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Abstract. Side-channel attacks represent a powerful category of attacks 
against cryptographic devices. Still, side-channel analysis for lightweight 
ciphers is much less investigated than for instance for AES. Although in­
tuition may lead to the conclusion that lightweight ciphers are weaker in 
terms of side-channel resistance, that remains to be confirmed and quan­
tified. In this paper, we consider various side-channel analysis metrics 
which should provide an insight on the resistance of lightweight ciphers 
against side-channel attacks. In particular, for the non-profiled scenario 
we use the confusion coefficient and empirical correlation power analysis. 
Furthermore, we conduct a profiled side-channel analysis using various 
machine learning attacks on PRESENT and AES. Our results show that 
the difference between AES and lightweight ciphers is smaller than one 
would expect. Interestingly, we observe that the studied 4-bit S-boxes 
have different side-channel resiliences, where the difference in the 8-bit 
ones is only theoretically present. 

Keywords: Lightweight cryptography, Machine learning, Comparison, Confu­
sion coefficient, CPA 

1 Introduction 

With the advent of the Internet of Things we are surrounded with smart objects 
(aka things) that have the ability to communicate with each other and with cen­
tralized resources. The two most common and widely noticed artifacts are RFID 
and Wireless Sensor Networks which are used in supply-chain managements, lo­
gistics, home automation, surveillance, traffic control, medical monitoring, and 
many more. Most of these applications have the need for cryptographic secure 
components which inspired the research on cryptographic algorithms for con­
straint devices. Lightweight cryptography has been an active research area over 
the last 10 years where many innovative ciphers have been proposed in order to 
optimize various performance criteria and have been subject for many compar­
isons. Lately, the resistance against side-channel attacks has been considered as 
an additional decisive factor. 
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Side-channel attacks analyze physical leakage that is unintentionally emitted 
during cryptographic operations in a device (e.g., power consumption, electro­
magnetic emanation). This side-channel leakage is statistically dependent on 
intermediate processed values involving the secret key, which makes it possible 
to retrieve the secret from the measured data by maximizing some statistical 
distinguisher. So-called profiled side-channel distinguishers assume that the at­
tacker is able to possess an additional device to the one he want to attack, on 
which he has the freedom of nearly full control. In this advanced setting, Machine 
learning (ML) techniques have shown to be effective in various scenarios. 

Side-channel analysis (SCA) for lightweight ciphers is of particular interest 
not only because of apparent lack of research done up to now, but also because of 
the interesting properties of S-boxes. Since the nonlinearity property for S-boxes 
usually used in lightweight ciphers (4 × 4) can be maximally equal to 4, that 
means that the difference between the input and the output of an S-box is much 
smaller than for instance in the case of AES. Therefore, one could conclude that 
from that aspect, SCA for lightweight ciphers must be more difficult than for 
standard ciphers. However, from the other side, if we consider profiled attacks 
where the distinguisher “learns” about the leakage model, the number of possible 
classes is significantly lower, which indicates that profiled SCA must be easier 
than for standard ciphers. Indeed, for 4 × 4 S-boxes, there are only 5 classes 
if considering the Hamming weight (HW) or 16 classes if considering one key 
nibble directly. On the other hand, for 8 × 8 S-box, there are 9 HW classes and 
256 subkey classes. Besides the huge difference in the number of classes and 
consequently probabilities of correct classification, there is also a huge time and 
space complexity advantage (for the attacker) when dealing with lightweight 
ciphers. 

Our Contributions In this paper we give a detailed study of lightweight ciphers in 
terms of side-channel resistance, in particular for software implementations. As 
a point of exploitation we concentrate on the non-linear operation (S-box) dur­
ing the first round. Our comparison includes Substitution-permutation Network 
(SPN) ciphers with 4-bit S-boxes such as KLEIN [1], PRESENT [2], PRIDE [3], 
RECTANGLE [4], Mysterion [5] as well as ciphers with 8-bit S-boxes: AES [6], 
ZORRO [7], Robin [8]. 

