
On the importance of considering physical attacks when
implementing lightweight cryptography

Alexandre Adomnicai1,6, Benjamin Lac2,6, Anne Canteaut5, Jacques J.A. Fournier3

Laurent Masson1, Renaud Sirdey4, and Assia Tria2

1 Trusted Objects, Rousset, France,
{a.adomnicai, l.masson}@trusted-objects.com

2 CEA-Tech, Gardanne, France,

3 CEA-Leti, Grenoble, France,

4 CEA-List, Saclay, France,

{benjamin.lac, renaud.sirdey, assia.tria, jacques.fournier}@cea.fr

5 Inria, Paris, France,
anne.canteaut@inria.fr

6 ENSM-SE, Saint-Étienne, France,

Abstract. Pervasive devices are usually deployed in hostile environments where they are physically
accessible to attackers. As lightweight cryptography is designed for such devices, it has to be
particularly resistant to physical attacks. In this paper, we illustrate how active and passive
physical attacks against the lightweight block cipher PRIDE can be carried. A side channel attack
and a fault attack have been successfully implemented on the same software implementation of
the algorithm. In both cases, we were able to recover the entire encryption key. First, we present
our attacks, then we analyze them in terms of complexity and feasibility and finally, we discuss
possible countermeasures.

Keywords: LWC · PRIDE · Physical attacks · CEMA · DFA.

1 Introduction

Everyday, more objects are turned into interconnected pervasive devices. The expansion of the Internet
of Things (IoT) brings many benefits but also raises a number of problems concerning security and
privacy. Security is one of the biggest barriers to IoT adoption. To tackle this challenge, lightweight
cryptography (LWC) is investigated in order to address IoT security issues while seeking the best
compromise between security, power consumption, high performance and low footprint. During the last
years, several lightweight block ciphers have been proposed, for example PRIDE [3], PRESENT [9],
CLEFIA [33], PRINCE [11], KLEIN [15], SIMON [5] or SPECK [5]. LWC will be embedded into the
IoT devices which shall have to store and handle secret/sensitive cryptographic keys at some points.
The security of these keys within the device has to be guaranteed throughout the life cycle of the
device (i.e. from the device’s manufacturing through the personalization stage up to its end of life),
which may last several years. In the meantime, the device will be in the field and as it can be a hostile
environment (i.e. physically accessible to attackers), physical attacks must be taken in account. Indeed,
resistance against side channel attacks is now considered as a valuable property which should be taken in
consideration when designing lightweight ciphers, as underlined by the ciphers FIDES [7], PICARO [26],
Zorro [17] and the LS-designs family [18]. Although hardware implementations are more efficient in
all aspects (performances, power consumption and security) than software ones, design and study of
software-oriented ciphers is nevertheless important since these implementations are widely used in
practice because of their flexibility and ease of development. In this paper we analyze the resistance
of PRIDE against physical attacks because nowadays, when looking at software implementations, it is
one of the most efficient lightweight block ciphers [4] as shown by the performance comparisons given
in [3,4]. In this paper we first present the PRIDE algorithm before introducing physical attacks. Then we
introduce the two attacks that have been put into practice before analyzing them in terms of efficiency
and feasibility. Finally we discuss countermeasures that can be implemented to thwart such attacks
before concluding the paper with some perspectives.

mailto:anne.canteaut@inria.fr
mailto:jacques.fournier}@cea.fr
mailto:l.masson}@trusted-objects.com

2 The PRIDE block cipher

PRIDE is an iterative block cipher composed of 20 rounds and introduced by Albrecht & al. [3] in 2014.
It takes as input a 64-bit block and uses a 128-bit key k = k0||k1. The first 64 bits k0 are used for pre­
and post-whitening. The last 64 bits k1 are used by a key schedule algorithm to produce the subkeys
fr(k1) for each round r. The key schedule adds round-constants to parts of the key.

We denote by k1i the i-th byte of k1 then

(0) (1) (2) (3)fr(k1) = k10 ||g (k11)||k12 ||g (k13)||k14 ||g (k15)||k16 ||g (k17)r r r r

for round r with
(0)g (x) = (x + 193r) mod 256 r
(1)g (x) = (x + 165r) mod 256 r
(2)g (x) = (x + 81r) mod 256 r
(3)g (x) = (x + 197r) mod 256 r

The design of PRIDE is close to the one of a LS-design, a concept that was introduced by Grosso &
al [18] in 2014, the only differences being that it uses an additional key for pre- and post-whitening,
several matrices for the linear layer and has no linear layer on the last round. In this paper, we chose
to present PRIDE as a LS-design in order to explain more simply our analysis.The inner state of the
cipher, as well as the plaintext, ciphertext, and key, are all represented as a 4 × 16 bits array. In this
paper, B[n] denotes the n-th nibble (4 bits) of a binary word B while Bn denotes the i-th byte of B.
Moreover, the nibbles’ rows and columns are numbered from left to right starting from 1. The following
notations are used for the intermediate values of the state within a round function:

Ir the input of the r-th round
Xr the state after the key addition layer of the r-th round
Yr the state after the substitution layer of the r-th round input
Or the output of the r-th round

A round r such that 1 ≤ r ≤ 19 is composed of the following steps:

i. XORing the current n-bit subkey fr(k1) with the state: Xr = Ir ⊕ fr(k1),
ii. Applying the 4-bit S-box S, which definition is given in Appendix C, to each column of the state

(i.e. apply the substitution layer S−layer to the state): Yr = S−layer(Xr),
iii. Multiplying each row by a matrice Li, called L-box, given in [3] for 0 ≤ i ≤ 3 (i.e. apply the linear

layer L−layer to the state): Or = L−layer(Yr).

The last round simply consists of the first two steps (i.e. without the linear layer).
In order to encrypt a plaintext M , the cipher performs a XOR between M and P(k0), where P is

the permutation layer given in [3]. It then applies the 20 rounds as previously described, and finally
applies once again a XOR between M and P(k0). Figure 1 shows the representation of PRIDE inner
state with frames showing the inputs of S-box and the input of L-box.

Apply S-box

⎞ ⎟⎟⎟⎠

⎛ ⎜⎜⎜⎝
..

· · · s4,16

s1,1 · · · s1,16

. . .
s4,1

Apply L-box

Figure 1: Inner matrix state of PRIDE

In this paper, we denote by S1 · · · S16 the inner state given in Figure 1 such that Si consists of the
nibble s1,i · · · s4,i for all i. For example, the hexadecimal value 0xe8d3157f246e80cb denotes the inner
state given in Figure 2. 2

⎞⎛
1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 ⎜⎜⎝
0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0
1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1

Figure 2: Inner state 0xe8d3157f246e80cb

⎟⎟⎠

3 Physical attacks

Cryptographic algorithms are usually constructed to resist to algebraic (mathematical) cryptanalysis
or exhaustive key searching by future computers. However, most cryptographic models do not cover
physical attacks which target the cryptographic primitive’s implementation. Physical attacks can be
divided into two classes: passive attacks and active ones. Active attacks disturb the operation of a device
or try to reverse-engineer functions by analysing the chip at the logic level. Passive attacks, also called
side channel attack (SCA) [22], can be divided into timing attacks [14], and interpretation of one or
more traces [28,24] (i.e. recording of the power or electromagnetic emanation while a cryptographic
primitive is running on the device). In this paper, we present an attack from each category (passive and
active) on the PRIDE lightweight block cipher.

3.1 Side-channel attacks

Since the publication of differential power analysis (DPA) [21], it is public knowledge that the analysis
of a power trace obtained when executing a cryptographic primitive might reveal information about the
secret involved.
A few years later, correlation power analysis (CPA) has been widely adopted over DPA as it requires
fewer traces and is more efficient [12]. The principle is to recover part of the secret key by targeting
a specific intermediate state of the algorithm, and try to predict its value by making hypotheses on
the portion of the key involved. Then, to uncover the link between the predictions and the traces, the
Pearson correlation coefficient between these two variables is computed using an appropriate leakage
model (usually based on the Hamming weight or the Hamming distance depending on the platform
and the targeted implementation). It yields a value between −1 (total negative correlation) and +1
(total positive correlation) for every point in time, indicating how much the prediction correlates to the
recorded values over several traces. The formula of this coefficient is

Cov(X, Y) E(X Y) − E(X)E(Y)
ρ(X, Y) = Corr(X, Y) = = _ . (1) σX σY 2 2

E X − E(X) E Y − E(Y)

where E(X) is the expected value of the random variable X. Then, the hypothesis which matches with
the real key should return a significantly higher coefficient than the other hypotheses. Note that other
functions may be used to exploit the correlation between measured traces and the secret key used, like
those based on template analyses or mutual information exploitation.

