time-memory-data trade-offs [23]. 
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Cipher Unmasked Order 2 Order 4 Order 7 Order 11 

Fly (8) 1909 10741 27253 66421 145525 

Simon64-128 (8) 3400 14056 30344 65336 131704 

Simon64-128 (32) 1012 3926 8240 17336 34364 

Pride (8) 1374 22922 60550 150592 333368 

Speck64-128 (32) 486 48198 132652 337843 757983 

Table 5-1: Count of operations needed to encrypt one block with each cipher, masked at various orders. 

5.3.2 Masked implementations 

We have just considered the good performance of Fly on AVR processors. However, on such platforms, 
discounting the overhead of protection against side-channel attacks may be misleading. Indeed, these 
devices are rather prone to leakage, and it might not be entirely reasonable to deploy unprotected 
cryptosystems on them [35]. Consequently, we consider here the cost of masked implementations of 
Fly, and compare it to Pride and the “NSA ciphers” Simon and Speck [6] in the same setting. 
All the masked implementations have been generated automatically by using the compiler of Barthe 
et al. [5]. This compiler takes a C implementation of a cipher as an input and generates C code for a 
corresponding masked implementation. This code is then instrumented to count the number of basic 
instructions (e.g. logical and arithmetic) executed in the encryption of one block. 

We report the cost (in terms of number of instruction) for the studied ciphers and configurations 
in Tbl. 5-1. The first column gives the name of the cipher, followed by the basic word-size used in the 
implementation (for 8-bit microcontrollers, the most relevant value for this number is understandingly 
8). The next columns give the number of instructions (over the same word-size as the cipher) taken 
to encrypt one block with an unmasked implementation, and then masked implementations at various 
orders (an order-t implementation ensures security in the t-probing model [25]). 

From these results, a first important remark we can make is that neither Pride nor Speck seem to 
be well suited to masked implementations. This is due to their conjoined use of bitwise operations and 
integer modular addition (80 8-bit additions for Pride (in its key-schedule) and 54 32-bit additions 
for Speck64-128). Masking bitwise operations can be done relatively efficiently by using a Boolean 
sharing scheme but it is costly to do so with an additive scheme, while the converse holds for modular 
additions. In practice, the compiler of Barthe et al. uses the algorithm of Coron et al. from CHES 2014 
to mask modular additions with a Boolean scheme [20]14 . 

On the contrary, both Fly and Simon are quite efficient to mask with a Boolean scheme. Note that 
we implemented Simon64-128 in two ways: one using 8-bit words, suitable for 8-bit microcontrollers 
(and thus directly comparable with the intended use of Fly), and one using 32-bit words (which is 
more straightforward in a way as all instances of Simon on 2n-bit blocks can be expressed naturally 
with n-bit arithmetic). 

On 8-bit platforms, our unmasked implementation of Fly is more efficient than Simon64-128. This 
advantage is maintained up to a small number of shares, but starting from 8 (i.e. an implementation 
secure at order 7), Simon becomes more efficient. This behaviour can be explained by the breakdown 
of the cost for the two ciphers: although an unmasked Simon64-128 is costlier than Fly overall, our 
masked implementation of the former uses only 176 refresh and and operations, while Fly needs 240. 
As the cost of these operations is quadratic in the number of shares, implementing Simon at high order 
becomes cheaper than implementing Fly, but the latter starts with a significant initial advantage. 

In conclusion both Fly and Simon are well suited to masked implementations on 8-bit microcon­
trollers. While the latter is the most efficient of the two for 7+-order implementations, Fly is cheaper 
in the (in our opinion more relevant) case of low-order ones. 

14If we were to restrict ourselves to first-order masking, it would be possible to use the more efficient algorithm of 
Coron et al. from FSE 2015 [19]. 