In the non-profiled scenario we first investigate the relationship between dif­
ferent key hypotheses with the confusion coefficient, which has been introduced 
in [9] for a 1-bit model and extended to multi-models in [10]. Using specific 
properties (like the minimum value and the variance) we can give a preliminary 
classification regarding the side-channel resistance. Furthermore, using simu­
lated data for various signal-to-noise ratios (SNR) we give empirical results for 
Correlation Power Analysis (CPA) [11] and discuss the difference between at­
tacking 4-bit and 8-bit S-boxes. Moreover, we compare several machine learning 
(i.e., profiled) techniques for PRESENT and AES ciphers where we show that 
attacking PRESENT is somewhat easier than attacking AES. Naturally, our re­
sults should be considered only as a first step in the side-channel analysis of 
lightweight ciphers. 
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Road Map This paper is organized as follows. Section 2 gives basic information 
on ciphers and exploitations we investigate. Next, in Section 3 we discuss Cor­
relation Power Analysis (CPA), confusion coefficient, and profiled side-channel 
analysis. Since we consider traces consisting of only one feature, our machine 
learning attack – Naive Bayes also corresponds to template attack, which is a 
well-known profiled attack and one that is also the most powerful from the infor­
mation theoretic point of view [12]. Following that, we discuss several possible 
research avenues and finally, in Section 4 we conclude with brief remarks. 

2 Ciphers & Exploitations 

2.1 Investigated Ciphers 

Next, we briefly introduce several ciphers we investigate in this paper where the 
first three ciphers have 8-bit S-boxes while the rest have 4-bit S-boxes. 

AES [6] The Advanced Encryption Standard (AES) has been standardized 
by NIST in 2001 [13]. It has an SPN structure with an internal fixed block 
size of 128-bits represented as 4 × 4 byte matrix and a variable key size of 
128, 192 or 256 bits. At the beginning the plaintext state is xor-ed with the 
secret key. Subsequently, each encryption round consists of the application of 
SubBytes, ShiftRows, MixColumns and AddRoundKey where in the last round 
the MixColumns is omitted. 

Zorro [7] Zorro is a modified version of the AES with a special focus on the 
S-box that is intended to be easy to mask. Therefore, fewer calls to the S-box 
are made during each round and the S-box has been modified to minimize the 
number of multiplications necessary to compute it. Besides, the execution is split 
into “steps” of 4 rounds and the key (simply the master key) is added only at 
the end of a step. Like AES each round is made of 4 operations: SB* which is 
a variant of the SubBytes operation where the S-box is only applied to one row 
of the 4 × 4 bytes internal state, AC is a round constant addition similar to the 
one used in the LED cipher [14], SR, and MC which are identical to to ShiftRows 
and MixColumns. 

Robin [8] Robin is one instance of so-called “LS-designs” where the internal 
state of the cipher is a matrix of s × L bits. The non-linear layer consists in 
the parallel applications of a s × s bits (s = 8) permutation on each column 
of the matrix and they are chosen so as to be efficiently implemented in a bit-
sliced fashion. The linear layer consists in the application of a linear L × L bits 
(L = 16) permutation on each line of the matrix. Robin is a 128-bits block 
cipher and intended to ease the application of masking countermeasures and 
thus to help thwart side-channel attacks when this cipher is implemented on a 
micro-controller. We note that Robin uses involutions for both L-Box and its 
S-box. 
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KLEIN [1] KLEIN is an AES-like lightweight block cipher, designed for 64, 
80, and 98-bit variations. The substitution stage uses 16 similar involutive (i.e., 
S(x) = y, S(y) = x and S(S(x)) = x) S-boxes. The advantage of using an 
involutive s-box is the reduction of extra cost of inverse implementation which 
leads to an efficient serialization. Similar to AES, each encryption round consists 
of AddRoundKey, SubNibbles, RotNibbles, and MixNibbles, followed by a final 
key addition after the encryption rounds. 

PRESENT [2] PRESENT has a 64-bit block size with a bit oriented permu­
tation layer. The non-linear layer is based on a single 4-bit S-box which was 
designed to be optimal in hardware. An encryption round consists of the key ad­
dition AddRoundKey, followed by the substitution (sBoxLayer) and permutation 
layer (pLayer). The permutation layer is designed to match the effects of the 
combination between ShiftRows and MixColumns of AES. A final key addition 
is performed after the encryption rounds. 

PRIDE [3] PRIDE has been optimized for 8-bit micro-controllers with a special 
focus on the linear layer of the cipher. The S-box is an involution to further limit 
the overhead implied by the implementation of both encryption and decryption. 
Furthermore, PRIDE is designed in a bit-sliced fashion to minimize the number 
of instructions necessary to evaluate it. 

