
Threshold Implementations of PRINCE:

The Cost of Physical Security

Dušan Božilov1,2, Miroslav Knežević1, and Ventzislav Nikov1

1 NXP Semiconductors, Leuven, Belgium
name.surname@nxp.com

2 KU Leuven, COSIC and iMinds, Belgium
dusan.bozilov@esat.kuleuven.be

Abstract. Threshold implementations have recently emerged as one of the most popular
masking countermeasures for hardware implementations of cryptographic primitives. In the
original version of TI, the number of input shares was dependant on both security order
d and algebraic degree of a function t, namely td + 1. At CRYPTO 2015 Reparaz et al.
presented a way to perform d-th order secure implementation using d + 1 shares. Here we
analyze d + 1 and td + 1 TI versions for first and second order secure implementations of the
PRINCE block cipher. We compare a plain round-based implementation of PRINCE with
its secured versions and we report hardware figures to indicate the overhead introduced by
adding a side channel protection.

Keywords: Threshold Implementations, PRINCE, SCA, CMS, Masking

1 Introduction

Side-channel analysis is a technique introduced by Kocher et al. [4] that extracts secret information
from physical devices using power consumption or EM radiation during the execution of crypto-
graphic algorithm. A significant effort has ever since been invested in trying to design hardware
implementations resistant to that types of attacks.

Among many proposed methods, schemes based on Boolean masking are notable for being
provably secure against probing adversary. In such masking scheme a secret value is shared into
several shares using Boolean addition. Shares are then independently processed in a way that
prevents revealing the secret information. In order to circumvent a masked implementation, attackers
need to employ higher order attacks. These attacks are harder to mount because of the noise level
that is inherently high during the capturing of power traces. Securing against such higher order
attacks incurs penalties in area, execution time, power consumption and the amount of random bits
required for secure execution. In addition to that, preserving low latency of the design while at the
same time providing side channel protection still seems to be an important and open problem [5].

In this paper we quantify design trade-offs on a concrete example of hardware implementation
of PRINCE. To limit the overall area overhead and yet achieve a relatively high performance, we
decide to target the round-based implementations in all of our experiments. We implement the
two versions of first order secure, the two versions of second order secure and one unprotected
design, and we compare area, performance, power and energy consumption, as well as the amount
of randomness needed.

2 Preliminaries and notation used

We use small letters to represent elements of the finite field Fn
2 and capital letters to represent

(vectorial) Boolean functions. Subscripts are used to specify each bit of an element or each
coordinate function of a vectorial Boolean function, i.e. x = (x1, · · · , xn), where xi ∈ F2 and
S(x) = (S1(x), · · · , Sm(x)) where S is defined from Fn

2 to Fm
2 and Si’s are defined from Fn

2 to F2.

2 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

We omit subscripts if n = 1 or m = 1. We use the same notation for their corresponding matrix
representations. We use subscripts to represent shares of one-bit variables. The reader should be
able to distinguish from the context if we are referring to specific bits of unshared variable or
specific shares of a variable. We denote Hamming weight, concatenation, cyclic right shift, right
shift, composition, multiplication and addition with wt(.), ||, ≫, ≫, ◦, . and ⊕ respectively.

Every Boolean function S can be represented uniquely by its Algebraic Normal Form (ANF):

S(x) =
∑

i=(i1,...,in)∈Fn
2

aix
i1

1 xi2

2 · · · xin
n . (1)

Then, the algebraic degree of a Boolean function S is

deg(S) = max{wt(i) : i ∈ Fn
2 , ai ̸= 0}. (2)

The algebraic degree of a vectorial Boolean function S is equal to the the highest algebraic degree
of its coordinate functions Si. Two permutations S and S′ are affine (resp. linear) equivalent if
and only if there exists affine (resp. linear) permutations C and D satisfying S′ = C ◦ S ◦ D.
Alternatively, let A and B be linear mappings and a and b be constants. Then S′ and S are affine
equivalent if and only if S′ = A.S(B.x+b)+a (resp. linear equivalent if and only if S′ = A.S(B.x)).
We refer to C (resp. A and a) as the output and D (resp. B and b) as the input transformation.

