
Lightweight Cryptography on ARM

A presentation proposal

Rafael J. Cruz1, Tiago B. Reis1, Diego F. Aranha1, Julio López1, Harsh Kupwade Patil2

1 Institute of Computing – University of Campinas
2 LG Mobile Research

Abstract. We present multiple contributions to the efficient software implementation of cryp­
tographic algorithms for ARM devices. The talk summarizes three contributions: (i) LS-designs
(represented by Fantomas), their efficient implementation and side-channel security; (ii) techniques
to optimize implementations of the PRESENT block cipher, using bitslicing and permutation de­
composition. (iii) miscellaneous observations about efficient implementation of dedicated MAC
algorithms, such as Chaskey and SipHash. The implementations target the Cortex-M and Cortex-
A families of ARM processors. These devices are located towards the mid to lower-end of the
spectrum of ARM architectures, and are typical of scenarios considered for lightweight cryptogra­
phy, such as the Internet of Things. We improve on the state-of-the-art implementations of these
algorithms substantially, both in terms of efficiency, security or compactness, by making use of
novel algorithmic techniques and features specific of the target platforms.

1 Introduction

The emergence of the Internet of Things (IoT) immediately raises concerns about the security
of communications between IoT devices and even of the devices themselves. The fact that
an extraordinary number of wirelessly networked devices will continuously store and exchange
sensitive data has exposed a larger attack surface (ranging from physical exposure and ease
of access to remote availability) and made practical several attack scenarios that were only
considered in the research literature.

While designing and developing secure efficient implementations of cryptography is not a
new problem and has been an active area of research since the birth of public-key cryptog­
raphy, the emergence of IoT brings new challenges to this paradigm. In particular, special
attention must be given to side-channel attacks, in which operational aspects of the implemen­
tation of a cryptographic algorithm may leak internal state information and allow an attacker
to retrieve cryptography keys by only observing leakage through the communication channel,
power consumption, execution time or radiation measurements. Information leaked through
cache latency [1,2] or execution time [3] already allows powerful timing attacks against naive
implementations of symmetric and public-key cryptography, respectively. More intrusive at­
tacks also attempt to inject faults at precise execution times, in hope of corrupting execution
state to reveal secret information. Consequently, securely implementing cryptography in typi­
cal resource-constrained IoT devices is a challenging research problem for the next few years.
Optimizing such implementations to strike an ideal balance between resource efficiency and
side-channel resistance further complicate matters, beckoning both algorithmic advances and
novel implementation strategies.

In this proposal, we present a series of contributions to the efficient software implementation
of strong contenders in the lightweight cryptography space:

–	 Efficient, portable, secure and compact implementation of LS-Designs, instantiated through
the Fantomas block cipher. We also study the side-channel security of LS-Designs, by propos­
ing a simple cache-timing attack on the linear diffusion layer; and constant-time, masked
versions of the implementation as possible countermeasures. In particular, our unprotected

32-bit implementation achieves speedups from 35% to 66% in the ARM Cortex-M architec­
ture, while consuming considerably less code size. The vectorized implementation improves
performance over the state of the art by 40% in the ARM Cortex-A15.

–	 A technique to optimize the PRESENT block cipher by exploiting the cipher structure to
decompose the permutation P into simpler ones and combine permutations together with
the key schedule. This removes the need of applying the permutations at every round of
the cipher. A careful implementation of the block cipher under the CTR mode of operation
provides up to an 8-factor speedup over state-of-the-art related work.

–	 Miscellaneous results on the implementation of ARX-based MAC algorithms, such as Chaskey
and SipHash. Fully unrolled implementations of the round function and conversion of inter­
nal state into registers allow savings in the number of memory operations and provide up
to 40% performance improvement in the Cortex-M, while keeping code size controlled.

ARM was selected as the platform of choice, due to its cost-effectiveness, wide availability and
stringent resource consumption in terms of power. We further target the Cortex-M and Cortex-
A family of processors in the ARM spectrum, because they are representive of different segments
of architectures, but still include powerful resources such as DSP-style instructions and cache
memory (even in some M4 cores). We now focus on the two main contributions regarding block
ciphers, both of which are in the process of submission to academic venues.

2 Fantomas

LS-Designs [4] were conceived to address side-channel threats, by combining the advantages of
bitslicing-capable ciphers with easy support to regular and masked software implementations.
Algorithm 1 presents a generic specification for an LS-Design, illustrating its simplicity and
regularity. Instances of a LS-Design cipher are characterized by the choice of bitsliced S-boxes
S, an L-box matrix L acting as the diffusion layer, a number of rounds Nr and round constants
C(r). In the original LS-Design paper, two ciphers were instantiated and analyzed: Robin, a
faster involutive instance that later succumbed to invariant subspace attacks [5]; and the non­
involutive candidate Fantomas.