RECTANGLE [4] The state of RECTANGLE is represented as a 4 × 16 
matrix. The non-linear layer consists in the parallel application of a 4-bit S-box 
on the columns of the state and the linear layer consists simply in applying a 
fixed rotation by a different amount on each row. 

Mysterion [5] The cipher is based on the LS-design principles introduced by 
the designers of Fantomas and Robin and combines it with an AES-like structure 
to increase the security level. The internal state of the block cipher is organized 
into a 4×32 bit matrix for Mysterion-128, which are further subdivided into 4 4× 
8 blocks. A round consists in the following operations: S-box layer, and L-Box 
layer, and ShiftColumns. The S-box layer is a 4-bit S-box called “Class 13” 
introduced in [15] that is applied in parallel to each column of the internal state. 

2.2 Exploitations 

In this paper our main targets are the weaknesses arising in software implementa­
tions on serial microprocessors. In these applications the Hamming weight (HW) 
and the Hamming distance (HD) leakage model are most commonly found in 
practice. More precisely, the loading and storing of data in memory (e.g., S-box 
calls) is usually causing a HW leakage, whereas the register updating (e.g., writ­
ing of intermediate round states) is causing HD leakage. Typically the latter 
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is less significant than the former, which is why we concentrate on a specific 
memory operation. 

We focus on side-channel attacks targeting the key involved within the first 
round using a divide and conquer strategy. The main common operation all previ­
ous described ciphers share is first the addition (xor) of the roundkey/masterkey 
followed by (at least one) S-box call. Our study therefore concentrates on leakage 
measurements X arising from an S-box lookup operation within the first round, 
i.e., 

X = HW(S-box[T ⊕ k ∗ ]) + N, (1) 

where N is independent additive noise, k∗ one byte of the secret key (round key 
or master key), and T a plaintext byte. 

Note that our study does not include leakages from all operations in the 
specific ciphers, nor (in case the cipher uses a key scheduling algorithm) the 
complexity to go from a round key to the master key. 

3 (Empirical) Side-Channel Evaluation 

3.1 CPA & Confusion Coefficient 

Correlation Power Analysis (CPA) [11] is one of the most common non-profiled 
side-channel distinguishers that is also integrated in common criteria evaluations. 
For CPA in order to reveal the secret key k∗ the attacker makes hypothetical 
predictions depending on a key guess k on the deterministic part of the leakage. 
More precisely, for each key hypothesis k ∈ Fn one has: 2 

Y (k) = HW(S-box[T ⊕ k]). (2) 

Given a set of Q leakage measurements X1, . . . , XQ corresponding to T1, . . . , TQ 

plaintexts the attacker computes the correlation between the measurements and 
the hypothetical model. Finally, he decides for the key k̂ maximizing the corre­
lation, i.e.: 

k̂ = arg max ρ(X, Y (k)) (3) 
k 

with ρ being the Pearson correlation coefficient [16]. 
Before presenting results from the empirical evaluation of CPA, we first want 

to further analyze the predictions in Eq. (2) for different ciphers. Interestingly, 
the predictions for different keys, Y (0), . . . , Y (2n −1), are not independent. Con­
sidering the model in Eq. (2) the relationships depend on the choice of the S-box 
and can be described by the so-called confusion coefficient [9, 10]    2 Y (k∗) − Y (k)

κ(k ∗ , k) = E , (4)
2

where the expectation is taken over T . 
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(a) KLEIN (b) PRESENT 

(c) PRIDE (d) Mysterion 

(e) RECTANGLE (f) AES 

(g) ZORRO (h) Robin 

Fig. 1: Confusion coefficients 
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Figures 1a to 1e show the confusion coefficient for the investigated ciphers 
using 4-bit S-boxes and Figures 1f to 1h for 8-bit S-boxes. Note that, the distri­
bution of κ(k∗, k) is independent on the particular choice of k∗ (in the case there 
are no weak keys) and the values are only permuted. For our experiments we 
choose k∗ = 0 and furthermore order them in an increasing order of magnitude. 
One can observe that the distribution of confusion coefficient is indeed different 
for the investigated ciphers. But how to judge what is easier and harder to attack 
from a side-channel point of view? Recent works [9,10] showed that the theoret­
ical success rate of CPA can be divided into three factors: confusion coefficient, 
signal to noise ratio (SNR), and number of measurements, but without further 
investigating the confusion coefficient in particular. The authors in [17] give a 
first-order approximation of the success rate of CPA (for a low SNR) which only 
depends on the minimum value of κ(k∗, k) where the higher the minimum, the 
lower the side-channel security. Another approach has been taken in [18] using 
var(κ(k∗, k)) as a criteria, where smaller values indicate lower side-channel se­
curity. All values for 4-bit are given in Table 1, showing that Mysterion should 
be the easiest to attack and KLEIN the most difficult. Note that PRESENT, 
PRIDE, and Rectangle have the same minimum value but different variances. 