3 PRINCE

PRINCE [3] is a low-latency block cipher designed to be very efficient in hardware when implemented
in an unrolled manner. Its α-reflection property allows a reuse of the exactly same circuitry for
both encryption and decryption. The components of diffusion and confusion layers are chosen to
have low-area footprint, while not sacrificing on latency. Although not designed to be efficient in
software, bit-sliced software implementation of PRINCE is also fast and can even be performed
in fewer clock cycles than some of the other lightweight block ciphers, such as PRESENT and
KATAN [7].

Here we give a brief overview of PRINCE and for more detailed explanation of the cipher we
refer to the original paper [3]. The block size of PRINCE is 64 bits and a key has a length of 128
bits. The key is split into two 64-bit parts k0||k1 and expanded to k0||k′

0||k1 as shown below.

(k0||k′
0||k1) = k0||((k0 ≫ 1) ⊕ (k0 ≫ 63))||k1)

k0 and k′
0 are used as whitening keys at the start and at the end of the cipher, as depicted in

Figure 1; k1 is used as round key in PRINCEcore. PRINCEcore consists of 12 rounds. More precisely,
6 rounds followed by middle involution layer followed by 6 inverse rounds.

R0

RC0

R1

RC1

R2

RC2

R3

RC3

R4

RC4

R5

RC5

SR-1 M′ SR R-1
6

RC6

R-1
7

RC7

R-1
8

RC8

R-1
9

RC9

R-1
10

RC10

R-1
11

RC11

PRINCEcore

k0 k′
0

k1RCi

S M

k1RCi

S-1M-1

Fig. 1. PRINCE cipher.

S-box layer. S-box is a 4-bit permutation of algebraic degree three and its look-up table is
shown in Table 1. The S-box inverse belongs to the same affine equivalence class as the S-box

Threshold Implementations of PRINCE: The Cost of Physical Security 3

Table 1. PRINCE S-box lookup table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

itself. In other words, the inverse can be generated by applying the same input and output affine
transformations, more precisely Ain = Aout = Aio and hence

S−1 = Aio ◦ S ◦ Aio (3)

Affine transformation Aio is given as look-up table below.

Table 2. Affine transformation Aio lookup table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
Aio(x) 5 7 6 4 F D C E 1 3 2 0 B 9 8 A

Linear layer. Matrices M and M ′ define the diffusion layer of PRINCE. M ′ is a an involution
and M matrix can be obtained from M ′ if we perform shift rows operation given by matrix SR so
that M = SR ◦ M ′. SR is a linear operation that permutes the nibbles of the state.

RCi addition is a 64-bit round constant addition. Round constants RC0 . . . RC11 are chosen
such that RCi⊕RC11−i = α where α is a 64-bit constant. This property, called α-reflection property,
together with the construction of PRINCEcore rounds makes the decryption of PRINCEcore same
as the encryption with k1 ⊕ α key.

4 Threshold Implementations

Threshold implementation (TI) is a Boolean masking technique that ensures side-channel resistance
in hardware even in the presence of glitches [6]. Classical TI theory suggests the usage of at least
td + 1 number of input shares in order to make a Boolean function with algebraic degree t secure
against a d-th order side-channel attack. Recently, Reparaz et al. proposed a consolidated masking
scheme (CMS) [8], and reduced the required number of input shares needed to resist a d-th order
attack to d + 1, regardless of the algebraic degree of shared function. This is theoretically the lowest
bound on number of input shares with respect to order of security d. Since CMS security relies on
TI principles we refer to it as d + 1 TI.

The most important property that ensures security of TI even in the presence of glitches is
non-completeness: any combination of up to d component functions must be independent of at least
one input share. When cascading multiple nonlinear functions, the sharing must also satisfy the
uniformity: a sharing is uniform if and only if the sharing of the output preserves the distribution
of the unshared output. In other words, for a given unmasked value, all possible combination of
output shares that will result in that value are equally likely to happen. Finding uniform sharing
of a given vectorial Boolean function in general case is still an open problem, although several
heuristics exist. However, uniformity can be achieved by re-masking (refreshing) output shares
when no uniform sharing is available. Uniformity provides d-th order security for univariate attacks,
i.e. attacks where the attacker is probing the circuit only at single time sample. However re-masking
is necessary to achieve higher-order multivariate security.