Algorithm 1 LS-Design construction encrypting plaintext block B into ciphertext C with key
K.
1: C ← B ⊕ K	 C C represents an s × l-bit matrix
2: for 0 ≤ r < Nr do
3: for 0 ≤ i < l do C S-box layer
4: C[i, *] = S[C[i, *]]
5: end for
6: for 0 ≤ j < s do C L-box layer
7: C[*, j] = L[C[*, j]]
8: end for
9: C ← C ⊕ K ⊕ C(r) C Key and round constant addition
10: end for
11: return C

Fantomas employs the 3/5-bit S-boxes from the 3-round MISTY cipher [6]. An important
consideration taken by the original authors of the cipher is the number of AND operations in the
choice of S-boxes. For security of the masking countermeasure, a lower bound on the number
of ANDs is the size of the S-boxes. Because Fantomas employs S-boxes of 8-bit granularity, the
S-boxes must contain at least 8 AND operations to be appropriate for masking. There is some

2

security margin in this design decision because Fantomas employs 11 AND operations between
elements of the cipher state. The L-box is presented in Figure 1 and its computation can be
seen as a vector-matrix product in F2, as illustrated in the picture.

L- bits

S
-

bi
ts

S
b
o
x

Lbox

X

Count Parity

?

Fig. 1. Linear layer of Fantomas. The L-box matrix has gray cells for 1 bits and white cells for 0 bits.

We have performed multiple implementations of the cipher: a portable implementation for
32-bit and 64-bit processors, and vectorized code for NEON instructions. The portable imple­
mentation employs a simple technique to represent the internal state and simultaneously allow
operations over 16-bit or 32-bit data inside the S-boxes. The diffusion layer is performance-
critical and presents more obstacles to side-channel resistance, since it is implemented through
table lookups on the L-box, thus both protected and unprotected versions of the L-box were
implemented. Notice that an attacker able to monitor during encryption what positions of the
L-box are used through cache timing information is automatically able to compute the key K
by simply XORing internal state before the last key addition together with the ciphertext. This
is true even for masked implementations. The unprotected version employs two 256-position
half-word precomputed tables, while the constant-time version implements the operation on-
line by performing the vector-matrix binary multiplication, where two or four 16-bit values are
processed at the same time. In terms of masking, we implemented a standard technique and
devised a simple way to mask the key K which forces an attacker to recover all shares in order
to mount a cache-timing attack. We argue that either a fully constant-time implementation or
the key masking technique are required to properly protect against timing attacks.

There are two main related works that established the previous state of the art for imple­
mentations of Fantomas. The most recent is the massive implementation effort from the FELICS
framework [7]. We target the same Cortex-M3 processor considered in their work (Arduino Due)
and two scenarios are taken into consideration. Scenario 1 considers consecutive encryption and
decryption of 128 bytes in CBC mode. In the paper, the best implementation according to their
Figure of Merit (FOM) takes 70,197 cycles using 4620 bytes of ROM. The website has more
recent numbers for an implementation capable of encrypting and decrypting in 94,921 cycles
which consumes 2916 bytes of ROM. Our implementation is 35.4% and 52.2% faster than their
implementations, respectively, and competitive in terms of code size with the more compact
implementation. In Scenario 2, FELICS reports a range of figures for unprotected Fantomas
when encrypting 128 bits in CTR mode, ranging from compact implementation to best exe­
cution time. The most compact takes 8335 cycles and 1384 bytes of ROM (520.94 CPB), the
most efficient takes 3522 cycles and 2088 bytes of ROM (220.13 CPB) and a good trade-off
is found at 4550 cycles and 2184 bytes of code size (284.38 CPB). After the proper conver­

3

sions, our implementation improves these figures by 66.5%, 20.9% and 37.7%, respectively, by
spending only 1916 bytes of ROM. The NEON implementation organizes data in vector regis­
ters differently than related work and computes 16 encryptions simultaneously in CTR mode.
With help of work [8] from the Fantomas designers, we adjusted timings for vectorized code
taking into account platform and benchmarking differences. We then observed an approximate
performance gain of 40% of our implementation when compared to the adjusted timings in the
Cortex-A15 platfom. The protected implementations still introduce a substantial performance
penalty, requiring further research work.

3 PRESENT

PRESENT [9] is a lightweight block cipher optimized for hardware implementation whose design
was published in 2007. The PRESENT encryption routine receives as input a key K, which may
consist of 80 or 128 bits, and a 64-bit block of plaintext. The key is processed through a schedule
that produces thirty-two 64-bit subkeys subkeyi. Then, the plaintext block is processed as usual
in a substitution-permutation network: in each one of 31 rounds, the block is XORed with a
subkey, every group of 4 consecutive bits is substituted through an S-box S and the bits are
repositioned by the permutation P , described by the rule given in Equation 1. At the end of
the algorithm, the state is once again XORed with a subkey. Concerning the permutation P , it
holds the interesting property that P 2 = P −1 and P 2 can be decomposed into two permutations
P0 and P1, which we will use later. The encryption function is described in Algorithm 2.