Interestingly, the values given for 8-bit S-boxes in Table 2 indicate that the 
side-channel resistance of the investigated 8-bit S-boxes is lower than for ones 
with 4-bit. Recall that the confusion coefficient measure the relationship between 
different key hypotheses. Now, as for 8-bits we have also 256 possible values for 
T ∈ F8 and Y (k) ∈ [0, 1, . . . , 8] it is easier to distinguish than for 4-bit S-boxes 2 
with T ∈ F4

2 and Y (k) ∈ [0, 1, . . . , 4]. 

Table 1: Properties of κ(k∗, k) (4-bit S-boxes) 
KLEIN PRESENT PRIDE Mysterion RECTANGLE 

var(κ(k ∗ , k)) 
mink κ(k ∗ , k) 

0.071 
0.117 

0.038 
0.234 

0.018 
0.234 

0.015 
0.292 

0.035 
0.234 

Table 2: Properties of κ(k∗, k) (8-bit S-boxes) 
AES ZORRO Robin 

var(κ(k ∗ , k)) 0.0017 0.0019 0.0023 
mink κ(k ∗ , k) 0.4046 0.3774 0.3462 

However, in practice we cannot straightforwardly conclude that due to the 
properties of the confusion coefficient 4-bit S-boxes are harder to attack than 8­
bit S-boxes. One reason is that the variance of the signal is not equivalent. In par­
ticular, as the HW follows a binomial distribution, we have V ar(HW(S-box[T ⊕ 
k])) with T, k ∈ F4

2 and 4-bit S-boxes is 1, whereas we have a variance = 2 for the 
counterpart with 8-bit. Accordingly, given the same amount of independent ad­
ditional noise, the SNR using 8-bit S-boxes is twice as much as for 4-bit. Another 
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reason is that the confusion coefficient is theoretical (i.e., holding for Q → ∞). 
However, especially for low noise scenarios Q might be small (below 100). So, 
naturally the 4-bit variant with only 16 inputs should converge faster than with 
256 inputs. Or in other words, considering Q = 100 one can observe each plain-
text for 4-bit approximately 6.25 times, whereas for the 8-bit case more than the 
half has not been observed yet. 

Figures 2 and 3 give the success rate for CPA for various levels of noise, where 
we simulated the traces as in Eq. (1). To be reliable we use 5 000 independent 
experiments with randomly chosen T . For 4-bit S-boxes, Figure 2 confirms the 
ranking given by the confusion coefficient: Mysterion is the easiest to attack and 
KLEIN the hardest, which holds independently on the level of noise. Figure 3 
shows that all three ciphers behave similarly even for different levels of noise. 
Accordingly, the (small) differences in the confusion coefficients in Table 2 do 
not influence the side-channel resistance in practice. 

There are two ways to compare the success rates for 4-bit and 8-bit S-boxes 
in Figures 2 and 3, either having the same additional independent noise (envi­
ronmental noise) σ or the same SNR. Using the same amount of σ (Figures 2b 
vs 3a and 2d vs 3c) we can observe that AES, ZORRO, and Robin perform 
better than KLEIN and similar or slightly worse the others. On the other hand, 
when comparing the SNR we observe that AES, ZORRO, and Robin4, behave 
similar as KLEIN. 

3.2 Profiled Side-channel Analysis 

In profiled SCA, we investigate several machine learning techniques where Naive 
Bayes also corresponds to template attack (since we work with only a single 
feature). Machine learning (ML) is a term encompassing a number of methods 
that can be used for clustering, classification, regression, feature selection, and 
other knowledge discovering methods [19]. All those methods can be classified 
in several ways; a common classification method divides the techniques into 
supervised and unsupervised machine learning methods. In supervised machine 
learning, the algorithm is provided with a set of data instances and data classes 
in a training phase. The goal of this phase is to “learn” the relationship between 
the instances and the classes in order to be able to reliably map new instances 
to the classes in the testing phase. On the contrary, in unsupervised machine 
learning, an algorithm does not know the classes a priori and needs to infer the 
relationships between the data and the unlabeled classes. 