4 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

In order to prevent glitch propagation when cascading nonlinear functions, the TI requires a
register to be placed between the nonlinear operations. Otherwise, we risk leaking unmasked values
if glitches are present as the non-completeness property may be violated.

When sharing a nonlinear function the number of output shares can become larger than the
number of input shares. This can occur when applying td+1 TI and it always occurs when applying
d + 1 TI. In order to reduce the number of shares we need to recombine (compress) some output
shares by adding several of the shares together. To prevent glitches from revealing unmasked values,
decreasing the number of shares can only be done after storing these output shares into a register.
The output shares that are going to be recombined together need to be carefully chosen such that
they do not reveal any unmasked values.

When using d+1 shares the input shares have to obey a stronger condition, namely shared input
variables need to be independent, as shown in [8]. This usually imposes larger number of random
bits than in td + 1 case. Using notation as defined in Bilgin et al. [2] for affine representatives
of 4-bit permutations we demonstrate how to implement both d + 1 and td + 1 sharing of Q294
quadratic class.

Mask refreshing (re-masking) of shares x1, . . . , xn can be achieved in various ways. One way is
by using random bits r1, . . . , rn as follows:

y1 = x1 ⊕ r1 ⊕ rn yi = xi ⊕ ri−1 ⊕ ri, i ∈ {2, . . . , n} (4)

This re-masking scheme is called ring re-masking [8] and is mostly used for d + 1 TI. A simpler
re-masking exist especially for the first order security namely we can re-mask x1, . . . , xn with
random bits r1, . . . , rn−1 in the following way:

yi = xi ⊕ ri, i ∈ {1, . . . , n − 1}, yn = xn ⊕ r1 ⊕ . . . ⊕ rn−1 (5)

5 S-box decomposition

The PRINCE S-box has an algebraic degree 3 and it can be decomposed into quadratic S-boxes of
decomposition length 3 [2]. A decomposition can be done in multiple ways using different quadratic
S-boxes and affine transformations. We choose a decomposition where all 3 quadratic S-boxes are
the same, belonging to a class Q294 because of its small area footprint. This decomposition allows
for obtaining lower area and randomness requirement as both are dependent on the algebraic
degree of the function when applying TI. In Equation (6) we provide the PRINCE S-box and its
inverse decompositions as used in our implementation.

S = A1 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A4

S−1 = A5 ◦ Q294 ◦ A2 ◦ Q294 ◦ A3 ◦ Q294 ◦ A6 (6)

Here A1 to A6 are affine transformations and their respective look-up tables are given in Table 3.
ANF of Q294 component functions, (x, y, z, t) = F (a, b, c, d), are given in Equation (7)

Table 3. A1 to A6 lookup tables.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
A1(x) C E 7 5 8 A 3 1 4 6 F D 0 2 B 9
A2(x) 6 D 9 2 5 E A 1 B 0 4 F 8 3 7 C
A3(x) 0 8 4 C 2 A 6 E 1 9 5 D 3 B 7 F
A4(x) A 1 0 B 2 9 8 3 4 F E 5 C 7 6 D
A5(x) B 8 E D 1 2 4 7 F C A 9 5 6 0 3
A6(x) 9 3 8 2 D 7 C 6 1 B 0 A 5 F 4 E

Threshold Implementations of PRINCE: The Cost of Physical Security 5

x = a

y = b

z = ab ⊕ c

t = ac ⊕ d (7)

We recall that to achieve secure implementation one needs to separate nonlinear operations
with registers and hence the evaluation of a single PRINCE S-box will require 3 clock cycles.

6 Implementation

6.1 Unprotected implementation
Figure 2 represents the architecture of unprotected round-based PRINCE. In this architecture we
do not perform decomposition of the S-box, which allows us to perform a single encryption in 12
clock cycles. We utilize the fact that the S-box inverse S−1 is in the same equivalence class as S
and reuse the same circuitry for both first and last rounds of the execution, with the exception
that affine transformation circuits Aio are used during the evaluation of S−1. By adding an extra
multiplexer we achieve support for the decryption circuit as well.

Aio

Aio

...