9 



References 

[1] Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block Ciphers ­
Focus on the Linear Layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. 
Lecture Notes in Computer Science, vol. 8616, pp. 57–76. Springer (2014) 

[2] Atmel: 8-bit AVR Microcontroller with 1K Byte Flash (Rev 1006FS-AVR-06/07) 

[3] Atmel: 8-bit AVR Microcontroller with 8KBytes In-System Programmable Flash (Rev 2486AA­
AVR-02/2013) 

[4] Barreto, P.S.L.M., Rijmen, V.: The Whirlpool Hashing Function (May 2003) 

[5] Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P., Grégoire, B.: Compositional Verification of 
Higher-Order Masking: Application to a Verifying Masking Compiler. IACR Cryptology ePrint 
Archive 2015, 506 (2015) 

[6] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and 
SPECK Families of Lightweight Block Ciphers. IACR Cryptology ePrint Archive 2013, 404 (2013) 

[7] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and 
SPECK: Block Ciphers for the Internet of Things. IACR Cryptology ePrint Archive 2015, 585 
(2015), presented at the NIST Lightweight Cryptography Workshop 2015 

[8] Biham, E., Anderson, R.J., Knudsen, L.R.: Serpent: A New Block Cipher Proposal. In: Vaudenay, 
S. (ed.) FSE ’98. Lecture Notes in Computer Science, vol. 1372, pp. 222–238. Springer (1998) 

[9] Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold implementa­
tions of small S-boxes. Cryptography and Communications 7(1), 3–33 (2015) 

[10] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, 
Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, 
I. (eds.) CHES 2007. Lecture Notes in Computer Science, vol. 4727, pp. 450–466. Springer (2007) 

[11] Bogdanov, A., Tischhauser, E., Vejre, P.S.: Multivariate Linear Cryptanalysis: The Past and 
Future of PRESENT. IACR Cryptology ePrint Archive 2016, 667 (2016) 

[12] Boura, C., Canteaut, A.: Another View of the Division Property. In: Robshaw, M., Katz, J. (eds.) 
CRYPTO 2016. Lecture Notes in Computer Science, vol. 9814, pp. 654–682. Springer (2016) 

[13] Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of Keccak and 
Luffa. In: Joux, A. (ed.) FSE 2011. Lecture Notes in Computer Science, vol. 6733, pp. 252–269. 
Springer (2011) 

[14] Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes using Feistel and 
MISTY structures (Full Version). IACR Cryptology ePrint Archive 2015, 711 (2015) 

[15] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-Order Masking Schemes 
for S-Boxes. In: Canteaut, A. (ed.) FSE 2012. Lecture Notes in Computer Science, vol. 7549, pp. 
366–384. Springer (2012) 

[16] Cho, J.Y.: Linear Cryptanalysis of Reduced-Round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 
2010. Lecture Notes in Computer Science, vol. 5985, pp. 302–317. Springer (2010) 

[17] Cid, C., Rechberger, C. (eds.): Fast Software Encryption — FSE 2014, Lecture Notes in Computer 
Science, vol. 8540. Springer (2015) 

[18] Collard, B., Standaert, F.: A Statistical Saturation Attack against the Block Cipher PRESENT. 
In: Fischlin, M. (ed.) CT-RSA 2009. Lecture Notes in Computer Science, vol. 5473, pp. 195–210. 
Springer (2009) 

[19] Coron, J., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from Arithmetic to Boolean 
Masking with Logarithmic Complexity. In: Leander, G. (ed.) FSE 2015. Lecture Notes in Com­
puter Science, vol. 9054, pp. 130–149. Springer (2015) 

10 

http:ANewBlockCipherProposal.In


[20] Coron, J., Großschädl, J., Vadnala, P.K.: Secure Conversion between Boolean and Arithmetic 
Masking of Any Order. In: Batina, L., Robshaw, M. (eds.) CHES 2014. Lecture Notes in Computer 
Science, vol. 8731, pp. 188–205. Springer (2014) 

[21] Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New Automatic Search Tool for Impossible Differ­
entials and Zero-Correlation Linear Approximations. IACR Cryptology ePrint Archive 2016, 689 
(2016) 

[22] Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: The Noekeon Block Cipher. Nessie Proposal 
(October 2000) 

[23] Dinur, I.: Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with Applications 
to PRINCE and PRIDE. In: Oswald and Fischlin [33], pp. 231–253 

[24] Grosso, V., Leurent, G., Standaert, F., Varici, K.: LS-Designs: Bitslice Encryption for Efficient 
Masked Software Implementations. In: Cid and Rechberger [17], pp. 18–37 

[25] Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. 
In: Boneh, D. (ed.) CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 463–481. 
Springer (2003) 

[26] Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: Authenticated Encryption for Short 
Input. In: Cid and Rechberger [17], pp. 149–167 

[27] Junod, P., Vaudenay, S.: FOX : A New Family of Block Ciphers. In: Handschuh, H., Hasan, M.A. 
(eds.) SAC 2004. Lecture Notes in Computer Science, vol. 3357, pp. 114–129. Springer (2004) 

