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Introduction 

With widespread deployment of small devices such as in the “Internet of things” paradigm, it is 
increasingly important to devise new authentication mechanisms for such devices which have a 
small silicon footprint as well as other complexity measures. Such devices are also required to hold 
a secret key to authenticate themselves to a legitimate server. Unfortunately, side channel leakage 
during the computation of authentication tag from this secret usually leaks too much information 
to easily reveal the secret. 

There are two well known solutions to this problem. One is to use a public key mechanism, 
where the server holds a signing key, and each authentication request to the small device is signed 
by the server, and the signature verified by the small device. Only if the signature verifies does the 
small device actually process its secret. Unfortunately, this requires the small device to implement a 
public key operation (such as an RSA signature verification). The other solution is to implement the 
computation of authentication tag from the secret in a side-channel resistant manner [2]. However, 
such an implementation can be rather costly, cumbersome and still not very resistant to side-channel 
leakage. 

In this paper, we propose a new side-channel resistant implementation, specifically tailored 
for symmetric-key authentication mechanisms. To motivate the solution, as well as to make the 
presentation less abstract, we specifically discuss a particular real-world problem. The real-world 
problem is that of embedding a small device in each bank note (bill), such that when the bills come 
into a legitimate bank or inspection center, the bills can be scanned for counterfeit bills. 

We will refer to the chip embedded in the bill as the chip. Wand will refer to a device held at 
each local bank which supplies power to the chip and also has the capability to do computations 
and interact with both the chip and a central authority (henceforth called the Fed). 

The new scheme is based on the simple idea of using a Benes network to permute the secret key, 
where the permutation itself is defined by hashing the challenge. Thereafter, the authentication tag 
is computed using the challenge and the permuted secret key. The scheme requires only a SHA-2 
implementation and a Benes network implementation on the chip. 

We now briefly discuss the solution based on public key operations and its down-side. This 
scheme requires a public-key based signature scheme (with the signing key held by the Fed – 
and not the wand). The corresponding public key is embedded in each chip. The chip must do 
signature verifications. Also, a challenge-response protocol requires that the chip have a (pure) 
random number generator. The down side of this implementation is three-fold: 
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1. The same signing key will have to be used for the lifetime of the bills (20 years?). This signing 
key will be used rather extensively every day for 20 years. For a partial transition after 10 
years, both signing keys will be have to be around to deal with two kinds of bills (the older 
and the newer). 

2. Before a batch of bills can be verified, the Wand must interact with the batch of chips (bills), 
obtain a nonce for each, communicate with the Fed to get one signature (for the whole batch 
of bills), and then communicate with each chip again and retrieve authentication information 
which is then shipped back to the Fed (for verification). 

3. The chip requires an RNG. 

1.1 Symmetric-Key Authentication Mechanism 

The main idea of the symmetric-key authentication mechanism is to use an on-chip secret k to 
authenticate the chip (or bill). This secret is different for each chip and is randomly chosen or 
set during either manufacturing time or by the Fed after the chip has been manufactured. The 
secret value once set should not be malleable (other than small errors introduced due to use and 
mis-handling over multiple years). Regardless, the secret k for each bill is also kept at the Fed 
(and this is how the Fed authenticates a bill to be authentic). Modern silicon processes work at 
such a low micron level that it is impossible to read off the secret from the chip unless using highly 
expensive procedures and instrumentation. If an extremely expensive procedure (per chip) does 
allow an Adversary to get to the secret, then that should be fine, as then the Adversary can possibly 
produce multiple bills with same serial number and secret (but not too many, as that would easily 
be detected as an anomaly). 

Each chip also has a serial number s (maximum 128-bit). We will refer to the secret k on a chip 
with serial no. s as ks. These values are stored as pairs on a Fed database. 

In each authentication procedure, the wand will choose a random 128-bit number c (it is fine if 
the same no. is used for all chips/bills in a batch), and send c to the chips. The chip then naively 
computes 

v ← SHA-2(c); u ← SHA-2((v, s, ks)); Output ← SHA-2(u, v) 

and sends the Output (along with s) to the wand, which then forwards it to the Fed (along with 
c and serial numbers s) for verification. The output will be referred to as the MAC. this naive 
solution is easily attacked using side channel information. 