16i mod 63 if i = 63
P (i) = (1)

63 if i = 63

Algorithm 2 Encryption in PRESENT of plaintext block B to ciphertext block C.

1: C ← B
2: for i = 1 to 31 do
3: C ← C ⊕ subkeyi

4: C ← S(C)
5: C ← P (C)
6: end for
7: C ← P ⊕ subkey32

8: return C

One of our primary concerns is to avoid implementing the S-box as a lookup table, not
only to avoid costly memory access operations but also to mitigate possible timing attacks. To
this end, we simulate the application of the S-box via bitwise operations, as proposed in [10].
However, using four registers to operate and produce a single bit of output is highly inneficient
and, thus, we calculate 16 S-boxes simulations in parallel, reorganizing the cipher internal state.

Now, to further enhance performance, we try to avoid applying the permutation P directly
onto the state. To adapt the subkey adition, we need to apply the permutation over the subkeys,
so that the correct bits are summed up. Adapting the S-box step is more complicated, because
at each round the bits over wich we have to operate occupy a specific position in the state, but
the property that P 2 = P1 ◦ P0 allows us to prepare different arrangements for the bits before
the S-box step, and then repeat them. One of these arrangements consists in no transformation,
because the bits are already properly aligned. The other two are in fact a permutation of the
bits, but simpler than the actual permutation P , since we do not have the exact constraints of
which position each bit have to go to, we just need to have the proper bits aligned.

4

One final optimization that may be carried out is that our proposed organization for one
block state uses 16 bits of 4 registers. Since our target architecture has a 32-bit word length,
we may simply couple another block of message to be processed simultaneously, assuming the
use of a mode of operation that does not cause dependences between different blocks, as is the
case of CTR mode.

After implementing all of these ideas, we compared our results with those presented by [7]
in a scenario that assumes the key schedule already computed and the subkeys ready to be used
in the memory of the device. In this case, to encrypt 128 bits of data using the CTR mode, our
implementation takes 2050 clock cycles whereas [7] performs the same work in around 17000
Cortex-M3 cycles. As a result, PRESENT is again competitive with more recent block cipher
designs.

Conclusion and acknowledgements

In this work, we have presented performance and security improvements for implementation of
block ciphers Fantomas and PRESENT. Together with improved implementation strategies for
dedicated MAC algorithms, we describe optimizations targeting the main primitives considered
by NIST in its potential standardization effort. Finally, the authors fully acknowledge support
from LG Electronics Inc. during the development of the research presented here.

References

1.	 Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES. In CHES, volume 4249 of
Lecture Notes in Computer Science, pages 201–215. Springer, 2006.

2.	 Colin Percival. Cache missing for fun and profit. In Proceedings of BSDCan, 2005.
3.	 Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In

CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.
4.	 Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici. LS-Designs: Bitslice En­

cryption for Efficient Masked Software Implementations. In FSE, volume 8540 of Lecture Notes in Computer
Science, pages 18–37. Springer, 2014.

5.	 Gregor Leander, Brice Minaud, and Sondre Rønjom. A Generic Approach to Invariant Subspace Attacks:
Cryptanalysis of Robin, iSCREAM and Zorro. In EUROCRYPT, volume 9056 of Lecture Notes in Computer
Science, pages 254–283. Springer, 2015.

6.	 Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of Lightweight S-Boxes Using Feistel
and MISTY Structures. In SAC, volume 9566 of Lecture Notes in Computer Science, pages 373–393. Springer,
2015.

7.	 Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and Alex Biryukov.
Triathlon of lightweight block ciphers for the internet of things. Cryptology ePrint Archive, Report 2015/209,
2015. http://eprint.iacr.org/.

8.	 Vincent Grosso, Gaëtan Laurent, François-Xavier Standaert, Kerem Varici, François Durvaux, Lubos Gaspar,
and Stéphanie Kerckhof. CAESAR candidate SCREAM Side-Channel Resistant Authenticated Encryption
with Masking. http://2014.diac.cr.yp.to/slides/leurent-scream.pdf, 2015.

9.	 Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Rob­
shaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher. In CHES, volume
4727 of Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

10.	 Kostas Papapagiannopoulos. High throughput in slices: The case of present, PRINCE and KATAN64 ciphers.
In RFIDSec, volume 8651 of Lecture Notes in Computer Science, pages 137–155. Springer, 2014.

5

http://2014.diac.cr.yp.to/slides/leurent-scream.pdf
http:http://eprint.iacr.org