In the ML algorithm selection process, we use one algorithm per ML family 
based on the representation of the output function. Accordingly, we use Naive 
Bayes as the simplest algorithm that does not have any parameters to tune and 
corresponds to template attack since there is only one feature. Next, from the de­
cision tree family we use C4.5 algorithm, which is an algorithm considered to be 

4 Note that our study does not include the complexity to go from a round key to the 
master key. Furthermore, in the case of ZORRO and Robin less S-box calls are made 
giving less points of exploitations. 
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(a) σ = 1/2, SNR = 2 (b) σ = 1, SNR = 1 

√ 
(c) σ = 8, SNR = 1/8 (d) σ = 4, SNR = 1/16 

Fig. 2: Success rates (ciphers with 4-bit S-boxes) 

robust to noise. From the perceptron family, we use the Multi Layer Perceptron 
(MLP) algorithm, which has an advance over the simple perceptron algorithm. 
Note that MLP can be considered as deep learning algorithm if it has large 
number of hidden layers. 

In all our experiments, we conduct investigation in two phases: training and 
testing. The sizes of datasets are 10 000, 30 000, and 50 000. We divide our 
datasets in a ratio of 2:1 where we take the bigger set as the training set (2/3 of 
the data) and the smaller set for testing (1/3 of the data). On the training set 
we conduct a 10-fold cross-validation with all the considered parameters. In the 
10-fold cross-validation, the original sample is first randomly partitioned into 10 
equal sized subsets. Then, a single subsample is selected to validate the data 
while the remaining 9 subsets are used for training. The cross-validation process 
is repeated 10 times where each of the 10 subsamples is used once for validation. 
The obtained results are then averaged to produce an estimation. Note that 
alongside training phase, we also conduct a tuning where we select the best pa­
rameters for each algorithm. Due to the lack of space, we do not present results 
from the training phase but we mention the best obtained parameters that are 
then used in testing phase. We also conducted the same set of experiments with 
more advanced ML techniques – Rotation Forest and Support Vector Machines, 
but the results did not differ significantly from those presented here. 
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√ 
2, SNR = 1(a) σ = 1, SNR = 2 (b) σ = 

√ 
32, SNR = 1/16(c) σ = 4, SNR = 1/8 (d) σ = 

Fig. 3: Success rates (ciphers with 8-bit S-boxes) 

Naive Bayes (NB) classifier is a method based on the Bayesian rule (similar 
to template attack) but Naive Bayes works under a simplifying assumption that 
the predictor attributes (measurements) are mutually independent among the 
D features given the target class. Existence of highly-correlated attributes in 
a dataset can thus influence the learning process and reduce the number of 
successful predictions. Additionally, Naive Bayes assumes normal distribution 
for predictor attributes. A Naive Bayes classifier outputs posterior probabilities 
as a result of the classification procedure. 

Bayes’ formula is used to compute the posterior probability of each class 
value y given the vector of N observed attribute values x: 

p(Y = y)p(X = x|Y = y) 
p(Y = y|X = x) = , (5) 

p(X = x) 

where X = x represents the event that X1 = x1 ∧ X2 = x2 ∧ . . . ∧ XN = 
xN . Because this event is a conjunction of conditionally D independent events, 
individual probabilities can be multiplied. Moreover, as p(X = x) does not 
depend on the class y, the Naive Bayes classifier reduces to: 

DD 
p(Y = y|X = x) = p(Y = y) p(Xi = xi|Y = y). (6) 

i=1 
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Space complexity for Naive Bayes algorithm for both training and testing a b 
phase equals O |Y|Dv , where |Y| is the number of classes, D is the number 
of attributes, and v is the average number of values for an attribute. On the a b 
other hand, time complexity for the training phase equals O ND and for the a b 
testing phase is O |Y|D where N is the number of training examples. Further 
information about Naive Bayes algorithm can be found in [20]. 