The attack described above remains valid when analyzing electromagnetic (EM) emanation traces
instead of power consumption ones. In this case, we talk about Correlation-based ElectroMagnetic
Analysis (CEMA). Although there are many different ways to measure EM emissions (sensor types,
positioning. . .), this side channel has properties that make it more interesting than the “traditional”
power consumption measurements. Among those properties, the ability to measure locally and in a
contactless manner [2] makes electromagnetic emanations very attractive. Furthermore, power analysis
often requires a slight modification of a device’s printed circuit board (PCB) (e.g. by setting up a point
to monitor core voltage), which is not necessary with EM analysis. These reasons led us to choose this
side channel.

Regarding LWC, side channel attacks have been performed againsts ciphers like PRESENT [39,27,30],
CLEFIA [29] or PRINCE and RECTANGLE [32].

3

3.2 Fault attacks

Fault attacks, introduced in [10], consist in disturbing the behaviour of the circuit in order to alter the
correct execution of the cipher. Faults can be injected into the device by various means such as light
pulses [35], laser [34], clock glitches [1], spikes on the voltage supply [8] or EM perturbations [13]. Some
other techniques are not invasive, i.e. glitches (power, clock, electromagnetic). Clock and voltage glitches
disturb the whole component while EM glitches allow to have more local effects with relatively high
spatial and temporal precisions, using equipment at “affordable costs” [13].

One of the objectives of fault attacks, especially when considering cryptographic ciphers, is to perform
Differential Fault Analysis (DFA). DFA, originally described in [6], consists in retrieving a cryptographic
key by comparing the correct ciphertexts with the faulty ones yielded by computations during which
a physical perturbation was applied. In the particular field of LWC, differential fault attacks have
been proposed against ciphers like PRESENT [40], SPECK [38], TRIVIUM [25], PRINCE [36] and
PRIDE [23]. DFA techniques are very efficient to retrieve keys used during a cryptographic computation,
usually requiring only a few executions. For this main reason, in our analysis of PRIDE implementations
security, we decided to first focus on its resistance against fault attacks in order to identify possible
attack paths.

4 Setting up the attacks

In this section, we first describe how our device has been programmed and then detail the ‘reverse­
engineering’ done to carry out the attacks presented afterwards.

4.1 Implementation

In order to test the feasibility of our attacks against PRIDE, we have implemented and run the cipher
on a chip embedding an ARM Cortex-M3 micro-controller. That specific chip was chosen because it is
quite representative of the off-the-shelf devices used for IoT applications. Note that the chip does not
embed any countermeasures against the kind of attacks presented in this paper. Our implementation,
whose source code is given in Appendix D, works on bytes of data. In our experiment, we used a key
k = k0||k1 where k0 = 0xa371b246f90cf582 and k1 = 0xe417d148e239ca5d.

4.2 Simple Electromagnetic Analysis

First, we performed a simple electromagnetic analysis (SEMA) during one execution of PRIDE in order
to identify our attack targets.

By inspecting the trace shown in Figure 3, we could clearly distinguish every twenty rounds.

Time (µs)
0 50 100 150 200 250 300

V
ol

ta
ge

 (
V

)

-0,1

-0,05

0

0,05

0,1

0,15

0,2

Figure 3: Electromagnetic emanations of the whole PRIDE block cipher

Then, we tried to recognize each operation by zooming onto the first two rounds, the corresponding
trace is shown in Figure 4.

4

At first sight, it was easy to differentiate one round from the other but not one operation from the
other. To distinguish each operation whithin a round, we first took a look at the last one, where the
L−layer is omitted. Consequently, it allowed us to determine the pattern corresponding to the L−layer
and so where the S−layer’s one ends. Finally, we had to distinguish the round key whitening and the
S−layer. As the round key whitening consist of 4 additions and 8 XORs, we made the educated guess
depicted in Figure 4 intuitively.

Time (µs)
5 10 15 20 25 30 35

V
ol

ta
ge

 (
V

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25 S-layer L-layer

f1(k1)
addition

k0 pre
whitening

Figure 4: Electromagnetic emanations of the first two rounds of PRIDE block cipher

5 Correlation electromagnetic analysis

In this section, we introduce our attack to retrieve the secret key using CEMA on unprotected PRIDE
computations. Then, we propose a pragmatic execution of the attack on our 8-bit implementation.

5.1 General principle

The principle is to make the attack in two stages: one for each halves of the key. The first step consists
in recovering P(k0). To do this, we chose to focus on the last round, as in the first round, P(k0) and
f1(k1) are added successively to the state.

By characterizing our chip embedding an ARM Cortex-M3, we observed that information leaked
upon register updates through the STRB ARM instruction. As the leak does not concern the previous
state value, we used a leakage model based on the Hamming weight 7 (HW) of the manipulated data.

CEMA against block ciphers usually focuses on the input (or output, depending on whether the
attack focuses on the last round or not) of the S-box operation which is the only non-linear element of
the algorithm. This non-linearity ensures a good distinguishability between the correct and incorrect
key guesses for CEMA. Indeed, correlation between the observed and the predicted EM leakage will be
close to zero if the key guess is incorrect, due to the non-linear relationship between the predicted state
and the key. Although we could focus on the input of the last S−layer by starting from ciphertexts,
we did not opt for this approach. At first glance, it seemed too convoluted because of our bitsliced
implementation. It is due to the fact the permutations P and P−1 form an integral part of the S−layer
and have not been explicitly implemented. Therefore, to recover the state’s first byte at the last S−layer
input, one should make hypotheses on P(k0)0, P(k0)2 and P(k0)4 (i.e. on 24 bits). Contrary to some
other block ciphers such as AES, where each byte passes through the S-box independently, in the case of
PRIDE each byte depends on several others during the S−layer operation. Consequently, we decided to
focus on the key additions where each byte could be treated independently. The first stage consists in
recovering P(k0) by predicting the state value at the S−layer output while the second one consists in
recovering f20(k1) by predicting the state value at the L−layer output.

7 The Hamming weight correponds to the number of ones in the binary representation of the data.

5

5.2 Practical implementation

PRIDE was executed for 1000 random plaintexts with the fixed key k stated in the previous section. The
last two rounds were targeted for the data acquisition and EM traces were captured with 6500 points
per encryption of 1000 samples. Thereafter, we will note the matrix of traces. ⎤⎡⎤⎡

T0 t0,0 t1,1 · · · t0,999

T =
⎢⎢⎢⎣

T2
. . .

⎥⎥⎥⎦
=
⎢⎢⎢⎣

⎥⎥⎥⎦
. (2)

t2,0 t2,1 · · · t2,999
.

T6499 t6499,1 t6499,2 · · · t6499,999

To recover each byte P(k0)i for 0 ≤ i ≤ 7, we first computed the estimation matrices Ei by
computing the Hamming weight of each ciphertext Cj for 0 ≤ j ≤ 999 XORed with each key hypothesis
0 ≤ HK ≤ 255. ⎡⎤⎡ ⎤

i i iEi
0 · · ·e e e0,0 0,1 0,999 ⎢⎢⎢⎣

⎥⎥⎥⎦
=
⎢⎢⎢⎣

⎥⎥⎥⎦
i i iEi

1
. . .

· · ·e e e1,0 1,1 1,999
Ei = (3).

i i iEi e · · · e255 255,0 e255,1 255,999

iwhere e = HW (Cj,i ⊕ HK).HK ,j

Then, we performed a classical CEMA attack (also called Vertical) by computing the correlation
coefficients matrices P i from Ei and T � where T � ⊂ T denotes the traces points corresponding to the
last S−layer. ⎡⎤⎡ ⎤

ρi ρi · · · ρi 0,0 0,1 0,255P i 0 ⎢⎢⎢⎣

⎥⎥⎥⎦
=
⎢⎢⎢⎣

⎥⎥⎥⎦ρi ρi · · · ρi 1,0 1,1 1,255P i 1
. . .