[28] Kilian, J., Rogaway, P.: How to Protect DES Against Exhaustive Key Search (an Analysis of 
DESX). J. Cryptology 14(1), 17–35 (2001) 

[29] Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) 
EUROCRYPT ’91. Lecture Notes in Computer Science, vol. 547, pp. 17–38. Springer (1991) 

[30] Leander, G., Minaud, B., Rønjom, S.: A Generic Approach to Invariant Subspace Attacks: Crypt­
analysis of Robin, iSCREAM and Zorro. In: Oswald and Fischlin [33], pp. 254–283 

[31] Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In: Carlet, C., Sunar, B. 
(eds.) WAIFI 2007. Lecture Notes in Computer Science, vol. 4547, pp. 159–176. Springer (2007) 

[32] National Institute of Standards and Technology: FIPS 197: Advanced Encryption Standard (AES) 
(November 2001) 

[33] Oswald, E., Fischlin, M. (eds.): Advances in Cryptology — EUROCRYPT 2015, Lecture Notes 
in Computer Science, vol. 9056. Springer (2015) 

[34] Poschmann, A.: Lightweight Cryptography. Ph.D. thesis, Ruhr-Universität Bochum (2009) 

[35] Strobel, D., Oswald, D., Richter, B., Schellenberg, F., Paar, C.: Microcontrollers as (In)Security 
Devices for Pervasive Computing Applications. Proceedings of the IEEE 102(8), 1157–1173 (2014) 

[36] Ullrich, M., De Cannière, C., Indesteege, S., Özgül Küçük, Mouha, N., Preneel, B.: Finding 
Optimal Bitsliced Implementations of 4 × 4-bit S-boxes. In: SKEW 2011 (2011) 

[37] Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-Pattern Based Integral Attack. In: 
Nyberg, K. (ed.) FSE 2008. Lecture Notes in Computer Science, vol. 5086, pp. 363–381. Springer 
(2008) 

[38] Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE: A Bit-slice 
Ultra-Lightweight Block Cipher Suitable for Multiple Platforms. IACR Cryptology ePrint Archive 
2014, 84 (2014) 

[39] Zhao, J., Wang, X., Wang, M., Dong, X.: Differential Analysis on Block Cipher PRIDE. IACR 
Cryptology ePrint Archive 2014, 525 (2014) 

11 

http:MaskingofAnyOrder.In


A Software implementation of the inverse of Littlun-S4 

Implementing the inverse of Littlun-S4 in a straightforward way requires 11 instructions and 5 
registers. The complete inverse of Littlun can be implemented with 49 instructions and 13 registers 
in a straightforward adaptation of Fig. 4.215 . 

t = c; c &= b; c ^= d; // (A): d ^ (b & c) 
d |= t; d ^= a; // (B): a ^ (c | d) 
a &= c; a ^= b; a ^= d; // (C): b ^ B ^ (a & A) 
b = ~b; b &= d; b ^= t; // (D): c ^ (~ b & B) 

Figure A.1: Snippet for a bitsliced C implementation of the inverse of Littlun-S4 with inputs in 
registers a, b, c, d (the word holding the most significant bit is taken to be a), using one extra register 
t. The output is in c, d, a, b. 

B Examples of implementation of Littlun-1 

B.1 Tables for Littlun-1 and Littlun-S4 

uint8_t littlun1_s4 [16] = 
{0 x0 , 0xa , 0x4 , 0xf , 0xc , 0x7 , 0x2 , 0x8 , 
0xd , 0xe , 0x9 , 0xb , 0x5 , 0x6 , 0x3 , 0x1 }; 