The main idea is to compute a permutation π (of 128-bits) from c. Then, instead of computing 
output as above, the chip computes 

v ← SHA-2(c); u ← SHA-2((v, s, π(ks))); Output ← SHA-2(u, v). 

More precisely, the steps are as follows: 

v1 ← SHA-2(c);
 

Use 128 log 128 bits from v1 to define a 128-bit permutation π.
 

v2 ← SHA-2(v1);
 

ps = Benes-Network(π, ks);
 

u ← SHA-2((v2, s, ps));
 
Output ← SHA-2(u, v2).
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Figure 1: 8-Bit Benes Network 

Each bit in ks (i.e. 128 bits) will be stored in a 2-bit encoding; a bit with value 0 will be stored 
as 01 and a bit with value 1 will be stored as 10. The Benes-network will thus operate on 128 2-bit 
words. Thus, in the above, the value ps will be a 256-bit quantity (or all odd-numbered bits can 
be dropped to get back a 128-bit quantity). All steps in each level of the Benes-network should 
preferably be done simultaneously. If this is not possible, as many steps as possible should be done 
in parallel. 

Note that the Fed can compute the exact same (MAC) Output given c and the serial number 
s (as long as corresponding ks in its database is same as the ks on the chip). 

1.1.1 Benes Network 

A permutation of the secret k (considering two consecutive bits as a nibble) is performed as follows. 
In other words, k[0..1] , k[2..3],....etc are considered as 128 nibbles and permuted using π. The 
actual permutation is implemented as 13 rounds of a Benes network (each round taking 64 bits 
from description of π). Each round of a Benes network is a parallel set of 64 2-by-2 switches (the 
switch being decided by the 64 bits of π for this round). A following recursive definition of a Benes 
network is sufficient. A Benes network on 2r bits consists of three divisions: two outer layers of 2r-1 
2 by 2 switches (call them left and right layers), and an inner division consisting of two independent 
Benes networks on 2r-1 bits. The output of the left layer is fed into the two smaller Benes networks 
as follows: All odd number output bits are sent to the first smaller Benes network, and all even 
numbered output bits are sent to the second smaller Benes Network. The outputs from the smaller 
Benes network are then symmetrically fed into the right layer. Note that this leads to a total of 
(2r-1) layers of 2r-1 parallel 2 by 2 switches. 

For simplicity, Fig 1 describes a 8-bit Benes Network (i.e. r = 4). 

1.2 Handling errors in secret bits kept on the Chip 

We also describe a scheme which is robust against errors in the secrets stored on the chip. This does 
not require any error-correcting codes (over and above what is already standard in chip design). 
The initial description of the scheme in the following sections will not mention this error-handling 
capabilities. 
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2 Security Analysis 

2.0.1 EM-Attack 

An adversary can supply the chip a challenge c and observe the EM radiation emanating from the 
chip. Specifically, the first time the secret ks is involved at all is in computation of ps in the Benes
network. Note, the permutation π is known to the adversary. Thus, if the EM radiation profile 
on switching a 0 value (i.e. 01 encoding) is different from switching a 1 value (i.e. 10 encoding), 
say in bit location one of ks, the the adversary is in business. Clearly, this radiation profile is 
muddled by all the other simultaneous switchings happening (and by many other environmental 
factors emanating from inside and outside the chip). A simple implementation of a two-by-two 
switch used in the Benes network is shown in Fig 2. Each bit is encoded as two bits. Note that 
for each gate outputting a one, there is another gate outputting a zero. Moreover the two gates 
are always in close proximity, and hence directional radiation capture is extremely expensive if not 
infeasible. Thus, the adversary is left with capturing amplitude modulated signal [1]. But, the 
above design ensures that amplitude modulated signal, which is an aggregate modulation of the 
clock signal (for instance), does not leak any information about the secret key – either by simple 
of differential EM attacks. 

