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Abstract. We present multiple contributions to the efficient software implementation of cryp­
tographic algorithms for ARM devices. The talk summarizes three contributions: (i) LS-designs 
(represented by Fantomas), their efficient implementation and side-channel security; (ii) techniques 
to optimize implementations of the PRESENT block cipher, using bitslicing and permutation de­
composition. (iii) miscellaneous observations about efficient implementation of dedicated MAC 
algorithms, such as Chaskey and SipHash. The implementations target the Cortex-M and Cortex-
A families of ARM processors. These devices are located towards the mid to lower-end of the 
spectrum of ARM architectures, and are typical of scenarios considered for lightweight cryptogra­
phy, such as the Internet of Things. We improve on the state-of-the-art implementations of these 
algorithms substantially, both in terms of efficiency, security or compactness, by making use of 
novel algorithmic techniques and features specific of the target platforms. 

1 Introduction 

The emergence of the Internet of Things (IoT) immediately raises concerns about the security 
of communications between IoT devices and even of the devices themselves. The fact that 
an extraordinary number of wirelessly networked devices will continuously store and exchange 
sensitive data has exposed a larger attack surface (ranging from physical exposure and ease 
of access to remote availability) and made practical several attack scenarios that were only 
considered in the research literature. 

While designing and developing secure efficient implementations of cryptography is not a 
new problem and has been an active area of research since the birth of public-key cryptog­
raphy, the emergence of IoT brings new challenges to this paradigm. In particular, special 
attention must be given to side-channel attacks, in which operational aspects of the implemen­
tation of a cryptographic algorithm may leak internal state information and allow an attacker 
to retrieve cryptography keys by only observing leakage through the communication channel, 
power consumption, execution time or radiation measurements. Information leaked through 
cache latency [1,2] or execution time [3] already allows powerful timing attacks against naive 
implementations of symmetric and public-key cryptography, respectively. More intrusive at­
tacks also attempt to inject faults at precise execution times, in hope of corrupting execution 
state to reveal secret information. Consequently, securely implementing cryptography in typi­
cal resource-constrained IoT devices is a challenging research problem for the next few years. 
Optimizing such implementations to strike an ideal balance between resource efficiency and 
side-channel resistance further complicate matters, beckoning both algorithmic advances and 
novel implementation strategies. 

In this proposal, we present a series of contributions to the efficient software implementation 
of strong contenders in the lightweight cryptography space: 

–	 Efficient, portable, secure and compact implementation of LS-Designs, instantiated through 
the Fantomas block cipher. We also study the side-channel security of LS-Designs, by propos­
ing a simple cache-timing attack on the linear diffusion layer; and constant-time, masked 
versions of the implementation as possible countermeasures. In particular, our unprotected 



32-bit implementation achieves speedups from 35% to 66% in the ARM Cortex-M architec­
ture, while consuming considerably less code size. The vectorized implementation improves 
performance over the state of the art by 40% in the ARM Cortex-A15. 

–	 A technique to optimize the PRESENT block cipher by exploiting the cipher structure to 
decompose the permutation P into simpler ones and combine permutations together with 
the key schedule. This removes the need of applying the permutations at every round of 
the cipher. A careful implementation of the block cipher under the CTR mode of operation 
provides up to an 8-factor speedup over state-of-the-art related work. 

–	 Miscellaneous results on the implementation of ARX-based MAC algorithms, such as Chaskey 
and SipHash. Fully unrolled implementations of the round function and conversion of inter­
nal state into registers allow savings in the number of memory operations and provide up 
to 40% performance improvement in the Cortex-M, while keeping code size controlled. 

ARM was selected as the platform of choice, due to its cost-effectiveness, wide availability and 
stringent resource consumption in terms of power. We further target the Cortex-M and Cortex-
A family of processors in the ARM spectrum, because they are representive of different segments 
of architectures, but still include powerful resources such as DSP-style instructions and cache 
memory (even in some M4 cores). We now focus on the two main contributions regarding block 
ciphers, both of which are in the process of submission to academic venues. 