Aio

Aio

...M'

SR-1

M

k1

kwo

RC0 RC11
...

ct

pt

kwi

S

S

...

1

2

1

2

1

2

1

2









Fig. 2. Unprotected PRINCE round based architecture.

To make the explanations regarding the architecture easier, we enumerate inputs of the four
relevant multiplexers in the data path and we denote them with α, β, γ, and δ, respectively. When
evaluating S-box, the active data path is α1 − β2 − δ1 except in the first round when, during the
first cycle, the active data path is α1 − β1 − δ1. Similarly, when evaluating the inverse S-box, active
inputs of multiplexers are α2 − γ1 − δ2, except in the last round where we use α1 − γ2 − δ2.

6.2 First order secure td + 1 TI of Q294

For this implementation we use first order td + 1 direct TI sharing [2] with three shares. Here, we
recall that d = 1 and t = 2. The sharing is given in Equation (8)

6 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

x1 = a1 z1 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1

x2 = a2 z2 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2

x3 = a3 z3 = a3b3 ⊕ a3b1 ⊕ a1b3 ⊕ c3

y1 = b1 t1 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1

y2 = b2 t2 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2

y3 = b3 t3 = a3c3 ⊕ a3c1 ⊕ a1c3 ⊕ d3 (8)

Figure 3 depicts hardware implementation of the td + 1 version of Q294. There is no need
for re-masking since the sharing is uniform. Also, the number of output shares is equal to the
number of input shares, which eliminates the need for compression after storing the result into
a register. We need an additional multiplexer before the register to store the initial value of the
shared plaintext XOR-ed with the input whitening key at the start of the algorithm.

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

in1
1,2,3 in2

1,2,3 in3
1,2,3 in4

1,2,3

Fig. 3. First order secure sharing of Q294 with td + 1 TI.

6.3 Second order secure td + 1 TI of Q294

We use second order td + 1 TI sharing of Q294 with 5 input shares and 10 output shares as defined
in Equation (9) and it holds d = 2 and t = 2. The shares are processed and thus expanded, stored
into a register and then compressed into 5 shares using the method explained in [1]. The values in
Equation (9) marked with a bar (z̄i, t̄i) represent the output after the compression step.

Threshold Implementations of PRINCE: The Cost of Physical Security 7

x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

x4 = a4 y4 = b4

x5 = a5 y5 = b5

z1 = a1b3 ⊕ a3b1 z6 = a1b1 ⊕ a1b2 ⊕ a2b1 ⊕ c1 z̄1 = z1 ⊕ z6

z2 = a2b4 ⊕ a4b2 z7 = a2b2 ⊕ a2b3 ⊕ a3b2 ⊕ c2 z̄2 = z2 ⊕ z7

z3 = a3b5 ⊕ a5b3 z8 = a3b3 ⊕ a3b4 ⊕ a4b3 ⊕ c3 z̄3 = z3 ⊕ z8

z4 = a4b1 ⊕ a1b4 z9 = a4b4 ⊕ a4b5 ⊕ a5b4 ⊕ c4 z̄4 = z4 ⊕ z9

z5 = a5b2 ⊕ a2b5 z10 = a5b5 ⊕ a5b1 ⊕ a1b5 ⊕ c5 z̄5 = z5 ⊕ z10

t1 = a1c3 ⊕ a3c1 t6 = a1c1 ⊕ a1c2 ⊕ a2c1 ⊕ d1 t̄1 = t1 ⊕ t6

t2 = a2c4 ⊕ a4c2 t7 = a2c2 ⊕ a2c3 ⊕ a3c2 ⊕ d2 t̄2 = t2 ⊕ t7

t3 = a3c5 ⊕ a5c3 t8 = a3c3 ⊕ a3c4 ⊕ a4c3 ⊕ d3 t̄3 = t3 ⊕ t8

t4 = a4c1 ⊕ a1c4 t9 = a4c4 ⊕ a4c5 ⊕ a5c4 ⊕ d4 t̄4 = t4 ⊕ t9

t5 = a5c2 ⊕ a2c5 t10 = a5c5 ⊕ a5c1 ⊕ a1c5 ⊕ d5 t̄5 = t5 ⊕ t10 (9)

In order to avoid multivariate attacks, in which case the attacker is probing the values from
different time samples, only nonlinear parts of the equation need to be re-masked, namely z1, . . . , z5
and t1, . . . , t5. For this re-masking procedure, we need 10 random bits per shared Q294.

x3
x2
x1

y1 y2 y3z1

sh 1

1
1
1

1 1

1 1

1

Fig. 4. Generating two outputs bits for partial evaluation of xy + z.