C4.5 is the landmark decision tree algorithm developed by R. Quinlan [21]. 
It is a divide-and-conquer algorithm that splits attributes at tree nodes using 
the information-based gain ratio criterion. The node splits on further branches 
if more information is gained (as measured by gain ratio) by the split than by a b 
keeping all the instances at the node. The runtime of the algorithm is O f × 
q × log q where f is the number of features and q is the number of instances [22]. 
The trees are first grown to full length and pruned afterwards in order to avoid 
data overfitting. 

With the C4.5 algorithm we investigate the influence of confidence factor 
parameter that is used for pruning where the smaller values relate to more 
pruning. We tested that parameter in the range [0.05, 0.4] with a step of 0.05. 
We conducted separate tuning phase for each noise level and select confidence 
factor of 0.1 for σ1, 0.2 for σ3, and 0.05 for σ5. 

Multi Layer Perceptron (MLP) is a feedforward neural network that maps 
sets of inputs onto sets of appropriate outputs. Multi layer perceptron consists 
of a multiple layers of nodes in a directed graph, where each layer is fully con­
nected to the next one. To train the network, backpropagation algorithm is used, 
which is a generalization of the least mean squares algorithm in the linear per­
ceptron. A perceptron is a linear binary classifier applied to the feature vector. 
For each vector component there is a weight wi associated to it. Furthermore, 
each perceptron has a threshold θ. The output of a perceptron is “1” if the direct 
sum between the feature vector and weight vector is larger than zero and “-1” 
otherwise. A perceptron classifier works only for data that is linearly separable, 
i.e., if there is some hyperplane that separates all the positive points from all 
the negative points [19]. 

Differing from standard linear perceptrons, MLPs can distinguish data that 
are not linearly separable. MLP must consist of 3 or more layers (since input 
and output represent two layers) of nonlinearly-activating nodes [23]. We inves­
tigated learning rate parameter in range [0.05, 0.4] with step 0.05, momentum 
with values [0.1, 0.2, 0.3, 0.4], training time with values [400, 500, 600], and vali­
dation threshold with values [10, 20, 30]. In our experiments we set the number 
of hidden layers to be equal to (number of classes + number of attributes)/2, 
learning rate is set to 0.1, momentum applied to weights during update to 0.2, 
training time is set to 500, and validation threshold to 20. 

4-bit vs 8-bit In Tables 3 and 4 we give results for PRESENT and AES where 
the results represent the accuracy in percentage. The results where the Area 
Under an ROC Curve (AUC) measure equals to 0.5 are given in cells with gray 
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background color. AUC close to 1 represents a good test, while value close to 
0.5 represents a random guessing. 

The results obtained show that attacking the PRESENT cipher is easier 
than attacking the AES in all the investigated scenarios. Those results are to be 
expected since PRESENT has significantly smaller number of classes than the 
AES while the probability of a successful class guess is inversely proportional 
with the number of classes. Furthermore, we observe that Naive Bayes is the 
most successful technique in the prevailing number of investigated scenarios. In 
Table 3 we see that C4.5 does not perform well with the highest level of noise 
(i.e., for σ5 case). 

What is interesting to observe is that the level of noise has much less impact 
when comparing σ3 and σ5 cases than when comparing σ1 and σ3. Besides that, 
the differences among the tested algorithms are in general too small to have 
a statistical significance so it is not possible to determine the best performing 
algorithm. When considering all 16 classes for one key nibble (going into one 
S-box), we see that the success rate is still sufficiently high to consider all tested 
algorithms successful. Finally, we observe that the number of measurements does 
not play a significant role for this case. 