P i = (4).
P i ρin−1,0 ρ

i · · · ρi n−1 n−1,1 n−1,255

where #T � = n ≈ 1300 and ρi = Corr(T �, Ei).t,HK t HK

Figure 5 shows the plot corresponding to P 1 .

Points
165 170 175 180 185 190

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

good key byte hypothesis K
HK such as HD(HK ,K) = 1
HK such as HD(HK ,K) = 2
HK such as HD(HK ,K) = 3
HK such as HD(HK ,K) = 4
HK such as HD(HK ,K) = 5
HK such as HD(HK ,K) = 6
HK such as HD(HK ,K) = 7

twos-complement K

Figure 5: Key recovery of P(k0)0 with 256-bit hypotheses

6

We can clearly distinguish a symmetry about the x-axis, which occurs due to the fact that the key
hypotheses are simply XORed with the ciphertexts. Thus, the two’s complement HK (i.e. 255 − HK) of
each key byte hypothesis HK leads to a symmetric relation regarding the Hamming weight estimation
matrix i.e. ∀i ∀j, Ei = 8 − Ei . This results in a negative correlation coefficient as stated in HK ,jHK ,j
Proposition 1. The proof of this proposition is given in Appendix B.

Proposition 1 Let X be an arbitrary variable. Let Yi = (yi,1, yi,2, ..., yi,n) and Yj = (yj,1, yj,2, ..., yj,n)
be two variables such as Yi = z −Yj i.e. ∀n, yi,n = z −yj,n with z ∈ R. Then, Corr(X, Yi) = −Corr(X, Yj).

Furthermore, we can differentiate 8 correlation classes. Each class corresponds to a set of key byte
hypotheses Sd where the Hamming distance between the real key byte and each element equals d (i.e.
∀HK ∈ Sd, HD(HK ,K) = d).

Therefore, we deduced that it was sufficient to make key byte hypotheses on 7 bits instead of 8.
Consequently, in that way, if max(|P i|) = max(P i) then the correct key byte is the matching HK ,
otherwise it is HK . Figure 6 shows the plot corresponding to P 1 with 128-bit hypotheses and Figure 7
shows the plot corresponding to P 2 as well with 128-bit hypotheses which illustrates the other case (i.e.
highest negative correlation coefficient).

Points
165 170 175 180 185 190

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

good key byte hypothesis K

Figure 6: Key recovery of P(k0)0 with
128-bit key hypotheses

Points
340 345 350 355 360

C
or

re
la

tio
n

co
ef

fic
ie

nt

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2
good key byte hypothesis

Figure 7: Key recovery of P(k0)1 with
128-bit key hypotheses

In the same way, we were able to recover all the other bytes of P(k0).
After that, we were able to apply the S−layer without any complications and then we repeated the
same reasoning to recover f20(k1). The only differences concern the part of the trace which is analyzed
T �� ⊂ T (i.e. the L−layer operation instead of the S−layer one) and the way to compute the estimation

imatrices: e = HW (C � ⊕ HK) where C � = S−layer−1 Cj ⊕ P(k0) .HK ,j j,i j

6 Differential faults analysis of PRIDE

In this section, we briefly recall the technique proposed in [23] to retrieve the secret key using fault
injections on PRIDE computations. More details on this attack are given in [23]. Then, we propose a
practical implementation of the attack on our 8-bit PRIDE implementation. Note that in this section,
we chosed to apply P−1 to the differential inputs (resp. outputs) to clearly exhibit each S-box nibble
input (resp. output).

6.1 General principle

In the first state of this attack, we corrupt, one by one, some rows of the inner state between the last two
substitution layers in order to retrieve k0. Indeed, a flip of the bit 1 ≤ α ≤ 16 on the row 1 ≤ β ≤ 4 of Xr

at round 1 ≤ r ≤ 20 gives us a difference ΔInr[α] equals to 24−β on the S-box input α. Moreover, from
the knowledge of the correct and the faulty ciphertexts C and C∗, we can compute the corresponding
difference ΔOutr[α] on the S-box output. Thereby, we obtain a known differential (ΔInr[α], ΔOutr[α]).

7

The best case consists then in flipping all the bits of the row in order to activate all the S-boxes in the
last round. For example Figure 8 shows the obtained state difference from a flip of the second row before
the substitution layer. In this case, we got a difference equal to 0x4 on the input of each S-box.

Apply S-box ⎞
0
1
0
0

⎛ ⎜⎜⎜⎜⎝

0 · · · 0 0
1 · · · 1 1

⎟⎟⎟⎟⎠0 · · · 0 0
0 · · · 0 0

Figure 8: State difference obtained from a flip of the second row before the substitution layer

Then, we exploit the difference distribution table of the PRIDE S-box given in [23]. Indeed, obtaining
information on k0 is possible from the following equation on each nibble 1 ≤ α ≤ 16:

ΔIn20[α] = S (P−1(C) ⊕ k0)[α] ⊕ S (P−1(C ∗) ⊕ k0)[α]

Indeed,
x = (P−1(C) ⊕ k0)[α] and y = (P−1(C∗) ⊕ k0)[α] satisfy

x ⊕ y = ΔOut20[α] and S(x) ⊕ S(y) = ΔIn20[α]

and, from the knowledge of a nonzero input difference ΔIn20[α] and of an output difference ΔOut20[α]
for S, we deduce 2 or 4 candidates for the input value x because the differential uniformity of S equals
4 (as we can see from the difference distribution table of the PRIDE S-box). Moreover, Proposition 2
introduced in [23] enables us to exhibit pairs of differentials for the S-box which are simultaneously
satisfied for a single element. The proof of this proposition is given in [23].

Proposition 2 Let S be an n-bit S-box with differential uniformity 4. Let (a1, b1) and (a2, b2) be two
differentials with a1 such that the system of two equations = a2

S(x ⊕ a1) ⊕ S(x) = b1 (5)

S(x ⊕ a2) ⊕ S(x) = b2 (6)

has at least two solutions. Then, each of the three equations (5), (6) and

S(x ⊕ a1 ⊕ a2) ⊕ S(x) = b1 ⊕ b2

has at least four solutions.

In other words, if we can find two differentials (a1, b1) and (a2, b2) such that one out of the three
entries in the difference distribution table (a1, b1), (a2, b2) and (a1 ⊕ a2, b1 ⊕ b2) equals to 2, then we
can guarantee that the input satisfying these two differentials simultaneously is unique.

Note: if one of the three equations does not have any solution, then the system of two equations (5)
and (6) does not have any solution either.

Finally, for the first stage (which objective is to find k0), we just have to flip two rows such that
the obtained pairs of differentials complies with the proposition. For example, flipping the first row and
then the last one, allows us to obtain respectively for all 1 ≤ α ≤ 16 pairs of differentials (ΔOut20[α],
ΔIn20[α])1 = (a1, 0x8) and (ΔOut20[α], ΔIn20[α])2 = (a2, 0x1) with a1 and a2 known. Since 0x8⊕0x1
= 0x9 from the Proposition 2 (and the difference distribution table of the PRIDE S-box), only one
element in the intersection of the two sets of solutions is obtained for each nibble. Therefore, we have
shown that we get only one candidate for each nibble of P−1(C) ⊕ k0 and, from the knowledge of C, we
retrieve k0.

8

Once k0 has been recovered, X20 and X∗ can be computed from the ciphertexts C and C∗ . Then20
ΔOut19 can be computed and the following equation, on each nibble 1 ≤ α ≤ 16,

ΔIn19[α] = S ◦ P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) [α]

⊕ S ◦ P−1 ◦ L−layer−1 S−layer C ∗ ⊕ P(k0) ⊕ f20(k1) [α],

allows the attacker to recover f20(k1), and therefore k1 with the same method but from fault injections
between the penultimate two substitution layers. Indeed,

x = P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) [α] and

y = P−1 ◦ L−layer−1 S−layer C∗ ⊕ P(k0) ⊕ f20(k1) [α] satisfy

x ⊕ y = ΔOut19[α] and S(x) ⊕ S(y) = ΔIn19[α].