The module used to generate two output bits of a partial evaluation of shared nonlinear function
xy + z is shown in Figure 4. Figure 5 depicts hardware implementation of the td + 1 version of Q294
using this circuitry. Since we have all the input variables in 5 shares the numbers given inside the
modules in Figure 5 represent bit indexes of shares used as an input. Ring re-masking of output
shares given in Equation (4) is performed before storing the value into a register. Again, we need an
additional multiplexer before the register to store the initial value of the shared plaintext XOR-ed
with input whitening key at the start of the computation. We need 30 bits to store the output
of shared Q294, namely 10 bits for the two linear component functions and 20 bits for the two
nonlinear component functions. However, during the initial loading we have 20 bits in total. In
order to obtain correct execution after compression we need to load the unused bits with zeros in
the beginning of the algorithm.

8 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

 sh
1
2
3

in3

1 0

1

 sh
2
3
4

in3

2 0

2

 sh
3
4
5

in3

3 0

3

 sh
4
5
1

in3

4 0

4

 sh
5
1
2

in3

5 0

5

 sh
1
2
3

in4

1 0

1

 sh
2
3
4

in4

2 0

2

 sh
3
4
5

in4

3 0

3

 sh
4
5
1

in4

4 0

4

 sh
5
1
2

in4

5 0

5

in1

1..5
in2

1..5

1 2 3 2 3 4 3 4 5 4 5 1 5 1 2 1 2 3 2 3 4 3 4 5 4 5 1 5 1 2

a1..5 b1..5 c1..5 d1..5

R6

5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 5 5

55 5 5

R1

Fig. 5. Second order secure sharing of Q294 with td + 1 TI.

6.4 First order secure d + 1 TI of Q294

In this implementation we use first order sharing given in [8]. The formulas are shown in Equa-
tion (10) and it holds d = 1. Unlike td + 1 first order secure version here we need sharing with
four output shares for the nonlinear component functions. For the linear parts however we need
only two shares instead of three. Compression and re-masking are needed to reduce the number of
output shares and make the output uniform, respectively.

x1 = a1 y1 = b1

x2 = a2 y2 = b2

z1 = a1b1 ⊕ c1 t1 = a1c1 ⊕ d1

z2 = a1b2 t2 = a1c2

z3 = a2b2 ⊕ c2 t3 = a2c2 ⊕ d2

z4 = a2b1 t4 = a2c1

z̄1 = z1 ⊕ z2 t̄1 = t1 ⊕ t2

z̄2 = z3 ⊕ z4 t̄2 = t3 ⊕ t4 (10)

Shares that contain quadratic terms are re-masked as given in Equation 5 before storing their
values into the register. We have the two shared output component functions with four shares,
for which we need 6 random bits. The last mask is just an XOR of all other masks, namely
R4 = R1 ⊕ R2 ⊕ R3 and R8 = R5 ⊕ R6 ⊕ R7. Similar to the second order secure td + 1 version, we
set the appropriate register bits to 0 during initial loading to ensure correctness of the execution.
A detailed hardware architecture of the d + 1 sharing is depicted in Figure 6.

Threshold Implementations of PRINCE: The Cost of Physical Security 9

R1 R2 R3 R4 R5 R6 R7 R8

0in1
1,2 in2

1,2
in3

01 in3
2

0in4
1 0in4

2

a1 a2 b1 b2 c1 c2 d1 d2

Fig. 6. First order secure sharing of Q294 with d + 1 TI.