Figure B.1: The 4-bit S-box Littlun-S4 used in Littlun-1 as a C array 

uint8_t littlun1 [256] = 
{0 x00 , 0x9b , 0xc2 , 0x15 , 0x5d , 0x84 , 0x4c , 0xd1 , 
0x67 , 0x38 , 0xef , 0xb0 , 0x7e , 0x2b , 0xf6 , 0xa3 , 
0xb9 , 0xaa , 0x36 , 0x78 , 0x2f , 0x6e , 0xe3 , 0xf7 , 
0x12 , 0x5c , 0x9a , 0xd4 , 0x89 , 0xcd , 0x01 , 0x45 , 
0x2c , 0x63 , 0x44 , 0xde , 0x02 , 0x96 , 0x39 , 0x70 , 
0xba , 0xe4 , 0x18 , 0x57 , 0xa1 , 0xf5 , 0x8b , 0xce , 
0x51 , 0x87 , 0xed , 0xff , 0xb5 , 0xa8 , 0xca , 0x1b , 
0xdf , 0x90 , 0x6c , 0x32 , 0x46 , 0x03 , 0x7d , 0x29 , 
0xd5 , 0xf2 , 0x20 , 0x5b , 0xcc , 0x31 , 0x04 , 0xbd , 
0xa6 , 0x41 , 0x8e , 0x79 , 0xea , 0x9f , 0x68 , 0x1c , 
0x48 , 0xe6 , 0x69 , 0x8a , 0x13 , 0x77 , 0x9e , 0xaf , 
0xf3 , 0x05 , 0xcb , 0x2d , 0xb4 , 0xd0 , 0x37 , 0x52 , 
0xc4 , 0x3e , 0x93 , 0xac , 0x40 , 0xe9 , 0x22 , 0x56 , 
0x7b , 0x8d , 0xf1 , 0x06 , 0x17 , 0x62 , 0xbf , 0xda , 
0x1d , 0x7f , 0x07 , 0xb1 , 0xdb , 0xfa , 0x65 , 0x88 , 
0x2e , 0xc9 , 0xa5 , 0x43 , 0x58 , 0x3c , 0xe0 , 0x94 , 
0x76 , 0x21 , 0xab , 0xfd , 0x6a , 0x3f , 0xb7 , 0xe2 , 
0xdd , 0x4f , 0x53 , 0x8c , 0xc0 , 0x19 , 0x95 , 0x08 , 
0x83 , 0xc5 , 0x4e , 0x09 , 0x14 , 0x50 , 0xd8 , 0x9c , 
0xf4 , 0xee , 0x27 , 0x61 , 0x3b , 0x7a , 0xa2 , 0xb6 , 
0xfe , 0xa9 , 0x81 , 0xc6 , 0xe8 , 0xbc , 0x1f , 0x5a , 
0x35 , 0x72 , 0x99 , 0x0a , 0xd3 , 0x47 , 0x24 , 0x6d , 
0x0b , 0x4d , 0x75 , 0x23 , 0x97 , 0xd2 , 0x60 , 0x34 , 
0xc8 , 0x16 , 0xa0 , 0xbb , 0xfc , 0xe1 , 0x5e , 0x8f , 
0xe7 , 0x98 , 0x1a , 0x64 , 0xae , 0x4b , 0x71 , 0x85 , 
0x0c , 0xb3 , 0x3d , 0xcf , 0x55 , 0x28 , 0xd9 , 0xf0 , 
0xb2 , 0xdc , 0x5f , 0x30 , 0xf9 , 0x0d , 0x26 , 0xc3 , 
0x91 , 0xa7 , 0x74 , 0x1e , 0x82 , 0x66 , 0x4a , 0xeb , 
0x6f , 0x10 , 0xb8 , 0xd7 , 0x86 , 0x73 , 0xfb , 0x0e , 
0x59 , 0x2a , 0x42 , 0xe5 , 0x9d , 0xa4 , 0x33 , 0xc7 , 
0x3a , 0x54 , 0xec , 0x92 , 0xc1 , 0x25 , 0xad , 0x49 , 
0x80 , 0x6b , 0xd6 , 0xf8 , 0x0f , 0xbe , 0x7c , 0x11 }; 

Figure B.2: The Littlun-1 S-box as a C array 

B.2 Hardware circuit for Littlun-S4
 

15Because the output registers form a non-trivial permutation of the input ones, additional instructions may also be 
needed in the cases where this cannot be dealt with implicitly. 
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t = a

d

c

b

a

Figure B.3: A circuit implementation of Littlun-S4. The symbols , and represent the 
AND, OR and XOR gates respectively. 

C AVR implementation of the Fly round function 

We give pseudo AVR assembly code for the S-box layer, the permutation and on-the-fly computation 
of the key-schedule of Fly. All the state, key and temporary variables fit in the 32 registers of an 
ATtiny or ATmega. 