6.2 Practical implementation

In order to inject exploitable faults into such a chip, we used EM pulses because, with this approach, we
did not need to decapsulate the chip and were able to inject faults at precise spatial locations and at
precise enough instants to target specific rounds of the cipher during its execution. The set-up we used is
quite similar to the one described in [13] but we did not need any motorized X-Y stage: injecting faults
‘in the center’ of the chip was good enough to have a random fault model (one chance out of two to
flip a bit). Indeed, as we saw in the previous section, it is possible to target a precise 8-bit word (more
precisely a specific instruction) but the injected faults follow a random pattern. We can thus retrieve the
value of a random fault from the position of active S-boxes.

The plaintext used for all executions was 0xe8d3157f246e80cb and the correct ciphertext was
0x0b735baaf63aac9e. We used the SEMA presented in figure 3 to identify the last rounds in time.
Then, we used an electromagnetic pulse generator to disrupt the PRIDE execution. All the obtained
faults which were exploitable are given in Appendix A. Among the obtained faults, we underline in
Appendix A those that give as much information as all faults. It also lists the candidates that we can
extract from them.

From the obtained faults on the last two substitution layers and from P−1(C) = 0x3636d3ec58eb71f8,
with k0[3] ∈ {0x0, 0x1, 0x4, 0x5} and k0[11] ∈ {0x8, 0x9, 0xc, 0xd}, we got 16 possible values for k0.
In order to reduce the number of possible keys, we then used faulty ciphertexts obtained from fault
injection between the penultimate two substitution layers. For this, we computed the difference output
ΔOut19 from all the 16 remaining candidates for the key. Then, we observed that some differentials
(ΔOut19, ΔIn19) were not possible on the inverse S-box and therefore we removed the corresponding
candidates.

Indeed, from the faulty ciphertext 0xc42ec0dbb65e18db, we obtained the 16 following values for
ΔOut19 for each possible value of k0:

k0 ΔOut19 k0 ΔOut19

0xa370b246f908f582 0x000800096445640e 0xa374b246f908f582 0x000800096445640e
0xa370b246f909f582 0x020800096447440e 0xa374b246f909f582 0x020800096447440e
0xa370b246f90cf582 0x0000000064446407 0xa374b246f90cf582 0x0000000064446407
0xa370b246f90df582 0x0000000164456406 0xa374b246f90df582 0x0000000164456406
0xa371b246f908f582 0x000800096445640e 0xa375b246f908f582 0x000800096445640e
0xa371b246f909f582 0x020800096447440e 0xa375b246f909f582 0x020800096447440e
0xa371b246f90cf582 0x0000000064446407 0xa375b246f90cf582 0x0000000064446407
0xa371b246f90df582 0x0000000164456406 0xa375b246f90df582 0x0000000164456406

and as we knew that we injected faults on the last row of X19, we knew that each nibble of ΔIn19 was
either 0x0 or 0x1. From the difference distribution table of the S-box, we saw that an input difference
equals to 0x1 implies an output difference in {0x4, 0x5, 0x6, 0x7}. Then, we got only four possible
candidates for k0 (displayed in red). Similarly, from the faulty ciphertext 0x3165d7eea5f5f4dc, we
obtained the following values for ΔOut19 based on remaining values of k0:

9

k0 ΔOut19

0xa370b246f90cf582 0x03a98a8300000001
0xa371b246f90cf582 0x03a88a8200000000
0xa374b246f90cf582 0x03a9ce8b40080009
0xa375b246f90cf582 0x21a9ce8b40082009

and as we knew that the fault was injected on the first row of X19, we were able to retrieve k0 (displayed
in red).

Then, by doing the intersection between the sets for each nibble obtained from the faults injected
between the penultimate two substitution layers, we got

P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) = 0xdf36eb60a400d4e9.

Thus, S−layer C ⊕ P(k0) ⊕ f20(k1) = 0xffb81d4c69243ad7, and from

S−layer C ⊕ P(k0) = 0x1b93cc608ba9f016,

we deduced f20(k1) = 0xe42bd12ce28dcac1 and finally, we retrieved k1 = 0xe417d148e239ca5d.

7 Costs analysis of CEMA and DFA on PRIDE

7.1 Attack paths

In terms of attack paths, CEMA exploits the key addition layer while DFA exploits the design of
the PRIDE S−layer. This latter makes the CEMA more tricky since it uses the transparent bitwise
permutation layers given in [3] unlike classical substitution layers, which apply n-bit S-boxes singly on
each n-bit words of the state. In the case of PRIDE, the substitution layer applies bitwise mathematical
operations between each 16-bit words of the state (or bytes in our implementation). Consequently, it
makes the intermediate state corresponding to input (or output) of the S−layer more delicate to target.
However, attacking a simple XOR operation still allowed us to carry out the attack.

On the other hand, this property makes DFA much easier. Indeed, flipping the 16 bits of any row at
its input activates all S-boxes in the next round. Hence, applying this property in the last round allows
the attacker to recover information on all nibbles of the subkey k0. Then, the number of remaining
candidates for k0 is upper-bounded by δ(S)16, where δ(S) = 4 is the differential-uniformity of the PRIDE
S-box. Moreover, the differential properties of the S-box avoids the existence of differentials with high
probability over a large number of rounds. The counterpart of this resistance against classical differential
cryptanalysis is that the number of inputs which satisfy two valid differentials simultaneously is usually
reduced to a single element. This property enables the attacker to drastically reduce the number of
subkey candidates. In the case of PRIDE, two faults, each on 16 consecutive bits before the substitution
layer, are enough to obtain a single candidate for the subkey.

7.2 Costs

We now analyze the total cost of each attack. First, we study the attacks implementation cost. CEMA
only requires many curves of simple electromagnetic analysis of the last rounds from different plaintexts.
In this case the ring oscillator does not need to be particularly efficient and a simple picoscope would
amply do the job. DFA is more difficult to implement: it only needs one simple electromagnetic analysis
but requires an electromagnetic pulse generator. The number of needed pulses in order to obtain enough
exploitable faults is close to the number of required curves for the CEMA but DFA requires only one
plaintext. Then, we compute an approximation of each attack complexity from the required parameters.

In case of CEMA, we have shown that, by attacking the key addition layer, it is sufficient to make
210hypotheses on 7 bits only. So, for each half of the key, we have to make 27 × 8 = hypotheses. It

means that our attack reduces the key search space from 2128 to 211 . To generalize, we denote nK the
number of portion key hypotheses, nT the number of texts and nP the number of points per trace. Then,
CEMA requires to compute nK × nC estimations and nK × nP correlation coefficients for each part of

10

� � � �

the key. Note that the attack can be optimized by reducing the number of points treated. For example,
an educated guess on the interval to attack can be made in order to avoid computations overhead. This
underlines that CEMA requires much more memory than DFA. In this experimentation, approximately
100Mo were required but depending on nK , nT and nC values, it can quickly become a handicap.

In case of DFA, we compute the number of remaining candidates from 8-bit random faults. We call
8-bit random fault the fact of having one chance out of two to flip each bit of a byte. This is close to what
we have obtained in practice with electromagnetic pulses on our implementation. It is possible to target
a precise word (more precisely a specific instruction) but the injected faults follow a random pattern.
Moreover, injecting the faults before the linear layer allows us to obtain a difference pattern close to a
16-bit random difference pattern at the output. Thus, the complexity is close to an exhaustive search of
the remaining candidates from random faults on the first and last row before the last two substitution
layers. Then, when n random faults (one chance out of two to flip each bit) have been injected on one
row, the probability to obtain no difference on a nibble is equal to 1/2n and the probability to obtain tnone difference is equal to 1/2i = 1 − 1/2n = (2n − 1)/2n . Moreover, if we get no difference with all i=1
faults (on the first and last row) then, we still have 16 candidates for the corresponding nibble. On the
other hand, if we get only one difference, we obtain 4 candidates. Finally, if we get the two differences,
we retrieve the correct value.