The next place that the secret key is used is in the hash function SHA-2. However, the secret 
key is already permuted here. Let’s assume that the SHA-2 implementation uses a rather poor 
8-bit architecture. Then, the first non-linear step involving the secret key (i.e. the permuted secret 
key ps) is the following step in the SHA-2 compression function’s main loop (which is really a block 
cipher with the round keys coming from the the expanded input w which in this case is ps): We 
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assume the reader is familiar with SHA-2 description. 
for i from 0 to 63 

S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25) 
ch := (e and f) xor ((not e) and g) 
temp1 := h + S1 + ch + k[i] + w[i] 
S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22) 
maj := (a and b) xor (a and c) xor (b and c) 
temp2 := S0 + maj 

h := g 
g := f 
f := e 
e := d + temp1 
d := c 
c := b 
b := a 
a := temp1 + temp2 

Note that it is the step of computing “temp1” that can cause differential leakage which can 
reveal, say the bottom bit of w[0]. However, this requires that the same 8 bits of ks show up at w[0] 
after permutation. The probability of this happening over random challenge values is 120!/128! 
which is about 2−50 . Note that the challenge values need not be random for this analysis to hold, 
as SHA-2 itself acts as a randomizer, and the permutation is computed from the challenge and salt 
in each chip using SHA-2 1 . Thus, it would require about n ∗ 250 work to get n useful side-channel 
samples. 

More comprehensive analysis will be given in the full version of the paper. 

3 Error Handling 

There are many places that errors can happen. There can be errors in communication (between 
the chip and the wand), but these can be handled by hashing the whole message (using SHA-2) 
and requesting the message to be sent again if the hash of the message does not match (either 
direction). 

More challenging is handing errors in the stored value of ks. Any attempt to error-correct 
ks while reading it may give a strong EM signal to an Adversary2 . This is not a concern in the 
public-key based solution, as no processing of ks is done till the wand is authenticated. However, in 
the non-public-key solution this is definitely a serious issue. However, after the bits are permuted, 
then error-correcting codes decoding can be used and will work if the syndrome calculator is also 
given access to the permutation π and it incorporates π in the syndrome calculation. 

1for simplicity, the above description of the EM-resistant authentication mechanism did not use a salt. However, 
each chip should have a 64 bit salt value, i.e. a random but non-secret value, which is hashed together with the 
challenge to produce the permutation bits. This salt value is also transmitted to the Fed server, or the Fed could 
have it pre-stored along with the secret for this chip id. 

2However, it is worth investigating if decoding procedures of Reed-Solomon codes and BCH codes do not give a 
differential EM signal, especially with the 2 bit encoding and the fact that syndrome calculation is a linear operation 
over GF2. 
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Another way to handle errors is to have a 256-bit key ks instead of the 128-bit key required 
above. Next, as usual in the 2-bit encoding it will be represented by 512 bits. Use the Benes 
network to permute the 256 bits of ks now. However, instead of doing the rest of the SHA-2 MAC 
computation on this permuted ks (i.e. ps), compute the MAC only on the first 128 bits of ps 

(i.e. ignore the last 128 bits). Now, note that if there was a single bit error in ks, then after the 
permutation, with probability 1/2 that erroneous bit will just get dropped. 

The Fed will do the identical MAC computation (i.e. by dropping the last 128 bits of the 
permuted secret). 

If the erroneous bit(s) was in the front 128-bits, clearly the MACs will not match, but the whole 
protocol can be repeated, and a new c will lead to a completely new permutation. 

This methodology can also be used in the public-key signature based scheme, but now that 
scheme must also implement a permutation. Alternatively, it can compute a 256 bit mask from c 
or v (using SHA-2) and with high probability it will have about 128-bits ON. Then the masked can 
be AND-ed with the 256-bit key ks , and hash computed on this masked 256-bit quantity. Again, 
with probability 1/2 an erroneous bit will just get masked-off and hence MAC computation will 
come out matching the one performed by the Fed. 
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