
Lightweight Cryptography on ARM

Software implementation of block ciphers

Rafael J. Cruz, Tiago B. Reis, Diego F. Aranha, Julio López, Harsh Kupwade Patil

University of Campinas, LG Electronics Inc.

Introduction

Summary

Block ciphers and MAcs are among the most fundamental and useful
cryptographic primitives.

We discuss techniques for efficient and secure implementations of
lightweight block ciphers and MACs in software:

1. Fantomas, an LS-Design proposed in [GLSV14].
2. PRESENT, a Substitution-Permutation Network (SPN) [BKL+07]
3. ARX-based MACs SipHash and Chaskey.

.

We target low-end and NEON-capable ARM processors, typical of
embedded systems. Results are part of a project sponsored by LG
involving more than 20 symmetric/asymmetric algorithms.

1

Fantomas

Construction

LS-Designs

Paradigm to construct block ciphers providing:

• Lightweight designs from simple substitution and linear layers.
• Friendliness to side-channel countermeasures (bitslicing and
masking).

• Tweakable variant for authenticated encryption (SCREAMv3).

l bits

s bits
State Matrix

2

Construction

Algorithm 1 LS-Design encrypting block B into ciphertext C with key K.

1: C + B E K ▷ C represents an s × l-bit matrix
2: for 0 : r < Nr do
3: for 0 : i < l do ▷ S-box layer
4: C[i, ⋆] = S[C[i, ⋆]]
5: end for
6: for 0 : j < s do ▷ L-box layer
7: C[⋆, j] = L[C[⋆, j]]
8: end for
9: C + C E K E C(r) ▷ Key and round constant addition
10: end for
11: return C

3

Algorithm

The LS-Design paper introduced an involutive instance (Robin), and
a non-involutive cipher (Fantomas).

Fantomas

• 128-bit key length and block size.
• No key scheduling.
• 8-bit (3/5-bit 3-round) S-boxes from MISTY.
• L-box from vector-matrix product in F2.

16-bits

8-
bi

ts

S
b
o
x

Lbox

X

Count Parity

?

4

Implementation in 32/64 bits

Internal state can be represented with union to respect strict
aliasing rules for 16/32/64-bit operations:

typedef union {
u in t32 _ t u32 ; // u in t64 _t u64 ;
u in t 16 _ t u16 [2] ; // u in t 16 _ t u16 [4] ;

} U32_t ;

S-boxes operate over 16-bit chunks in the u16 portion.

Key addition works using the u32/u64 internal state:

f o r (j = 0 ; j < 4 ; j ++) // f o r (j = 0 ; j < 2 ; j ++)
s t [j] . u32 ^= key_32 [j] ; // s t [j] . u64 ^= key_64 [j] ;

5

Attacker who monitors L-box positions in cache can recover internal
state. Internal state trivially reveals keys and plaintext if recovered
right before/after last/first key addition.

Implementation in 32/64 bits

L-box can be evaluated using two precomputed tables:

/* Unprotected L−box vers ion */

s t [j] . u16 [0] = LBoxH [s t [j] . u16 [0] > >8] ^

LBoxL [s t [j] . u16 [0] & 0 x f f] ;
s t [j] . u16 [1] = LBoxH [s t [j] . u16 [1] > >8] ^

LBoxL [s t [j] . u16 [1] & 0 x f f] ;

Problem: Beware of cache-timing-attacks!

6

Implementation in 32/64 bits

L-box can be evaluated using two precomputed tables:

/* Unprotected L−box vers ion */

s t [j] . u16 [0] = LBoxH [s t [j] . u16 [0] > >8] ^

LBoxL [s t [j] . u16 [0] & 0 x f f] ;
s t [j] . u16 [1] = LBoxH [s t [j] . u16 [1] > >8] ^

LBoxL [s t [j] . u16 [1] & 0 x f f] ;

Problem: Beware of cache-timing-attacks!

Attacker who monitors L-box positions in cache can recover internal
state. Internal state trivially reveals keys and plaintext if recovered
right before/after last/first key addition.

6

Implementation in 32/64 bits

Solution: We can replace memory access with online computation:

s t a t i c i n l i n e type_t LBox (type _t x , type_t y , u in t8 _t s) {
x &= y ;
x ^= x >> 8 ;
x ^= x >> 4 ;
x ^= x >> 2 ;
x ^= x >> 1 ;
return (x & 0x00010001) << s ;
// re turn (x & 0x0001000100010001) << s

}

7

NEON implementation

L-boxes can be evaluated using shuffling instructions to compute 8
table lookups in parallel.

