Lightweight Cryptography and RAIN RFID

Matt Robshaw
Technical Fellow, Security Solutions

NIST, October 17-18, 2016
Overview

• RAIN RFID
• The product and standardization landscape
• Security and performance
• NISTIR 8114: Profile feedback
• Questions

Note: This presentation outlines the personal views of the presenter
RAIN RFID

• RFID: Radio-frequency identification
 • Many different systems at different frequencies

• Ultra-high frequency (UHF): Long read range, passive tags

• The original motivation for the term “Internet of Things”
 • Kevin Ashton, AutoID Center
 • A simple way to provide connectivity to an object or device

• RAIN: RA(dio)-frequency IDentification
 • Industry alliance with >120 members
 • www.rainrfid.org
Chips and Tags (i)
Chips and Tags (ii)
Chips and Tags ... In Context
What Does a RAIN RFID Chip Currently Do?

• Chips communicate wirelessly, *i.e.* not line-of-sight

• Chips store a chip identifier (TID) and a product identifier (EPC)
 • TID is fixed by the chip manufacturer
 • Electronic Product Code (EPC) identifies the individual object; not just the product type

• Most RAIN RFID chips, but not all, have a small amount of user memory
 • 512 bits is a lot, often ≤ 64 bits
 • Some specialty chips provide $\geq 2k$ bits

• Applications read and write product identifiers and/or small amounts of application data
Example RAIN RFID Applications
Example RAIN RFID Applications
Example RAIN RFID Applications
Example RAIN RFID Applications
What Could a RAIN RFID Chip Do?

• RAIN RFID capabilities are defined by the over-the-air protocol

• The revision of EPCglobal Gen2v1 to Gen2v2 brings 12 additional (optional) commands
 • Gen2v2.0.1 is available for download at www.gs1.org/epc-rfid

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticate</td>
<td>TagPrivilege</td>
</tr>
<tr>
<td>Challenge</td>
<td>FileOpen</td>
</tr>
<tr>
<td>ReadBuffer</td>
<td>FileList</td>
</tr>
<tr>
<td>KeyUpdate</td>
<td>FilePrivilege</td>
</tr>
<tr>
<td>SecureComm</td>
<td>FileSetup</td>
</tr>
<tr>
<td>AuthComm</td>
<td></td>
</tr>
<tr>
<td>Untraceable</td>
<td></td>
</tr>
</tbody>
</table>
What Crypto is Included?

None

(by design)
Standards and RAIN RFID (i)

- EPCglobal Gen2v2 specifications defines the commands and response across the air interface
 - However the choice of underlying cryptography is left open
 - This provides the greatest flexibility for adoption
 - Example: the AUTHENTICATE command
Standards and RAIN RFID (ii)

• NIST and ISO/IEC JTC-1 SC27/WG2 (and others) define primitives
 • Can be extended by defined modes of operation, or higher-level constructions ...

• Consider simple challenge-response using AES; but this is not enough for inter-operability ...

 • What is the challenge length? Can it be variable?
 • How should the tag format the input to the encryption operation?
 • Can we support future versions or change of purpose?
Standards and RAIN RFID (iii)

• The missing link is provided by work in ISO/IEC SC31/WG4
 • *Automatic Identification and Data Capture Techniques, Radio Communications*
 • In particular the multi-part standard ISO/IEC 29167

• Each part of ISO/IEC 29167 is dedicated to a cryptographic technology
 • A cryptographic suite
 • Each cryptographic suite is assigned a CSI number
 • Each cryptographic suite defines how cryptography should be used with the air-interface commands

• ISO/IEC 29167 can be extended with new parts (new cryptographic suites)
Relationship Between Standards

Over-the-Air Interface

<table>
<thead>
<tr>
<th>CHALLENGE</th>
<th>AUTHENTICATE</th>
<th>SECURECOMM</th>
<th>AUTHCOMM</th>
<th>KEYUPDATE</th>
</tr>
</thead>
</table>

e.g. AUTHENTICATE:

<table>
<thead>
<tr>
<th>Command</th>
<th>RFU</th>
<th>SmvRep</th>
<th>IncvRepLen</th>
<th>CSI</th>
<th>Length</th>
<th>Message</th>
<th>RN</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>Variable</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>11010101</td>
<td>00</td>
<td>0</td>
<td>1: Store 1: Send</td>
<td>0: OEM length 1: Include length</td>
<td>CSI</td>
<td>Message length</td>
<td>Message</td>
<td>Handle</td>
</tr>
</tbody>
</table>

Cryptographic Suites

- 29167-10
- 29167-11
- 29167-12

e.g. To use AES with AUTHENTICATE set CSI = 00, Length = 060, and format Message in the following way:

<table>
<thead>
<tr>
<th>AuthMethod</th>
<th>CustomData</th>
<th>TAM1_RFU</th>
<th>KeyID</th>
<th>Challenge_TAM1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>BD</td>
</tr>
<tr>
<td>0x00</td>
<td>0x00</td>
<td>0x00</td>
<td>[7:0]</td>
<td>Random Interrogator Challenge</td>
</tr>
</tbody>
</table>

Cryptographic Primitives

- AES (NIST)
- PRESENT (ISO/IEC 29192-2)

e.g. NIST FIPS 197 defines AES-128 as a function with |P| = |C| = 128 and |K| = 128 so that

\[
C = AES_k(P)
\]
ISO/IEC 29167

<table>
<thead>
<tr>
<th>Number</th>
<th>Algorithm</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>29167-10</td>
<td>AES-128</td>
<td>Published (revision in progress)</td>
</tr>
<tr>
<td>29167-11</td>
<td>PRESENT-80</td>
<td>Published</td>
</tr>
<tr>
<td>29167-12</td>
<td>ECDH</td>
<td>Published</td>
</tr>
<tr>
<td>29167-13</td>
<td>Grain-128a</td>
<td>Published</td>
</tr>
<tr>
<td>29167-14</td>
<td>AES-128a</td>
<td>Published</td>
</tr>
<tr>
<td>29167-15</td>
<td>XOR</td>
<td>Halted</td>
</tr>
<tr>
<td>29167-16</td>
<td>ECDSA</td>
<td>Published</td>
</tr>
<tr>
<td>29167-17</td>
<td>CryptoGPS</td>
<td>Published</td>
</tr>
<tr>
<td>29167-18</td>
<td>Hummingbird v2</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>29167-19</td>
<td>RAMON</td>
<td>Published</td>
</tr>
<tr>
<td>29167-20</td>
<td>Algebraic Eraser</td>
<td>Working draft</td>
</tr>
<tr>
<td>29167-21</td>
<td>Simon</td>
<td>Working draft</td>
</tr>
<tr>
<td>29167-22</td>
<td>Speck</td>
<td>Working draft</td>
</tr>
</tbody>
</table>
ISO/IEC 29167

<table>
<thead>
<tr>
<th>29167-10</th>
<th>AES-128</th>
<th>Published (revision in progress)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29167-11</td>
<td>PRESENT-80</td>
<td>Published</td>
</tr>
<tr>
<td>29167-12</td>
<td>ECDH</td>
<td>Published</td>
</tr>
<tr>
<td>29167-13</td>
<td>Grain-128a</td>
<td>Published</td>
</tr>
<tr>
<td>29167-14</td>
<td>AES-128</td>
<td>Published</td>
</tr>
<tr>
<td>29167-15</td>
<td>XOR</td>
<td>Halted</td>
</tr>
<tr>
<td>29167-16</td>
<td>ECDSA</td>
<td>Published</td>
</tr>
<tr>
<td>29167-17</td>
<td>CryptoGPS</td>
<td>Published</td>
</tr>
<tr>
<td>29167-18</td>
<td>Hummingbird v2</td>
<td>Withdrawn</td>
</tr>
<tr>
<td>29167-19</td>
<td>RAMON</td>
<td>Published</td>
</tr>
<tr>
<td>29167-20</td>
<td>Algebraic Eraser</td>
<td>Working draft</td>
</tr>
<tr>
<td>29167-21</td>
<td>Simon</td>
<td>Working draft</td>
</tr>
<tr>
<td>29167-22</td>
<td>Speck</td>
<td>Working draft</td>
</tr>
</tbody>
</table>
RAIN RFID, Cryptography, and Performance
Starting Point