Table 3: Testing results for PRESENT 
5 classes 

Algorithm 10k 30k 50k 

σ1 σ3 σ5 σ1 σ3 σ5 σ1 σ3 σ5 

NB 51.27 38.55 37.12 51.17 38.57 37.1 51.04 38.92 37.81 

C4.5 50.06 38.82 37.03 51.05 38.16 37.19 50.72 38.73 37.59 

MLP 51.27 39.12 37.03 51.07 38.47 37.31 50.57 39 38 

16 classes 

Algorithm 10k 30k 50k 

σ1 σ3 σ5 σ1 σ3 σ5 σ1 σ3 σ5 

NB 41.55 19.94 12.06 42.62 18.68 13.86 41.72 18.53 14.04 

C4.5 40.73 14.85 11.79 41.88 15.79 12.05 41.9 16.08 12.76 

MLP 40.67 19.3 11.15 41.4 18.3 14.15 40.82 18.24 13.85 

In Table 4 we give results for the AES scenario. Here, we can observe that 
when considering HW classes, all considered techniques encounter difficulties, 
which is due to a huge imbalance in the number of measurements belonging for 
instance to HW 0 or 8 and HW 4. This is especially apparent in several cases 
where none of the tested algorithms is able to give dependable results but we 
see that the increase in the number of measurements is helping alleviate this 
problem. We note that we also observed an interesting behavior where adding 
noise actually even helps in better classification since it gives more diversity 
in data. When considering 256 classes of a key byte directly, we have more 
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reliable measurements due to a better distribution of instances, but naturally 
the classification accuracy is lower than in the PRESENT case. 

Finally, we note that we also conducted a number of experiments designed 
to give us indication of the linear separability of classes [24] where the results 
confirm that all our scenarios have classes that are not linearly separable, i.e, 
that are not easy to classify. 

Table 4: Testing results for AES 
9 classes 

Algorithm 10k 30k 50k 

σ1 σ3 σ5 σ1 σ3 σ5 σ1 σ3 σ5 

NB 28.18 27.52 28.0427.67 27.63 27.07 27.04 27.94 27.93 

27.76 27.64 27.07 27.94 27.94 

27.64 27.64 27.93 

C4.5 26.91 26.77 27.26 28.15 

MLP 27.21 27.03 27.03 27.47 27.93 28.33 

256 classes 

Algorithm 10k 30k 50k 

σ1 σ3 σ5 σ1 σ3 σ5 σ1 σ3 σ5 

NB 38.33 12.67 7.42 37.43 13.04 8.23 38.84 13.29 8.47 

C4.5 34.88 9.67 7.69 35.71 10.94 7.18 36.25 10.98 7.04 

MLP 35.21 10.94 7.11 37.27 13 7.85 38.67 13.2 8.05 

When considering SCA and more precisely profiled attacks as the most pow­
erful SCA attacks, there is a number of conditions that can render attacks more 
difficult, such as noise, large number of classes, the imbalance between the num­
ber of measurements belonging to each class or insufficient number of measure­
ments in the profiling phase. However, we must be aware that such drawbacks 
are also present in other domains but often it seems those domains handle such 
drawbacks more successfully. Indeed, there is a number of techniques one can 
employ to deal with any of the aforesaid problems (as well as many other) but 
such techniques at least for now elude the SCA community. Therefore, we be­
lieve that meticulous investigations can advance the field of SCA significantly. 
We mention here only a number of concepts we deem to have significant poten­
tial: fuzzy classification, feature reduction/construction techniques, imbalanced 
learning, semi-supervised learning, etc. Finally, only by further advancing the 
attacks, we will be able to design more successful countermeasures. 

4 Conclusions 

In this paper, we investigate whether side-channel analysis of lightweight ciphers 
is easier than for instance when considering AES using profiled and non-profiled 
techniques. In the case of non-profiled attacks, we evaluate a number of S-boxes 
appearing in lightweight ciphers using the confusion coefficient and empirical 
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simulations. Interestingly, we saw that the 8-bit S-boxes from AES, ZORRO, and 
Robin performed similar and we further cannot conclude that the 4-bit S-boxes 
are generally easier to attack than the 8-bit S-boxes. Furthermore for profiling, 
we analyze several machine learning techniques for PRESENT and AES. Our 
results show that attacking PRESENT is somewhat easier than attacking AES, 
the difference mainly stemming from the varying number of classes in one or 
other scenario. Still, that difference is not so apparent as one could imagine. 
This leaves us with a conclusion that attacking lightweight ciphers is not easy, 
but care should be taken if we consider attackers as powerful as for instance for 
the AES case. Since we work here with only a single feature scenario and yet in 
a number of test cases we obtain good accuracy we are confident that adding 
more features will render classification algorithms even more powerful which will 
result in an even higher accuracy. 

Finally, in this paper we did not consider any countermeasures since that is 
highly dependent on the environment (which we must assume to be much more 
constrained than when considering for instance AES). However, our results show 
that even considering the inherent resilience of S-boxes one can make the cipher 
more or less resistant against SCA, which can be considered as a countermeasure 
that comes for free, i.e., with only a smart selection of the S-boxes. 
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