L-box in
Registers

Important: 32-bit implementations can process 2 blocks and vector
implementations can process 16 blocks simultaneously in CTR mode.

8

Experiments I

Benchmark: Encrypt+decrypt 128 bytes in CBC or encrypt 128 bits in
CTR mode.

• Related work: FELICS (triathlon of block ciphers) [DCK+15].
• Platforms:

1. Cortex-M3 (Arduino Due, 32 bits):
• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns
-mcpu=cortex-m3 -mthumb.

• Cycles count by converting the output of the micros() function.

9

Results

32-bit 32-bit CT
0

20000
40000
60000
80000

100000
120000
140000
160000
180000

Fantomas in CBC mode

Arduino Due Cortex-M3

Ours
FELICS Fast
FELICS Compact

C
yc

le
 C

ou
n

t

32-bit 32-bit CT
0

1000

2000

3000

4000

5000

Implementation

C
od

e
S

iz
e

(R
O

M
)

10

Results

32-bit 32-bit CT
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Fantomas in CTR mode

Arduino Due Cortex-M3

Ours

FELICS Fast

FELICS Compact

C
yc

le
 C

ou
n

t

32-bit 32-bit CT
0

500

1000

1500

2000

2500

Implementation

C
od

e
S

iz
e

(R
O

M
)

11

Experiments II

Benchmark: Encrypt 128 bits in CTR mode.

•	 Related work: Ajusted timings from SCREAMv3 presentation in
the CAESAR competition [GLS+15].

•	 Platforms:
1.	 Cortex-A15 (ODROID XU4, 32 bits + NEON):

• GCC 6.1.1 with flags -O3 -fno-schedule-insns
-mcpu=cortex-a15 -mthumb -march=native.

• Cycles count through CCNT register.

2. Cortex-A53 (ODROID OC2, 64 bits + NEON):
• GCC 6.1.1 with flags -O3 -fno-schedule-insns
-mcpu=cortex-a53 -mthumb -march=native.

• Cycles counts through CCNT register.

12

Results

Cortex-A15 Cortex-A53
0

10

20

30

40

50

60

70

Fantomas in CTR mode

NEON implementation

Fantomas (Ours)
16-block version (Ours)
16-block version (RW)

C
yc

le
s

P
er

 B
yt

e
(C

P
B

)

Cortex-A15 Cortex-A53
0

1000

2000

3000

4000

5000

6000

7000

8000

Platform

C
od

e
S

iz
e

(R
O

M
)

13

Side-channel resistance

1. Constant time implementation against cache-timing attacks:
• Performance penalty of 3 times in low-end.
•	 Inherent in vector implementations.
• Not sufficient against other side-channel attacks.

2. Masked implementation against power attacks:
•	 Significant quadratic performance penalty (almost twice slower
with a single mask).

• Not sufficient against cache timing attacks.
•	 Key masking to force attacker to recover all shares (additional
10-20% overhead).

14

Conclusions

Fantomas has some limitations regarding side-channel resistance:

• S-boxes do not require tables, but are expensive to mask.
• L-boxes are cheap to mask, but expensive to compute in

constant time.

New state-of-the-art implementations of Fantomas:

• Portable implementation in C is 35% and 52% faster

than [DCK+15] on Cortex-M, and similar in code size.

• NEON implementation is 40% faster in ARM.

15

PRESENT

Algorithm

Proposed in 2007 and standardized by ISO/IEC, one of the first
lightweight block cipher designs.

PRESENT

• Substitution-permutation network.
• 80-bit or 128-bit key and 64-bit block.
• Key schedule for 32 rounds with 64-bit subkeys subkeyi.
• 4-bit S-boxes with Boolean representation friendly to bitslicing.
• Bit permutation P such that P2 = P−1.

16

Algorithm

Figure 1: 4-bit S-Boxes in PRESENT.

{
16i mod 63 ̸if i = 63

P(i) =
63 if i = 63

17

Implementation

PRESENT optimizations

1. Decompose permutation P2 in software-friendly involutive
permutations P0 and P1.

2. Rearrange rounds to accommodate new permutations.
3. Efficient bitsliced S-boxes from [CHM11].
4. For CTR mode in 32 bits, process two blocks simultaneously.

18

Implementation

Figure 2: Permutation P in PRESENT.

Figure 3: Permutations P0 and P1 for optimized PRESENT. 19

Implementation

f

20

Experiments I

Benchmark: Encrypt+decrypt+key schedule 128 bytes in CBC or
encrypt 128 bits in CTR mode.