6.5 Second order secure d + 1 TI of Q294

We create a second order secure masking following [8], thus we choose d = 2. The three input
shares are needed for all the operations. However, sharing a nonlinear operation xy + z produces 9
output shares that need to be firstly stored into a register and only then compressed. We provide
the formula for d + 1 second order secure sharing in Equation (11).

x1 = a1 y1 = b1

x2 = a2 y2 = b2

x3 = a3 y3 = b3

z1 = a1b1 ⊕ c1 t1 = a1c1 ⊕ d1

z2 = a1b2 t2 = a1c2

z3 = a1b3 t3 = a1b3

z4 = a2b1 t4 = a2c1

z5 = a2b2 ⊕ c2 t5 = a2c2 ⊕ d2

z6 = a2b3 t6 = a2c3

z7 = a3b1 t7 = a3c1

z8 = a3b2 t8 = a3c2

z9 = a3b3 ⊕ c3 t9 = a3c3 ⊕ d3

z̄1 = z1 ⊕ z2 ⊕ z3 t̄1 = t1 ⊕ t2 ⊕ t3

z̄2 = z4 ⊕ z5 ⊕ z6 t̄2 = t4 ⊕ t5 ⊕ t6

z̄3 = z7 ⊕ z8 ⊕ z9 t̄3 = t7 ⊕ t8 ⊕ t9 (11)

Hardware architecture of the sharing is depicted in Figure 7. Shares that contain quadratic
terms are re-masked before the compression. We have 18 such output bits per S-box and we use
ring refreshing given in Equation (4) to re-mask the output. As in the previous two cases, unused
register bits during the loading are set to zero.

10 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18R9

in2
1,2,3 in3

1
in1

1,2,3 0 in3
2

0 in3
3

0 in4
1

0 in4
2

0 in4
3

0

R18

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

Fig. 7. Second order secure sharing of Q294 with d + 1 TI.

6.6 Protected implementations

In Figure 8 we depict the data path of hardware implementation for all the protected round-based
implementations. All the data lines are of width 64 × n bits, where n is the number of input shares.
The only exception is RC constant output, that has only 64 bits width. Sharing of the nonlinear
layer, followed by the linear layer, re-masking and compression layer is denoted with NLRC in
Figure 8. The hardware implementations of NLRC layers of Q294 are explained in the previous
subsections.

In order to support both encryption and decryption mode, the input and output whitening
keys, kwi and kwo are either k0 or k′

0, depending on the mode of operation. We only require an
extra multiplexer to implement this feature, because of the PRINCE α-reflection property. When
evaluating the S-box, the active path through the multiplexers is α1 − β2 − δ1 in first, α2 − δ2 in
second, and α2 − δ3 in the third cycle, except in the first round where this cycle is α1 − β1 − δ1.
Similarly, when evaluating the inverse S-box, active inputs of the multiplexers are α3 − γ1 − δ4 in
first, α2 − δ2 in second, and α2 − δ3 in the third cycle, except in the last round where this cycle is
α2 − γ2 − δ4.

For the td + 1 implementations we use 3 and 5 shares respectively for affine operations in order
to reduce the amount of randomness required for the execution. This comes at the cost of a small
area penalty. We need 3 and 10 shares respectively for the nonlinear S-box component functions
for first and second order secure implementation, respectively. Re-masking and compression are
required only for the second order td + 1 implementation. The d + 1 implementations use 2 and
3 shares for first and second order secure implementation, respectively. We need 4 and 9 shares
respectively for the nonlinear S-box component functions. Re-masking and compression are required
in both cases.

Finally, we add round constant to only one of the shares. The key is shared with the same
number of shares as the plaintext. Unlike most of the TI architectures in the literature, we focus
here on a round based implementation instead of a serialized one. This greatly reduces the execution
time, at the expense of increased area and randomness per clock cycle. We make use of several
multiplexers in order to avoid instantiating registers for 3 stages of PRINCE S-box evaluation and
hence we limit the area overhead. PRINCE has a total of 12 rounds with S-box evaluations and

Threshold Implementations of PRINCE: The Cost of Physical Security 11

NLRC

A1

A1

...

A5

A5

...

A4

A4

...

A6

A6

...

A2

A2

...

A3

A3

...

M'

SR-1

M

k1

kwo

RC0 RC11
...

ct

pt

kwi

1

2

3

4





in





1

2

1

2

1

2

3

Fig. 8. TI PRINCE round based architecture.

hence we need 36 clock cycles to execute the complete algorithm as we require 3 clock cycles for a
single S-box evaluation.