Finally, the average number of remaining candidates for k0 (resp. k1 once k0 have been recovered)
from random faults before the last (resp. penultimate) linear layer, n1 on the first row and n2 on the
last row, is equals to:

n1 n2 n1 n216 4 4 1 1
(+ + + ()())16

2n1+n2 2i+n2 2i+n1 2i 2i
i=1 i=1 i=1 i=1

or equivalently
16 + 4(2n1 − 1) + 4(2n2 − 1) + (2n1 − 1)(2n2 − 1)

)16(
2n1+n2

or similarly
9 3 3

(+ + + 1)16

2n1+n2 2n1 2n2

As we can see, n1 and n2 are interchangeable. Moreover, for a given n = n1 + n2, the minimum of
the previous equation is reached for n1 = l(n/2)J and n2 = 1(n/2)1. Table 1 shows the average number
of remaining candidates for a subkey according to n from n1 = l(n/2)J (resp. n2 = 1(n/2))1 random
faults on the first (resp. last) row of the linear layer input in the previous round.

Table 1: Remaining candidates R for a subkey from n random faults
n 2 4 6 8 10 12 14 16 18 20
R 242.3 225.8 214.7 27.9 17.6 4.33 2.10 1.45 1.21 1.10

Note : we can also reduce the number of remaining candidates for k0 from the faults obtained before
the penultimate substitution layer as we have seen in the previous section.

8 Countermeasures

In this section, we present and briefly analyze three possible countermeasures to thwart such attacks. The
first one protects against correlation electromagnetic analysis, the second one against differential faults
analysis and the last one against both but requires protocol modifications. This list of countermeasures
is not exhaustive and any combination of those three can be used in practice.

8.1 Against correlation electromagnetic analysis

There are many strategies to protect a cipher from side channel attacks. At the software level, the most
common countermeasure is masking, which consists in applying secret sharing at the implementation

11

level. Most of the proposed solutions are polynomial-based masking schemes in which multiplications over
a binary finite field are secured using the ISW scheme [20]. In order to reduce the overhead introduced
by this kind of countermeasure, bitslice masking has been recently proposed [18,16,31]. As the PRIDE
S-box is designed for bitsliced implementation, we have naturally investigated this method. For a nibble
denoted n = a || b || c || d, a mask of first order m = ma || mb || mc || md and nb = n ⊕ m = ba ||bb || bc || db, the
S-Box returns the output nibble b = b B || Cb || Db whereN A || bb bA = bc ⊕ (ba · b)

Bb = db⊕ (bb · cb) b a ⊕ (b Bb)C = b A · b b bD = b ⊕ (b C)B ·

The challenging part of gate-level masking is to provide a construction for AND gates. Such a
construction is proposed in [37]. It consists in introducing a random r as a new mask and modifying bthe AND gate computation. For example, to compute zb= ba · b = (a ⊕ ma) · (b ⊕ mb) we will generate a
random bit r and compute:

mz = r (7)b bzb= (ba · b) ⊕ (ma · mb) ⊕ (ma · b) ⊕ (mb · ba) ⊕ r (8)

In the particular case of PRIDE, by using the method described above, we will need to gener­
ate 4 random bits (rA, rB , rC , rD) for each secure AND gate to compute the updated mask M =
MA || MB || MC || MD where

MA = mc ⊕ rA

MB = md ⊕ rB

MC = ma ⊕ rC

MD = mb ⊕ rD

Concerning the L−layer, as it is a linear operation, we just have to compute it over the state mask M in
parallel in order to be able to correctly unmask the masked state (i.e. to recover N from bN and M).

8.2 Against differential faults analysis

Making two computations for the last rounds is a simple countermeasure against this kind of attack. We
save the state of the cipher X18 in memory, possibly k times for more security - as it concerns lightweight
cryptography it seems reasonable to take k = 1 or k = 2. Then, we make the computations up to O20

and save the state again. We repeat the computation with the saved state (X18) and compare it with
the first result - possibly k times again. If two different computations give different results, we trap the
cipher and no output is produced by the system. Otherwise, the execution performs normally. We can
also apply a majority vote by duplicating the computations twice, possibly 2k times and give as output
the one that appears most. Figure 9 shows a majority vote using duplication.

X18

X18

O20

O"
20

enc.

enc.
O20 = O"

20?

O"
20

Tr
ue

False

X18 O""
20

enc.
O""

20 = O"
20?

O20

O""
20

Fa
lse

True

Figure 9: Majority vote using duplication

This countermeasure uses, for encryption and decryption, two additional matrix layers and three
additional substitution layers, subkey updates and subkey additions per duplication. It introduces an
overhead of 15% of the total PRIDE cost per duplication.

12

8.3 Against both

Another countermeasure proposed by Guilley and al. in [19] is to add a random mask to the message
in order to prevent two consecutive executions of the same plaintext. More precisely, in its original
description, it consists in generating a 64-bit random mask different at each execution, which is XORed
it with the asked plaintext and the corresponding ciphertext is sent with the mask.

In our case, we use a simple LFSR defined by a minimal primitive polynomial of degree 64 (X64 +
X63 + X61 + X60 + 1 for example) and an initialization made public. The LFSR thus generates 264 − 1
different masks. It must not be accessible to the user to avoid its reset. For that, it must be correctly
implemented in hardware. We apply the mask by an XOR on the input of the 10-th round. This allows
to prevent the adversary from getting two encryptions of the same plaintext, and therefore to run a
DFA. For decryption, we apply an XOR between the mask and the output of the 10-th round and get
the correct plaintext. We then have two options. The first one is to send the mask with the ciphertext.
Unfortunately, in this case, this method does not protect against an attack on decryption. Indeed, the
attacker can choose the same mask on each decryption. However, in the context of IoT, it is common
that the device is only used for encryption and that decryption is carried out on a protected server. The
second option is to synchronize the encryption and the decryption. They both use the same LFSR with
the same initialization and the decryption must be applied in the same order as ciphertexts received.
Therefore, the countermeasure protects both the encryption and the decryption, but with an additional
synchronisation constraint.

In both cases, with same plaintext and key as inputs, the countermeasure protects against correlation
power analysis (as the operations are not the same between two computations) and against differential
faults analysis (as it does not return twice the same output). These two options are notexpensive but
request a procedure constraint. Figure 10 illustrates the countermeasure.

Init PRNG Out

enc. Ciphertext, Outenc.
I10⊕OutPlaintext

Figure 10: Mask based on the Guilley countermeasure

The cost depends on the choice of the random mask generation. A simple LFSR - like the one
mentioned above - implemented in hardware has a low cost with respect to IoT constraints. Moreover,
in the second case, applying the mask requests an additional cost of an XOR for encryption and for
decryption.

9 Conclusion

In this paper, we underline the importance of considering physical attacks when implementing lightweight
cryptography by illustrating how passive and active physical attacks can be carried against a PRIDE
software implementation. The results show that PRIDE is vulnerable to CEMA as well as DFA and so
additional countermeasures are required when put into practice. Finally, we propose such countermeasures
for both attacks. The next steps shall now be to analyse the countermeasures’ effects in terms of security
and performance.

13

References

1. Agoyan, M., Dutertre, J., Naccache, D., Robisson, B., Tria, A.: When clocks fail: On critical paths and clock
faults. In: Gollmann, D., Lanet, J., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193.
Springer, Berlin, Germany, Passau, Germany (April 14-16, 2010)

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side—Channel(s), pp. 29–45. Springer
Berlin Heidelberg, Berlin, Heidelberg (2003), http://dx.doi.org/10.1007/3-540-36400-5_4

3. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block Ciphers - Focus on the
Linear Layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616,
pp. 57–76. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014)

4. Baysal, A., Sahin, S.: Roadrunner: A Small and Fast Bitslice Block Cipher for Low Cost 8-bit processors. In:
Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec 2015. LNCS, vol. 9065, pp. 58–76. Springer, Berlin,
Germany, Bochum, Germany (September 10-11, 2015)

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK:
Block Ciphers for the Internet of Things. Cryptology ePrint Archive, Report 2015/585 (2015), http:
//eprint.iacr.org/2015/585

6. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.)
CRYPTO’97. LNCS, vol. 1294, pp. 513–525. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 17–21,
1997)

7. Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: FIDES: Lightweight Authenticated Cipher
with Side-Channel Resistance for Constrained Hardware. In: Bertoni, G., Coron, J. (eds.) Cryptographic
Hardware and Embedded Systems, CHES 2013. Lecture notes in computer science, vol. 8086, pp. 142–158.
Springer, Heidelberg, Germany (2013), http://doc.utwente.nl/89342/

8. Blömer, J., Seifert, J.P.: Fault based cryptanalysis of the advanced encryption standard (AES). In: Wright,
R. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Berlin, Germany, Guadeloupe, French West Indies
(Jan 27–30, 2003)

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe,
C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 450–466. Springer, Berlin, Germany, Vienna, Austria (Sep 10–13, 2007)

10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults
(extended abstract). In: Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 37–51. Springer, Berlin,
Germany, Konstanz, Germany (May 11–15, 1997)

11. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen, L.R., Leander, G., Nikov, V.,
Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher
for pervasive computing applications - extended abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Berlin, Germany, Beijing, China (Dec 2–6, 2012)

12. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model, pp. 16–29. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-28632-5_2

13. Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A.: Electromagnetic transient faults injection on a hardware
and a software implementations of AES. In: Bertoni, G., Gierlichs, B. (eds.) FDTC 2012. pp. 7–15. IEEE
Computer Society, Leuven, Belgium (September 9, 2012)

14. Dhem, J., Koeune, F., Leroux, P., Mestré, P., Quisquater, J., Willems, J.: A practical implementation of the
timing attack. In: Quisquater, J., Schneier, B. (eds.) CARDIS ’98. LNCS, vol. 1820, pp. 167–182. Springer,
Berlin, Germany, Louvain-la-Neuve, Belgium (September 14-16, 1998)

15. Gong, Z., Nikova, S., Law, Y.W.: RFID. Security and Privacy: 7th International Workshop, RFIDSec 2011,
Amherst, USA, June 26-28, 2011, Revised Selected Papers, chap. KLEIN: A New Family of Lightweight
Block Ciphers, pp. 1–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2012), http://dx.doi.org/10.
1007/978-3-642-25286-0_1

16. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? Cryptology ePrint Archive,
Report 2016/264 (2016), http://eprint.iacr.org/2016/264

17. GÃľrard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that are easier to mask: How
far can we go? Cryptology ePrint Archive, Report 2013/369 (2013), http://eprint.iacr.org/2013/369

18. Grosso, V., Leurent, G., Standaert, F.X., Varici, K.: LS-designs: Bitslice encryption for efficient masked
software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Berlin, Germany, London, UK (Mar 3–5, 2015)

19. Guilley, S., Sauvage, L., Danger, J., Selmane, N.: Fault injection resilience. In: Breveglieri, L., Joye, M.,
Koren, I., Naccache, D., Verbauwhede, I. (eds.) FDTC 2010. pp. 51–65. IEEE Computer Society, Santa
Barbara, California, USA (August 21, 2010), http://dx.doi.org/10.1109/FDTC.2010.15

14

http://dx.doi.org/10.1007/3-540-36400-5_4
http://eprint.iacr.org/2015/585
http://eprint.iacr.org/2015/585
http://doc.utwente.nl/89342/
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://eprint.iacr.org/2016/264
http://eprint.iacr.org/2013/369
http://dx.doi.org/10.1109/FDTC.2010.15

20. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks, pp. 463–481.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003), http://dx.doi.org/10.1007/978-3-540-45146-4_27

21. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of the 19th Annual International
Cryptology Conference on Advances in Cryptology. pp. 388–397. CRYPTO ’99, Springer-Verlag, London,
UK, UK (1999), http://dl.acm.org/citation.cfm?id=646764.703989

22. Koeune, F., Standaert, F.: A tutorial on physical security and side-channel attacks. In: Foundations of
Security Analysis and Design III, FOSAD 2004/2005 Tutorial Lectures. LNCS, vol. 3655, pp. 78–108. Springer,
Berlin, Germany (2005)

23. Lac, B., Beunardeau, M., Canteaut, A., Fournier, J.J.A., Sirdey, R.: A First DFA on PRIDE: from Theory
to Practice. In: Proc. 11th International Conference on Risks and Security of Internet and Systems. Springer,
Roscoff, France (September 2016)

24. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of smart cards. Springer
(2007)

25. Mohamed, M.S.E., Bulygin, S., Buchmann, J.A.: Using SAT solving to improve differential fault analysis of
trivium. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M.O. (eds.) ISA 2011. Communications in Computer
and Information Science, vol. 200, pp. 62–71. Springer, Berlin, Germany, Brno, Czech Republic (August
15-17, 2011)

26. Piret, G., Roche, T., Carlet, C.: PICARO – A Block Cipher Allowing Efficient Higher-Order Side-Channel
Resistance, pp. 311–328. Springer Berlin Heidelberg, Berlin, Heidelberg (2012), http://dx.doi.org/10.
1007/978-3-642-31284-7_19

27. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel resistant crypto for less
than 2, 300 ge. J. Cryptology 24, 322–345 (2011)

28. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures and counter-measures for smart cards.
In: E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Berlin, Germany, Cannes, France (September
19-21, 2001)

29. Rebeiro, C., Mukhopadhyay, D.: Cryptanalysis of CLEFIA Using Differential Methods with Cache Trace
Patterns, pp. 89–103. Springer Berlin Heidelberg, Berlin, Heidelberg (2011), http://dx.doi.org/10.1007/
978-3-642-19074-2_7

30. Renauld, M., Standaert, F.X.: Combining Algebraic and Side-Channel Cryptanalysis against Block Ciphers.
In: 30-th Symposium on Information Theory in the Benelux (5 2009)

31. Rivain, D.G.M.: On the multiplicative complexity of boolean functions and bitsliced higher-order masking.
Cryptology ePrint Archive, Report 2016/557 (2016), http://eprint.iacr.org/2016/557

32. Selvam, R., Shanmugam, D., Annadurai, S.: Side channel attacks: Vulnerability analysis of prince and
rectangle using dpa

33. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Blockcipher CLEFIA (Extended
Abstract), pp. 181–195. Springer Berlin Heidelberg, Berlin, Heidelberg (2007), http://dx.doi.org/10.1007/
978-3-540-74619-5_12

34. Skorobogatov, S.: Semi-invasive attacks - A new approach to hardware security analysis. Technical Report
630, University of Cambridge (April 2005)

35. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Çetin Kaya.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Berlin, Germany, Redwood Shores,
California, USA (Aug 13–15, 2003)

36. Song, L., Hu, L.: Differential fault attack on the PRINCE block cipher. Cryptology ePrint Archive, Report
2013/043 (2013), http://eprint.iacr.org/2013/043

37. Trichina, E.: Combinational logic design for aes subbyte transformation on masked data. Tech. rep., IACR
report (2003)

38. Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Differential fault analysis on the families of SIMON and
SPECK ciphers. Cryptology ePrint Archive, Report 2014/267 (2014), http://eprint.iacr.org/2014/267

39. Yang, L., Wang, M., Qiao, S.: Side Channel Cube Attack on PRESENT, pp. 379–391. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-10433-6_25

40. Zhao, X., Wang, T., Guo, S.: Improved side channel cube attacks on PRESENT. Cryptology ePrint Archive,
Report 2011/165 (2011), http://eprint.iacr.org/2011/165

A Exploitable obtained faults

Table 2 (resp. Table 3) shows the faults we obtained from the electromagnetic injection between the
last two (resp. the penultimate) substitution layers. For each fault, Table 2 (resp. Table 3) provides the

15

http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dl.acm.org/citation.cfm?id=646764.703989
http://dx.doi.org/10.1007/978-3-642-31284-7_19
http://dx.doi.org/10.1007/978-3-642-31284-7_19
http://dx.doi.org/10.1007/978-3-642-19074-2_7
http://dx.doi.org/10.1007/978-3-642-19074-2_7
http://eprint.iacr.org/2016/557
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://eprint.iacr.org/2013/043
http://eprint.iacr.org/2014/267
http://dx.doi.org/10.1007/978-3-642-10433-6_25
http://eprint.iacr.org/2011/165

value of ΔOut20 (resp. ΔOut19), obtained from the correct and the faulty ciphertexts, which allowed us
to retrieve the exact value of the fault and the value of ΔIn20 (resp. ΔIn19). Indeed, as the fault was
injected in only one row, the positions and the values of the active nibbles in ΔOut20 (resp. ΔOut19)
allowed us to derive the value of ΔIn20 (resp. ΔIn19) and then the value of the fault. Finally, some
faults have corrupted two 8-bit instructions but remain exploitable as the fault model is on 16 bits.