; key input in k0 ,... ,k15
 
; cipher state in s0,... ,s7
 
; round constant in c0
 
; temporary register in t0
 

; add the current round key & round constant to the state 
eor s0 , k0
 
eor s1 , k1
 
eor s2 , k2
 
eor s3 , k3
 
eor s4 , k4
 
eor s5 , k5
 
eor s6 , k6
 
eor s7 , k7
 

eor s0 , c0
 
eor s1 , 255
 

; update k0,... ,k7 to the next round key 
eor k0 , k8
 
eor k1 , k9
 
eor k2 , k10
 
eor k3 , k11
 
eor k4 , k12
 
eor k5 , k13
 
eor k6 , k14
 
eor k7 , k15
 

; update c0 to the next round constant 
mov t0 , c0 
andi t0 , 1 
dec t0 
andi t0 , 177 
lsr c0 
eor c0 , t0 

Figure C.1: Key addition, and the KS1 key-schedule on ATmega/ATtiny, using 24 instructions. 
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; input/output 
rol s1 
rol s2 
rol s2 
swap s3 
ror s3 
swap s4 
swap s5 
rol s5 
ror s6 
ror s6 
ror s7 

in s0,... ,s7 

Figure C.2: The Rot permutation on ATmega/ATtiny, using 11 instructions. 

; input/output in s0,... ,s7 (with MSBs in s0) 
; temporary 
; top XOR 
movw t0 , s0 
movw t2 , s2 
eor t0 , s4 
eor t1 , s5 
eor t2 , s6 
eor t3 , s7 

values held in t0 ,... ,t4 

; moves t1:s0 <- s1:s0 

; middle S-box 
mov t4 , t1 
or t1 , t0 
eor t1 , t2 
and t2 , t4 
eor t2 , t3 
and t3 , t1 
eor t3 , t0 
or t0 , t2 
eor t0 , t4 
; bottom XOR 
eor s0 , t0 
eor s1 , t1 
eor s2 , t2 
eor s3 , t3 
eor s4 , t0 
eor s5 , t1 
eor s6 , t2 
eor s7 , t3 
; bottom S-boxes 
mov t0 , s1 
or s1 , s0 
eor s1 , s2 
and s2 , t0 
eor s2 , s3 
and s3 , s1 
eor s3 , s0 
or s0 , s2 
eor s0 , t0 

mov t0 , s5 
or s5 , s4 
eor s5 , s6 
and s6 , t0 
eor s6 , s7 
and s7 , s5 
eor s7 , s4 
or s4 , s6 
eor s4 , t0 

Figure C.3: The Littlun-1 S-box on ATmega, using 41 instructions. 
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D Hardware implementation of Fly
 

Fly was not designed to be particularly efficient in hardware, and there are clearly better alternatives 
in that setting. Thus we did not implement Fly in hardware, but it might be informative to very 
roughly estimate the cost (in GE) of such an implementation. This can be done by looking at the 
cost of Present, given the similarity of their structures. A round-based ASIC implementation of 
Present-128 can be done for 1884 GE [34], of which 27 × 16 are dedicated to implementing the 16 
S-boxes. If we make the assumption that the key-schedule of Fly does not use significantly more area 
than the one of Present-128, we can estimate that a similar round-based implementation of Fly 
would cost in the area of 1884 − 27 × 16 + 80 × 8 = 2092 GE, meaning that the overhead is about 
11%. 

E Test vectors for Fly 

All numbers are given in big endian (i.e., those are arrays of bytes, with the byte of lowest address on 
the left). 

k0: 0x0000000000000000 k1: 0x0000000000000000 
p : 0x0000000000000000 
FLY(k0||k1,p) : 0x40A942D3FB302724 

k0: 0x0001020304050607 k1: 0x08090A0B0C0D0E0F 
p : 0xF7E6D5C4B3A29180 
FLY(k0||k1,p) : 0x0D3FE2BF9650AE34 

k0: 0x0000000000000000 k1: 0x0000000000000000 
p : 0x0000000000000000 
FLY(0,k0)/12 : 0x228F5762975E5B43 
FLY(0,k1)/12 : 0x228F5762975E5B43 
FLY_RK(k0||k1,p) : 0x7C5B37DC56F4829A 

k0: 0x0001020304050607 k1: 0x08090A0B0C0D0E0F 
p : 0xF7E6D5C4B3A29180 
FLY(0,k0)/12 : 0x68F5FC8290A95219 
FLY(0,k1)/12 : 0x58F242AC38C00E6B 
FLY_RK(k0||k1,p) : 0x8EE2EA8B0A63DE6D 
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