2 Fantomas 

LS-Designs [4] were conceived to address side-channel threats, by combining the advantages of 
bitslicing-capable ciphers with easy support to regular and masked software implementations. 
Algorithm 1 presents a generic specification for an LS-Design, illustrating its simplicity and 
regularity. Instances of a LS-Design cipher are characterized by the choice of bitsliced S-boxes 
S, an L-box matrix L acting as the diffusion layer, a number of rounds Nr and round constants 
C(r). In the original LS-Design paper, two ciphers were instantiated and analyzed: Robin, a 
faster involutive instance that later succumbed to invariant subspace attacks [5]; and the non­
involutive candidate Fantomas. 

Algorithm 1 LS-Design construction encrypting plaintext block B into ciphertext C with key 
K. 
1: C ← B ⊕ K	 C C represents an s × l-bit matrix 
2: for 0 ≤ r < Nr do 
3: for 0 ≤ i < l do C S-box layer 
4: C[i, *] = S[C[i, *]] 
5: end for 
6: for 0 ≤ j < s do C L-box layer 
7: C[*, j] = L[C[*, j]] 
8: end for 
9: C ← C ⊕ K ⊕ C(r) C Key and round constant addition 
10: end for 
11: return C 

Fantomas employs the 3/5-bit S-boxes from the 3-round MISTY cipher [6]. An important 
consideration taken by the original authors of the cipher is the number of AND operations in the 
choice of S-boxes. For security of the masking countermeasure, a lower bound on the number 
of ANDs is the size of the S-boxes. Because Fantomas employs S-boxes of 8-bit granularity, the 
S-boxes must contain at least 8 AND operations to be appropriate for masking. There is some 
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security margin in this design decision because Fantomas employs 11 AND operations between 
elements of the cipher state. The L-box is presented in Figure 1 and its computation can be 
seen as a vector-matrix product in F2, as illustrated in the picture. 
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Fig. 1. Linear layer of Fantomas. The L-box matrix has gray cells for 1 bits and white cells for 0 bits. 

We have performed multiple implementations of the cipher: a portable implementation for 
32-bit and 64-bit processors, and vectorized code for NEON instructions. The portable imple­
mentation employs a simple technique to represent the internal state and simultaneously allow 
operations over 16-bit or 32-bit data inside the S-boxes. The diffusion layer is performance-
critical and presents more obstacles to side-channel resistance, since it is implemented through 
table lookups on the L-box, thus both protected and unprotected versions of the L-box were 
implemented. Notice that an attacker able to monitor during encryption what positions of the 
L-box are used through cache timing information is automatically able to compute the key K 
by simply XORing internal state before the last key addition together with the ciphertext. This 
is true even for masked implementations. The unprotected version employs two 256-position 
half-word precomputed tables, while the constant-time version implements the operation on-
line by performing the vector-matrix binary multiplication, where two or four 16-bit values are 
processed at the same time. In terms of masking, we implemented a standard technique and 
devised a simple way to mask the key K which forces an attacker to recover all shares in order 
to mount a cache-timing attack. We argue that either a fully constant-time implementation or 
the key masking technique are required to properly protect against timing attacks. 

There are two main related works that established the previous state of the art for imple­
mentations of Fantomas. The most recent is the massive implementation effort from the FELICS 
framework [7]. We target the same Cortex-M3 processor considered in their work (Arduino Due) 
and two scenarios are taken into consideration. Scenario 1 considers consecutive encryption and 
decryption of 128 bytes in CBC mode. In the paper, the best implementation according to their 
Figure of Merit (FOM) takes 70,197 cycles using 4620 bytes of ROM. The website has more 
recent numbers for an implementation capable of encrypting and decrypting in 94,921 cycles 
which consumes 2916 bytes of ROM. Our implementation is 35.4% and 52.2% faster than their 
implementations, respectively, and competitive in terms of code size with the more compact 
implementation. In Scenario 2, FELICS reports a range of figures for unprotected Fantomas 
when encrypting 128 bits in CTR mode, ranging from compact implementation to best exe­
cution time. The most compact takes 8335 cycles and 1384 bytes of ROM (520.94 CPB), the 
most efficient takes 3522 cycles and 2088 bytes of ROM (220.13 CPB) and a good trade-off 
is found at 4550 cycles and 2184 bytes of code size (284.38 CPB). After the proper conver­
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sions, our implementation improves these figures by 66.5%, 20.9% and 37.7%, respectively, by 
spending only 1916 bytes of ROM. The NEON implementation organizes data in vector regis­
ters differently than related work and computes 16 encryptions simultaneously in CTR mode. 
With help of work [8] from the Fantomas designers, we adjusted timings for vectorized code 
taking into account platform and benchmarking differences. We then observed an approximate 
performance gain of 40% of our implementation when compared to the adjusted timings in the 
Cortex-A15 platfom. The protected implementations still introduce a substantial performance 
penalty, requiring further research work. 

