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Introduction
 



Summary 

Block ciphers and MAcs are among the most fundamental and useful 
cryptographic primitives. 

We discuss techniques for efficient and secure implementations of 
lightweight block ciphers and MACs in software: 

1. Fantomas, an LS-Design proposed in [GLSV14]. 
2. PRESENT, a Substitution-Permutation Network (SPN) [BKL+07] 
3. ARX-based MACs SipHash and Chaskey. 

. 

We target low-end and NEON-capable ARM processors, typical of 
embedded systems. Results are part of a project sponsored by LG 
involving more than 20 symmetric/asymmetric algorithms. 
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Fantomas
 



Construction 

LS-Designs 

Paradigm to construct block ciphers providing: 

• Lightweight designs from simple substitution and linear layers. 
• Friendliness to side-channel countermeasures (bitslicing and 
masking). 

• Tweakable variant for authenticated encryption (SCREAMv3). 
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Construction 

Algorithm 1 LS-Design encrypting block B into ciphertext C with key K. 

1: C + B E K ▷ C represents an s × l-bit matrix 
2: for 0 : r < Nr do 
3: for 0 : i < l do ▷ S-box layer 
4: C[i, ⋆] = S[C[i, ⋆]] 
5: end for 
6: for 0 : j < s do ▷ L-box layer 
7: C[⋆, j] = L[C[⋆, j]] 
8: end for 
9: C + C E K E C(r) ▷ Key and round constant addition 
10: end for 
11: return C 
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Algorithm 

The LS-Design paper introduced an involutive instance (Robin), and 
a non-involutive cipher (Fantomas). 

Fantomas 

• 128-bit key length and block size. 
• No key scheduling. 
• 8-bit (3/5-bit 3-round) S-boxes from MISTY. 
• L-box from vector-matrix product in F2. 
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Implementation in 32/64 bits 

Internal state can be represented with union to respect strict 
aliasing rules for 16/32/64-bit operations: 

typedef union { 
u in t32 _ t u32 ; // u in t64 _t u64 ; 
u in t 16 _ t u16 [ 2 ] ; // u in t 16 _ t u16 [ 4 ] ; 

} U32_t ; 

S-boxes operate over 16-bit chunks in the u16 portion. 

Key addition works using the u32/u64 internal state: 

f o r ( j = 0 ; j < 4 ; j ++ ) // f o r ( j = 0 ; j < 2 ; j ++ ) 
s t [ j ] . u32 ^= key_32 [ j ] ; // s t [ j ] . u64 ^= key_64 [ j ] ; 
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Attacker who monitors L-box positions in cache can recover internal
state. Internal state trivially reveals keys and plaintext if recovered
right before/after last/first key addition.

Implementation in 32/64 bits 

L-box can be evaluated using two precomputed tables: 

/* Unprotected L−box vers ion */ 

s t [ j ] . u16 [ 0 ] = LBoxH [ s t [ j ] . u16 [0] > >8] ^ 

LBoxL [ s t [ j ] . u16 [ 0 ] & 0 x f f ] ; 
s t [ j ] . u16 [ 1 ] = LBoxH [ s t [ j ] . u16 [ 1 ] > >8 ] ^ 

LBoxL [ s t [ j ] . u16 [ 1 ] & 0 x f f ] ; 

Problem: Beware of cache-timing-attacks! 
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Implementation in 32/64 bits 

Solution: We can replace memory access with online computation: 

s t a t i c i n l i n e type_t LBox ( type _t x , type_t y , u in t8 _t s ) { 
x &= y ; 
x ^= x >> 8 ; 
x ^= x >> 4 ; 
x ^= x >> 2 ; 
x ^= x >> 1 ; 
return ( x & 0x00010001 ) << s ; 
// re turn ( x & 0x0001000100010001 ) << s 

} 
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NEON implementation 

L-boxes can be evaluated using shuffling instructions to compute 8 
table lookups in parallel. 

L-box in
Registers

Important: 32-bit implementations can process 2 blocks and vector 
implementations can process 16 blocks simultaneously in CTR mode. 
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Experiments I 

Benchmark: Encrypt+decrypt 128 bytes in CBC or encrypt 128 bits in 
CTR mode. 

• Related work: FELICS (triathlon of block ciphers) [DCK+15]. 
• Platforms: 

1. Cortex-M3 (Arduino Due, 32 bits): 
• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns 
-mcpu=cortex-m3 -mthumb. 

• Cycles count by converting the output of the micros() function. 
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Results 
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Experiments II 

Benchmark: Encrypt 128 bits in CTR mode. 

•	 Related work: Ajusted timings from SCREAMv3 presentation in 
the CAESAR competition [GLS+15]. 