Table 2: Faults obtained between the last two substitution layers
Faulty ciphertext Fault value Fault position Value of ΔOut20 Value of ΔIn20

0x83735baa7632ac9e 0x0080 1-st row of Y19 0xa000800000002000 0x8000800000008000
0x03f3d30276128c9e 0xa8a8 2-nd row of X20 0x6010c000c0606000 0x4040400040404000
0xcb339beaf67aacde 0x0400 3-rd row of Y19 0xcc0000000f000000 0x2200000002000000
0xc47397aaf23aa09e 0xcf00 3-rd row of X20 0xcc00df8800000000 0x2200222200000000
0xcb329beaf67aacde 0x0081 3-rd row of Y19 0xcc0000000f000008 0x2200000002000002
0xadd5df8ad21c88b8 0xa6a6 3-rd row of X20 0xc0b00f8080f00bb0 0x2020022020200220
0x0b739f2276b22c96 0x004c 4-th row of Y19 0x7400040060007000 0x1100010010001000
0x0b730e41f793bcb4 0xbe00 4-th row of Y19 0x0405040664707056 0x0101010111101011
0x0b73d3a276322496 0x8000 4-th row of Y19 0x7000500000007000 0x1000100000001000
0x0b73c23377b33486 0x9999 4-th row of X20 0x7005500660057006 0x1001100110011001
0x0b73a40f759b34be 0x5a00 4-th row of Y19 0x7445546660700406 0x1111111110100101
0x0b737b88f61aacbc 0x0002 4-th row of Y19 0x0040000000700050 0x0010000000100010
0x0b73eb1176933ca4 0x000b 4-th row of Y19 0x7045000060757056 0x1011000010111011

Table 3: Faults obtained between the penultimate two substitution layers
Faulty ciphertext Fault value Fault position Value of ΔOut19 Value of ΔIn19

0xb3035fae64aabc8e 0x006a 1-st row of X19 0x0000000003208080 0x0000000008808080
0x3f6713aecea2948e 0xc100 1-st row of X19 0x8300000200000000 0x8800000800000000
0x1bdad38aff8aa4ae 0x0039 1-st row of X19 0x000000000022800a 0x0000000000888008
0x3165d7eea5f5f4dc 0x7f00 1-st row of X19 0x03a88a8200000000 0x0888888800000000
0x16fdd78aea9ca890 0x000b 2-nd row of X19 0x000000000000a066 0x0000000000004044
0x077fdeba72a7d9da 0xd100 2-nd row of X19 0xa60c000100000000 0x4404000400000000
0x12f193ceee10a898 0x0087 2-nd row of X19 0x00000000c0000166 0x0000000040000444
0x92f9c2927701dcdc 0xd10b 2-nd row of X19 0xa60c00010000a066 0x4404000400004044
0x81791f6e017bd89e 0x003c 3-rd row of X19 0x000000000088eb00 0x0000000000222200
0x827873a04d02ac8c 0x0083 3-rd row of X19 0x00000000800000fc 0x0000000020000022
0xb05e37e04c63acec 0x00d7 3-rd row of X19 0x000000008b080bfc 0x0000000022020222
0x411737ca9638aeba 0x0600 3-rd row of X19 0x00000dd000000000 0x0000022000000000
0x08bf2c2551e6f6bf 0x7a00 3-rd row of X19 0x0bedf0d000000000 0x0222202000000000
0x303fbc2c4076debe 0xe200 3-rd row of X19 0xebe000d000000000 0x2220002000000000
0xd4bfe13bb63fa8e8 0x00cb 4-th row of X19 0x0000000064006077 0x0000000011001011
0x91f0e1b0f632ada9 0x0063 4-th row of X19 0x0000000004400077 0x0000000001100011
0xc42ec0dbb65e18db 0x00fd 4-th row of X19 0x0000000064446407 0x0000000011111101
0x4cbfd8ca365e88d2 0x00fc 4-th row of X19 0x0000000064446400 0x0000000011111100
0x856cc59ff218d813 0x004d 4-th row of X19 0x0000000004006407 0x0000000001001101

Now we present the faults that give as much information as all other. Table 4 shows all sets of
candidates obtained for each nibble Nibi of k0 ⊕ P−1(C) with i ∈ {0, · · · , 15}, from faults injected
between the last two substitution layers. Symbol ∅ means that the fault did not provide any information
about the nibble (i.e. the 16 values are possible). Then, Table 5 shows all sets of candidates obtained
for each nibble Nibi of P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) with i ∈ {0, · · · , 15}, from
faults injected between the penultimate two substitution layers. We again denote by ∅ cases where the
fault did not provide any information about the nibble (i.e. the 16 values are possible).

16

Table 4: Sets of candidates obtained from faults injected between the last two substitution layers
Value of (ΔO20, ΔI20) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

(0xa000800000002000,
0x8000800000008000)

0x1
0x3
0x9
0xb

∅ ∅ ∅

0x5
0x6
0xd
0xe

∅ ∅ ∅ ∅ ∅ ∅ ∅

0x0
0x2
0x8
0xa

∅ ∅ ∅

(0xcc00df8800000000,
0x2200222200000000)

0x5
0x9

0x5
0x9

∅ ∅
0x6
0xb

0x1
0xe

0x0
0x2
0x8
0xa

0x0
0x2
0x8
0xa

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(0xcc0000000f000008,
0x2200000002000002)

0x5
0x9

0x5
0x9

∅ ∅ ∅ ∅ ∅ ∅ ∅
0x1
0xe

∅ ∅ ∅ ∅ ∅

0x0
0x2
0x8
0xa

(0xc0b00f8080f00bb0,
0x2020022020200220)

0x5
0x9

∅

0x4
0x7
0xc
0xf

∅ ∅
0x1
0xe

0x0
0x2
0x8
0xa

∅

0x0
0x2
0x8
0xa

∅
0x1
0xe

∅ ∅

0x4
0x7
0xc
0xf

0x4
0x7
0xc
0xf

∅

(0x0405040664707056,
0x0101010111101011) ∅

0x0
0x1
0x4
0x5

∅

0x2
0x3
0x6
0x7

∅

0x0
0x1
0x4
0x5

∅

0xa
0xb
0xc
0xd

0xa
0xb
0xc
0xd

0x0
0x1
0x4
0x5

0x8
0x9
0xe
0xf

∅

0x8
0x9
0xe
0xf

∅

0x2
0x3
0x6
0x7

0xa
0xb
0xc
0xd

(0x7005500660057006,
0x1001100110011001)

0x8
0x9
0xe
0xf

∅ ∅

0x2
0x3
0x6
0x7

0x2
0x3
0x6
0x7

∅ ∅

0xa
0xb
0xc
0xd

0xa
0xb
0xc
0xd

∅ ∅

0x2
0x3
0x6
0x7

0x8
0x9
0xe
0xf

∅ ∅

0xa
0xb
0xc
0xd

(0x7445546660700406,
0x1111111110100101)

0x8
0x9
0xe
0xf

0x0
0x1
0x4
0x5

0x0
0x1
0x4
0x5

0x2
0x3
0x6
0x7

0x2
0x3
0x6
0x7

0x0
0x1
0x4
0x5

0xa
0xb
0xc
0xd

0xa
0xb
0xc
0xd

0xa
0xb
0xc
0xd

∅

0x8
0x9
0xe
0xf

∅ ∅

0x0
0x1
0x4
0x5

∅

0xa
0xb
0xc
0xd

Table 5: Sets of candidates obtained from faults injected between the penultimate two substitution layers
Value of (ΔY19, ΔX19) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15

(0x03a88a8200000000,
0x0888888800000000) ∅

0x4
0x7
0xc
0xf

0x1
0x3
0x9
0xb

0x5
0x6
0xd
0xe

0x5
0x6
0xd
0xe

0x1
0x3
0x9
0xb

0x5
0x6
0xd
0xe

0x0
0x2
0x8
0xa

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(0x8300000200000000,
0x8800000800000000)