3 PRESENT 

PRESENT [9] is a lightweight block cipher optimized for hardware implementation whose design 
was published in 2007. The PRESENT encryption routine receives as input a key K, which may 
consist of 80 or 128 bits, and a 64-bit block of plaintext. The key is processed through a schedule 
that produces thirty-two 64-bit subkeys subkeyi. Then, the plaintext block is processed as usual 
in a substitution-permutation network: in each one of 31 rounds, the block is XORed with a 
subkey, every group of 4 consecutive bits is substituted through an S-box S and the bits are 
repositioned by the permutation P , described by the rule given in Equation 1. At the end of 
the algorithm, the state is once again XORed with a subkey. Concerning the permutation P , it 
holds the interesting property that P 2 = P −1 and P 2 can be decomposed into two permutations 
P0 and P1, which we will use later. The encryption function is described in Algorithm 2.  

16i mod 63  if i = 63 
P (i) = (1)

63 if i = 63 

Algorithm 2 Encryption in PRESENT of plaintext block B to ciphertext block C.
 
1: C ← B 
2: for i = 1 to 31 do 
3: C ← C ⊕ subkeyi 

4: C ← S(C) 
5: C ← P (C) 
6: end for 
7: C ← P ⊕ subkey32 

8: return C 

One of our primary concerns is to avoid implementing the S-box as a lookup table, not 
only to avoid costly memory access operations but also to mitigate possible timing attacks. To 
this end, we simulate the application of the S-box via bitwise operations, as proposed in [10]. 
However, using four registers to operate and produce a single bit of output is highly inneficient 
and, thus, we calculate 16 S-boxes simulations in parallel, reorganizing the cipher internal state. 

Now, to further enhance performance, we try to avoid applying the permutation P directly 
onto the state. To adapt the subkey adition, we need to apply the permutation over the subkeys, 
so that the correct bits are summed up. Adapting the S-box step is more complicated, because 
at each round the bits over wich we have to operate occupy a specific position in the state, but 
the property that P 2 = P1 ◦ P0 allows us to prepare different arrangements for the bits before 
the S-box step, and then repeat them. One of these arrangements consists in no transformation, 
because the bits are already properly aligned. The other two are in fact a permutation of the 
bits, but simpler than the actual permutation P , since we do not have the exact constraints of 
which position each bit have to go to, we just need to have the proper bits aligned. 
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One final optimization that may be carried out is that our proposed organization for one 
block state uses 16 bits of 4 registers. Since our target architecture has a 32-bit word length, 
we may simply couple another block of message to be processed simultaneously, assuming the 
use of a mode of operation that does not cause dependences between different blocks, as is the 
case of CTR mode. 

After implementing all of these ideas, we compared our results with those presented by [7] 
in a scenario that assumes the key schedule already computed and the subkeys ready to be used 
in the memory of the device. In this case, to encrypt 128 bits of data using the CTR mode, our 
implementation takes 2050 clock cycles whereas [7] performs the same work in around 17000 
Cortex-M3 cycles. As a result, PRESENT is again competitive with more recent block cipher 
designs. 

Conclusion and acknowledgements 

In this work, we have presented performance and security improvements for implementation of 
block ciphers Fantomas and PRESENT. Together with improved implementation strategies for 
dedicated MAC algorithms, we describe optimizations targeting the main primitives considered 
by NIST in its potential standardization effort. Finally, the authors fully acknowledge support 
from LG Electronics Inc. during the development of the research presented here. 
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