•	 Platforms: 
1.	 Cortex-A15 (ODROID XU4, 32 bits + NEON): 

• GCC 6.1.1 with flags -O3 -fno-schedule-insns 
-mcpu=cortex-a15 -mthumb -march=native. 

• Cycles count through CCNT register. 

2. Cortex-A53 (ODROID OC2, 64 bits + NEON): 
• GCC 6.1.1 with flags -O3 -fno-schedule-insns 
-mcpu=cortex-a53 -mthumb -march=native. 

• Cycles counts through CCNT register. 
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Results 
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Side-channel resistance 

1. Constant time implementation against cache-timing attacks: 
• Performance penalty of 3 times in low-end. 
•	 Inherent in vector implementations. 
• Not sufficient against other side-channel attacks. 

2. Masked implementation against power attacks: 
•	 Significant quadratic performance penalty (almost twice slower 
with a single mask). 

• Not sufficient against cache timing attacks. 
•	 Key masking to force attacker to recover all shares (additional 
10-20% overhead). 
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Conclusions 

Fantomas has some limitations regarding side-channel resistance: 

• S-boxes do not require tables, but are expensive to mask. 
• L-boxes are cheap to mask, but expensive to compute in 

constant time. 

New state-of-the-art implementations of Fantomas: 

• Portable implementation in C is 35% and 52% faster
 
than [DCK+15] on Cortex-M, and similar in code size.
 

• NEON implementation is 40% faster in ARM. 
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PRESENT
 



Algorithm 

Proposed in 2007 and standardized by ISO/IEC, one of the first 
lightweight block cipher designs. 

PRESENT 

• Substitution-permutation network. 
• 80-bit or 128-bit key and 64-bit block. 
• Key schedule for 32 rounds with 64-bit subkeys subkeyi. 
• 4-bit S-boxes with Boolean representation friendly to bitslicing. 
• Bit permutation P such that P2 = P−1. 
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Algorithm 

Figure 1: 4-bit S-Boxes in PRESENT. 

{
16i mod 63 ̸if i = 63

P(i) = 
63 if i = 63 
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Implementation 

PRESENT optimizations 

1. Decompose permutation P2 in software-friendly involutive 
permutations P0 and P1. 

2. Rearrange rounds to accommodate new permutations. 
3. Efficient bitsliced S-boxes from [CHM11]. 
4. For CTR mode in 32 bits, process two blocks simultaneously. 
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Implementation 

Figure 2: Permutation P in PRESENT. 

Figure 3: Permutations P0 and P1 for optimized PRESENT. 19 



Implementation 

f 
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Experiments I 

Benchmark: Encrypt+decrypt+key schedule 128 bytes in CBC or 
encrypt 128 bits in CTR mode. 

•	 Related work: FELICS [DCK+15], 2nd-order constant-time masked 
ASM implementation of PRESENT [dGPdLP+16]. 

•	 Platforms: 
1.	 Cortex-M3 (Arduino Due, 32 bits): 

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns 
-mcpu=cortex-m3 -mthumb. 

• Cycles count by converting the output of the micros() function. 
2. Cortex-M4 (Teensy 3.2, 32 bits): 

• GCC 4.8.4 from Arduino with flags -O3 -fno-schedule-insns 
-mcpu=cortex-m3 -mthumb. 

• Cycles count by converting the output of the micros() function. 
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Results 
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Conclusions 

Side-channel resistance: 

• PRESENT can be efficiently implemented in constant time. 
• Performance penalty form masking is lower than Fantomas, 
mainly due to choice of S-boxes. 

New state-of-the-art implementations of PRESENT: 

• S-boxes can be bitsliced (no tables) and permutations can be 
much faster. 

• Performance improvement of 8x factor. 
• Our constant-time CTR implementation is now among the 

fastest block ciphers in the FELICS benchmark (competitive with 
SPARX). 
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Final notes 

Bonus Round: Efficient implementation of MAC algorithms: 

• Straight-forward loop unrolling and “state unrolling” into 
register variables. 

• Cortex-M3: improvement of Chaskey and SipHash to 7.8 and 30 
cycles per byte, from 8.3 (6%) and 45 (29%) in the reference 
code, respectively. 

Important: All timings cross-checked with the MPS2 ARM 
development board. 

Fantomas for x86/SSE can be found at 
https://github.com/rafajunio/fantomas-x86. 
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Questions?
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Detailed timings 

Table 1: Comparison of block ciphers implemented in C by this work with AES 

in Assembly for encrypting 128 bits in CTR mode. 

Cortex-M3 Cortex-M4 

Block cipher Unprotected CT Unprotected CT ROM 
Fantomas 2291 9063 2191 7866 1272 
PRESENT-80 - 2052 - 1597 1124 

AES-128 [SS16] 546 1617 554 1618 12120 
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