• The main advantages of RAIN RFID are that it is passive and has a long read-range
 • Adding features requires careful analysis

• Different use-cases may prioritize different performance attributes
 • *e.g.* read range, throughput, area

• Different use-cases may have different security/threat models

• The deployment eco-system is complex
 • There are different chip vendors and different reader vendors
 • Different solution providers might address very different markets
Cryptography and RAIN RFID

• There is currently one RAIN RFID chip that provides crypto: the UCODE DNA uses AES-128

• However lightweight cryptography allows us to explore a different set of trade-offs

• It can be difficult to set performance limits; however an algorithm that offers implementation flexibility has the greatest chance of satisfying a more complete range of use-cases
Cryptography and RAIN RFID

• Currently the most interest seems to be around symmetric algorithms

• There is a tendency to focus on block ciphers, but not exclusively
 • Grain-128a is of some interest

• Device authentication is likely to be an important goal in the near future
 • Tag authentication
 • Reader/Mutual authentication
 • Other demands are likely to develop
Block Cipher Parameters (i)

• It would be useful to have a discussion about key lengths
 • NISTIR 8814 states a lower-bound of 112 bits

• It is arguable whether an algorithm with a 128-bit key and “poor” side-channel profile is necessarily better than an algorithm with a 80- or 96-bit key and “good” side-channel profile

• There are significant applications where a tag will be used in only a very limited way; e.g. brand protection
 • A tag may be authenticated only a handful of times
 • The cryptography is used for tag authentication, not for data protection

• To extend cryptographic protection as far as possible, it would be helpful to have an option to support key lengths <112 bits in certain situations; with guidance and caveats
Block Cipher Parameters (ii)

• There is no demand for very short block lengths (e.g. 48 bits)

• However 64-bit block sizes can be both useful and appropriate for RAIN RFID
 • Helps in implementation and reducing over-the-air data transmissions

• For RAIN RFID it is very hard to come up with a scenario that gets anywhere close to 2^{32} uses of a 64-bit block cipher
 • In anti-counterfeiting applications a tag might be authenticated only a handful of times
 • Even encrypting and re-encrypting 8k bits of memory up to 100,000 times requires $< 2^{24}$ iterations of a 64-bit block cipher
Cryptography and RAIN RFID

• The ability to provide a small area implementation is vital
 • This allows engineers to make appropriate implementation trade-offs
 • It gives room for engineers to explore side-channel issues and counter-measures

• The ability to provide a range of low-power implementations is vital

• Cipher latency is generally less important than area and power consumption
 • The latency targets mentioned in NISTIR 8114 seem to be quite aggressive

• In summary, flexibility gives the opportunity to find the right trade-off
Draft NISTIR 8114

• Very useful document – thank you!

• It would be worth discussing the minimum key length of 112 bits

• The idea of profiles is an interesting one
 • Might combining a primitive with a use-case be overly restrictive? How many profiles are expected?
 • When trying to write a profile, specifying the contents of the different fields was difficult

• Likely more discussion during the workshop
Conclusions

• The NIST initiative on lightweight cryptography is very welcome and timely

• There will be considerable interest from industry in the development of a portfolio

• It will significantly help extend cryptography and security to many more devices and applications

• We have a great pool of research on lightweight cryptography ... let’s put it to use!
• Thank you for your attention!