0x5
0x6
0xd
0xe

0x4
0x7
0xc
0xf

∅ ∅ ∅ ∅ ∅

0x0
0x2
0x8
0xa

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(0x0000000003208080,
0x0000000008808080) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x4
0x7
0xc
0xf

0x0
0x2
0x8
0xa

∅

0x5
0x6
0xd
0xe

∅

0x5
0x6
0xd
0xe

∅

(0xa60c00010000a066,
0x4404000400004044)

0x7
0xd

0x8
0x9
0xe
0xf

∅
0x6
0xa

∅ ∅ ∅

0x0
0x1
0x4
0x5

∅ ∅ ∅ ∅
0x7
0xd

∅

0x8
0x9
0xe
0xf

0x8
0x9
0xe
0xf

(0x0bedf0d000000000,
0x0222202000000000) ∅

0x4
0x7
0xc
0xf

0x3
0xd

0x6
0xb

0x1
0xe

∅
0x6
0xb

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(0x000000008b080bfc,
0x0000000022020222) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0x0
0x2
0x8
0xa

0x4
0x7
0xc
0xf

∅

0x0
0x2
0x8
0xa

∅

0x4
0x7
0xc
0xf

0x1
0xe

0x5
0x9

(0x00000dd000000000,
0x0000022000000000) ∅ ∅ ∅ ∅ ∅

0x6
0xb

0x6
0xb

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(0x0000000064446407,
0x0000000011111101) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

0xa
0xb
0xc
0xd

0x0
0x1
0x4
0x5

0x0
0x1
0x4
0x5

0x0
0x1
0x4
0x5

0xa
0xb
0xc
0xd

0x0
0x1
0x4
0x5

∅

0x8
0x9
0xe
0xf

17

B Proof of Proposition 1

Cov(X, Yi)
Corr(X, Yi) =

σX σYi

E(X Yi) − E(X) E(Yi)
= _

2
σX E Yi − E(Yi)

E X (z − Yj) − E(X) E(z − Yj)
= _

2
σX E z − Yj − E(z − Yj)

−E X Yj) + E(X) E(Yj)
= _

2
σX E − Yj + E(Yj)

− E X Yj) − E(X) E(Yj)
= _

2
σX E Yj − E(Yj)

−Cov(X, Yi)
=

σX σYi

= −Corr(X, Yj)

C S-box formulation

A = c ⊕ (a & b)

B = d ⊕ (b & c)

C = a ⊕ (A & B)

D = b ⊕ (B & C)

D C source code

D.1 Key addition layer

1 void key_add_layer (unsigned char key [8] , unsigned char s t a t e [8]) {
2 // key schedu le
3 key [1] += 193 ;
4 key [3] += 165 ;
5 key [5] += 81 ;
6 key [7] += 197 ;
7 // key add i t i on
8 s t a t e [0] ^= key [0] ;
9 s t a t e [1] ^= key [1] ;

10 s t a t e [2] ^= key [2] ;
11 s t a t e [3] ^= key [3] ;
12 s t a t e [4] ^= key [4] ;
13 s t a t e [5] ^= key [5] ;
14 s t a t e [6] ^= key [6] ;
15 s t a t e [7] ^= key [7] ;
16 }

Listing 1.1: Key addition layer C source code

18

5

10

15

20

25

30

35

40

45

50

D.2 S−layer and L−layer

1 v o i d s _ l a y e r (u n s i g n e d ch a r s t a t e [8]) { 1 v o i d l _ l a y e r (u n s i g n e d ch a r s t a t e [8]) {
2 u n s i g n e d c har tmp0 , tmp1 , tmp2 , tmp3 ; 2 u n s i g n e d c har tmp0 , tmp1 , tmp2 ;
3 // s a v e s th e i n p u t s t a t e 3 // a p p l i e s L0 m at rix
4 tmp0 = s t a t e [0] ; 4 tmp0 = s t a t e [0] ;
5 tmp1 = s t a t e [1] ; tmp1 = s t a t e [1] ;
6 tmp2 = s t a t e [2] ; 6 tmp2 = s t a t e [0] << 4 ;
7 tmp3 = s t a t e [3] ; 7 tmp2 |= s t a t e [0] >> 4 ;
8 // a & b 8 s t a t e [0] = tmp2 ;
9 s t a t e [0] &= s t a t e [2] ; 9 tmp2 = s t a t e [1] << 4 ;

10 s t a t e [1] &= s t a t e [3] ; tmp2 |= s t a t e [1] >> 4 ;
11 // A = c ^(a & b) 11 s t a t e [1] = tmp2 ;
12 s t a t e [0] ^= s t a t e [4] ; 12 s t a t e [0] ^= s t a t e [1] ;
13 s t a t e [1] ^= s t a t e [5] ; 13 tmp0 ^= s t a t e [0] ;
14 // b & c 14 s t a t e [1] = tmp0 ;
15 s t a t e [2] &= s t a t e [4] ; s t a t e [0] ^= tmp1 ;
16 s t a t e [3] &= s t a t e [5] ; 16 // a p p l i e s L1 m at rix
17 // b = d ^ (b & c) 17 tmp0 = s t a t e [3] << 4 ;
18 s t a t e [2] ^= s t a t e [6] ; 18 tmp0 |= s t a t e [3] >> 4 ;
19 s t a t e [3] ^= s t a t e [7] ; 19 s t a t e [3] = tmp0 ;
20 // c = A tmp0 = s t a t e [2] << 1 ;
21 s t a t e [4] = s t a t e [0] ; 21 tmp0 |= s t a t e [2] >> 7 ;
22 s t a t e [5] = s t a t e [1] ; 22 tmp1 = s t a t e [3] >> 1 ;
23 // d = B 23 tmp1 |= s t a t e [3] << 7 ;
24 s t a t e [6] = s t a t e [2] ; 24 s t a t e [2] ^= tmp1 ;
25 s t a t e [7] = s t a t e [3] ; tmp1 = s t a t e [2] ;
26 // A & B 26 s t a t e [2] ^= tmp0 ;
27 s t a t e [4] &= s t a t e [6] ; 27 s t a t e [3] ^= tmp1 ;
28 s t a t e [5] &= s t a t e [7] ; 28 // a p p l i e s L2 m at rix
29 // C = a ^ (A & B) 29 tmp0 = s t a t e [4] << 4 ;
30 s t a t e [4] ^= tmp0 ; tmp0 |= s t a t e [4] >> 4 ;
31 s t a t e [5] ^= tmp1 ; 31 s t a t e [4] = tmp0 ;
32 // B & C 32 tmp0 = s t a t e [4] << 1 ;
33 s t a t e [6] &= s t a t e [4] ; 33 tmp0 |= s t a t e [4] >> 7 ;
34 s t a t e [7] &= s t a t e [5] ; 34 tmp1 = s t a t e [5] >> 1 ;
35 // D = b ^ (B & C) tmp1 |= s t a t e [5] << 7 ;
36 s t a t e [6] ^= tmp2 ; 36 s t a t e [4] ^= tmp1 ;
37 s t a t e [7] ^= tmp3 ; 37 tmp1 = s t a t e [4] ;
38 } 38 s t a t e [4] ^= tmp0 ;

Listing 1.2: S−layer C source code
39 s t a t e [5]

// a p p l i e s
^=
L3

tmp1 ;
m at rix

41 tmp0 = s t a t e [6] ;
42 tmp1 = s t a t e [7] ;
43 tmp2 = s t a t e [6] << 4 ;
44 tmp2 |= s t a t e [6] >> 4 ;

s t a t e [6] = tmp2 ;
46 tmp2 = s t a t e [7] << 4 ;
47 tmp2 |= s t a t e [7] >> 4 ;
48 s t a t e [7] = tmp2 ;
49 s t a t e [6] ^= s t a t e [7] ;

tmp1 ^= s t a t e [6] ;
51 s t a t e [7] = tmp1 ;
52 s t a t e [6] ^= tmp0 ;
53 }

Listing 1.3: L−layer C source code

19

	On the importance of considering physical attacks when implementing lightweight cryptography-0.75em