6.7 Results

We use CMOS 90 nm library and Cadence RTL compiler to evaluate the proposed architectures.
Designs are synthesized using the operating frequency of 10 MHz and the power consumption is
estimated by simulating a back-annotated post-synthesis netlist with 100 random test vectors.
Energy is calculated for one complete encryption/decryption operation.

Table 4. Area/power/energy/randomness/latency comparison

Unprotected 1st (d + 1) 1st (td + 1) 2nd (d + 1) 2nd (td + 1)
Area (GE) 3589 8701 11958 14205 21879

Power (uW) 59.21 183.06 236.05 336.4 480.31
Energy (pJ) 71.1 659 849.8 1211 1729.1

Randomness/cycle (bits) 0 96 0 288 160
Latency (cycles) 12 36 36 36 36

Table 4 and Figure 9 show area, power and energy consumption and the number of random bits
required per clock cycle. To better visualize the overhead introduced by secure implementations,
we normalize energy and area figures using the figures of the unprotected implementation.

12 Dušan Božilov, Miroslav Knežević, and Ventzislav Nikov

d = 1 d = 2
0

2

4

6

8

a)

d = 1 d = 2
0

50

100

150

200

250

b)

d+ 1

td+ 1

d = 1 d = 2
0

5

10

15

20

25

c)

Fig. 9. Comparing different TI PRINCE implementations for security order d = 1, 2. a) normalized area
compared to the unprotected implementation. b) number of random bits required for re-masking per cycle.
c) average energy consumption normalized to the unprotected implementation.

As can be seen, d + 1 TI occupies the least amount of logic gates, compared to other secure
implementations. As expected, this comes at the cost of extra randomness required in the refreshing
layer. We also need to note that the reported area does not include the circuitry of a random
number generator. For td + 1 TI with d = 1 we do not need any random bits during execution of
the algorithm since the Q294 sharing is uniform. The td + 1 TI with d = 2 requires 160 random
bits per clock cycle. In contrast, d + 1 TI with d = 1 needs 96 random bits, and d + 1 TI with
d = 2 consumes 288 bits of randomness per clock cycle.

As can be seen by the reported figures, adding side-channel countermeasures increases the size
of the unprotected PRINCE by at least a factor of 2.5. In addition, the TI also increases the
latency by a factor of 3 as we require 36 cycles for all the protected versions, compared to 12 cycles
of the unprotected design.

7 Conclusion and Outlook

In this paper we reported hardware figures for several TI-protected round-based versions of the
PRINCE cipher. The td + 1 TI version consumes no additional randomness (except the initial
plaintext/key masking) and is recommended for usage in environments where the random number
generation is an issue. The d + 1 TI version consumes the least amount of area, power and energy,
and is recommended to be used in very constrained environments.

To complete the whole evaluation and get a better comparison, security analysis needs to be
performed for all the proposed TI variants, which is planned as part of our future work. It should
also be noted that numbers presented in this paper do not include hardware figures of the random
number generators used to generate randomness.

Acknowledgements

Dušan Božilov is supported by a Marie Skłodowska-Curie research fellowship, within the ECRYPT-
NET framework.

Threshold Implementations of PRINCE: The Cost of Physical Security 13

References

1. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In:
ASIACRYPT 2014. pp. 326–343. Springer LNCS (2014)

2. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3 ×3 and 4
×4 s-boxes. In: CHES 2012. pp. 76–91. Springer LNCS (2012)

3. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov,
V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: Prince – a low-latency block
cipher for pervasive computing applications. In: ASIACRYPT 2012. pp. 208–225. Springer LNCS (2012)

4. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO 1999. pp. 388–397. Springer
LNCS (1999)

5. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in action - case study of
prince and midori. In: ASIACRYPT 2016. Springer LNCS

6. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and
glitches. In: ICICS 2006. pp. 529–545. Springer LNCS (2006)

7. Papapagiannopoulos, K.: High throughput in slices: The case of present, prince and katan64 ciphers. In:
RFIDSec 2014. pp. 137–155. Springer LNCS (2014)

8. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In:
CRYPTO 2015. pp. 764–783. Springer LNCS (2015)