•	 Related work: FELICS [DCK+15], 2nd-order constant-time masked
ASM implementation of PRESENT [dGPdLP+16].

•	 Platforms:
1.	 Cortex-M3 (Arduino Due, 32 bits):

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns
-mcpu=cortex-m3 -mthumb.

• Cycles count by converting the output of the micros() function.
2. Cortex-M4 (Teensy 3.2, 32 bits):

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns
-mcpu=cortex-m3 -mthumb.

• Cycles count by converting the output of the micros() function.

21

Results

32-bit CBC 32-bit CTR
0

50000

100000

150000

200000

250000

300000

PRESENT

E+D+KS 128 bytes (CBC) or encrypt 128 bits (CTR) on ARM Cortex-M3

Ours
FELICS

C
yc

le
 C

ou
n

t

32-bit CBC 32-bit CTR
0

500

1000

1500

2000

2500

3000

Implementation

C
od

e
S

iz
e

(R
O

M
)

22

Results

32-bit CBC 32-bit CTR
0

10000

20000

30000

40000

50000

60000

PRESENT

E+D+KS 128 bytes (CBC) or encrypt 128 bits (CTR) on ARM Cortex-M4

Constant time (Ours)
Masked (RW)

C
yc

le
 C

ou
n

t

32-bit CBC 32-bit CTR
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Implementation

C
od

e
S

iz
e

(R
O

M
)

23

Conclusions

Side-channel resistance:

• PRESENT can be efficiently implemented in constant time.
• Performance penalty form masking is lower than Fantomas,
mainly due to choice of S-boxes.

New state-of-the-art implementations of PRESENT:

• S-boxes can be bitsliced (no tables) and permutations can be
much faster.

• Performance improvement of 8x factor.
• Our constant-time CTR implementation is now among the

fastest block ciphers in the FELICS benchmark (competitive with
SPARX).

24

Final notes

Bonus Round: Efficient implementation of MAC algorithms:

• Straight-forward loop unrolling and “state unrolling” into
register variables.

• Cortex-M3: improvement of Chaskey and SipHash to 7.8 and 30
cycles per byte, from 8.3 (6%) and 45 (29%) in the reference
code, respectively.

Important: All timings cross-checked with the MPS2 ARM
development board.

Fantomas for x86/SSE can be found at
https://github.com/rafajunio/fantomas-x86.

25

https://github.com/rafajunio/fantomas-x86

Questions?

25

Detailed timings

Table 1: Comparison of block ciphers implemented in C by this work with AES

in Assembly for encrypting 128 bits in CTR mode.

Cortex-M3 Cortex-M4

Block cipher Unprotected CT Unprotected CT ROM
Fantomas 2291 9063 2191 7866 1272
PRESENT-80 - 2052 - 1597 1124

AES-128 [SS16] 546 1617 554 1618 12120

26

References I

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher.
In CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

N. Courtois, D. Hulme, and T. Mourouzis.
Solving circuit optimisation problems in cryptography and
cryptanalysis.
IACR Cryptology ePrint Archive, 2011:475, 2011.

D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Großschädl, and
A. Biryukov.
Triathlon of lightweight block ciphers for the internet of things.
IACR Cryptology ePrint Archive, 2015:209, 2015.

References II

W. de Groot, K. Papagiannopoulos, A. de La Piedra, E. Schneider,
and L. Batina.
Bitsliced masking and arm: Friends or foes?
Cryptology ePrint Archive, Report 2016/946, 2016.
http://eprint.iacr.org/2016/946.

V. Grosso, G. Laurent, F. Standaert, K. Varici, F. Durvaux, L. Gaspar,
and S. Kerckhof.
CAESAR candidate SCREAM Side-Channel Resistant
Authenticated Encryption with Masking.
http:
//2014.diac.cr.yp.to/slides/leurent-scream.pdf,
2015.

http://eprint.iacr.org/2016/946
http://2014.diac.cr.yp.to/slides/leurent-scream.pdf
http://2014.diac.cr.yp.to/slides/leurent-scream.pdf

References III

V. Grosso, G. Leurent, F. Standaert, and K. Varici.
LS-Designs: Bitslice Encryption for Efficient Masked Software
Implementations.
In FSE, volume 8540 of Lecture Notes in Computer Science, pages
18–37. Springer, 2014.

P. Schwabe and K. Stoffelen.
All the AES You Need on Cortex-M3 and M4.
Cryptology ePrint Archive, Report 2016/714, 2016.
http://eprint.iacr.org/2016/714.

http://eprint.iacr.org/2016/714

	Introduction
	Fantomas
	PRESENT
	Appendix

