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Abstract. Pervasive devices are usually deployed in hostile environments where they are physically 
accessible to attackers. As lightweight cryptography is designed for such devices, it has to be 
particularly resistant to physical attacks. In this paper, we illustrate how active and passive 
physical attacks against the lightweight block cipher PRIDE can be carried. A side channel attack 
and a fault attack have been successfully implemented on the same software implementation of 
the algorithm. In both cases, we were able to recover the entire encryption key. First, we present 
our attacks, then we analyze them in terms of complexity and feasibility and finally, we discuss 
possible countermeasures. 
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1 Introduction 

Everyday, more objects are turned into interconnected pervasive devices. The expansion of the Internet 
of Things (IoT) brings many benefits but also raises a number of problems concerning security and 
privacy. Security is one of the biggest barriers to IoT adoption. To tackle this challenge, lightweight 
cryptography (LWC) is investigated in order to address IoT security issues while seeking the best 
compromise between security, power consumption, high performance and low footprint. During the last 
years, several lightweight block ciphers have been proposed, for example PRIDE [3], PRESENT [9], 
CLEFIA [33], PRINCE [11], KLEIN [15], SIMON [5] or SPECK [5]. LWC will be embedded into the 
IoT devices which shall have to store and handle secret/sensitive cryptographic keys at some points. 
The security of these keys within the device has to be guaranteed throughout the life cycle of the 
device (i.e. from the device’s manufacturing through the personalization stage up to its end of life), 
which may last several years. In the meantime, the device will be in the field and as it can be a hostile 
environment (i.e. physically accessible to attackers), physical attacks must be taken in account. Indeed, 
resistance against side channel attacks is now considered as a valuable property which should be taken in 
consideration when designing lightweight ciphers, as underlined by the ciphers FIDES [7], PICARO [26], 
Zorro [17] and the LS-designs family [18]. Although hardware implementations are more efficient in 
all aspects (performances, power consumption and security) than software ones, design and study of 
software-oriented ciphers is nevertheless important since these implementations are widely used in 
practice because of their flexibility and ease of development. In this paper we analyze the resistance 
of PRIDE against physical attacks because nowadays, when looking at software implementations, it is 
one of the most efficient lightweight block ciphers [4] as shown by the performance comparisons given 
in [3,4]. In this paper we first present the PRIDE algorithm before introducing physical attacks. Then we 
introduce the two attacks that have been put into practice before analyzing them in terms of efficiency 
and feasibility. Finally we discuss countermeasures that can be implemented to thwart such attacks 
before concluding the paper with some perspectives. 
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2 The PRIDE block cipher 

PRIDE is an iterative block cipher composed of 20 rounds and introduced by Albrecht & al. [3] in 2014. 
It takes as input a 64-bit block and uses a 128-bit key k = k0||k1. The first 64 bits k0 are used for pre­
and post-whitening. The last 64 bits k1 are used by a key schedule algorithm to produce the subkeys 
fr(k1) for each round r. The key schedule adds round-constants to parts of the key. 

We denote by k1i the i-th byte of k1 then 

(0) (1) (2) (3)fr(k1) = k10 ||g (k11 )||k12 ||g (k13 )||k14 ||g (k15 )||k16 ||g (k17 )r r r r 

for round r with 
(0)g (x) = (x + 193r) mod 256 r 
(1)g (x) = (x + 165r) mod 256 r 
(2)g (x) = (x + 81r) mod 256 r 
(3)g (x) = (x + 197r) mod 256 r 

The design of PRIDE is close to the one of a LS-design, a concept that was introduced by Grosso & 
al [18] in 2014, the only differences being that it uses an additional key for pre- and post-whitening, 
several matrices for the linear layer and has no linear layer on the last round. In this paper, we chose 
to present PRIDE as a LS-design in order to explain more simply our analysis.The inner state of the 
cipher, as well as the plaintext, ciphertext, and key, are all represented as a 4 × 16 bits array. In this 
paper, B[n] denotes the n-th nibble (4 bits) of a binary word B while Bn denotes the i-th byte of B. 
Moreover, the nibbles’ rows and columns are numbered from left to right starting from 1. The following 
notations are used for the intermediate values of the state within a round function: 

Ir the input of the r-th round 
Xr the state after the key addition layer of the r-th round 
Yr the state after the substitution layer of the r-th round input 
Or the output of the r-th round 

A round r such that 1 ≤ r ≤ 19 is composed of the following steps: 

i. XORing the current n-bit subkey fr(k1) with the state: Xr = Ir ⊕ fr(k1), 
ii. Applying the 4-bit S-box S, which definition is given in Appendix C, to each column of the state 

(i.e. apply the substitution layer S−layer to the state): Yr = S−layer(Xr), 
iii. Multiplying each row by a matrice Li, called L-box, given in [3] for 0 ≤ i ≤ 3 (i.e. apply the linear 

layer L−layer to the state): Or = L−layer(Yr). 

The last round simply consists of the first two steps (i.e. without the linear layer). 
In order to encrypt a plaintext M , the cipher performs a XOR between M and P(k0), where P is 

the permutation layer given in [3]. It then applies the 20 rounds as previously described, and finally 
applies once again a XOR between M and P(k0). Figure 1 shows the representation of PRIDE inner 
state with frames showing the inputs of S-box and the input of L-box. 

Apply S-box 

⎞ ⎟⎟⎟⎠ 

⎛ ⎜⎜⎜⎝ 
.. . . . . 

· · · s4,16 

s1,1 · · · s1,16 

. . . 
s4,1 

Apply L-box 

Figure 1: Inner matrix state of PRIDE 

In this paper, we denote by S1 · · · S16 the inner state given in Figure 1 such that Si consists of the 
nibble s1,i · · · s4,i for all i. For example, the hexadecimal value 0xe8d3157f246e80cb denotes the inner 
state given in Figure 2. 2 



⎞⎛ 
1 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 ⎜⎜⎝ 
0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 
0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 
1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 

Figure 2: Inner state 0xe8d3157f246e80cb 

⎟⎟⎠ 

3 Physical attacks 

Cryptographic algorithms are usually constructed to resist to algebraic (mathematical) cryptanalysis 
or exhaustive key searching by future computers. However, most cryptographic models do not cover 
physical attacks which target the cryptographic primitive’s implementation. Physical attacks can be 
divided into two classes: passive attacks and active ones. Active attacks disturb the operation of a device 
or try to reverse-engineer functions by analysing the chip at the logic level. Passive attacks, also called 
side channel attack (SCA) [22], can be divided into timing attacks [14], and interpretation of one or 
more traces [28,24] (i.e. recording of the power or electromagnetic emanation while a cryptographic 
primitive is running on the device). In this paper, we present an attack from each category (passive and 
active) on the PRIDE lightweight block cipher. 

3.1 Side-channel attacks 

Since the publication of differential power analysis (DPA) [21], it is public knowledge that the analysis 
of a power trace obtained when executing a cryptographic primitive might reveal information about the 
secret involved. 
A few years later, correlation power analysis (CPA) has been widely adopted over DPA as it requires 
fewer traces and is more efficient [12]. The principle is to recover part of the secret key by targeting 
a specific intermediate state of the algorithm, and try to predict its value by making hypotheses on 
the portion of the key involved. Then, to uncover the link between the predictions and the traces, the 
Pearson correlation coefficient between these two variables is computed using an appropriate leakage 
model (usually based on the Hamming weight or the Hamming distance depending on the platform 
and the targeted implementation). It yields a value between −1 (total negative correlation) and +1 
(total positive correlation) for every point in time, indicating how much the prediction correlates to the 
recorded values over several traces. The formula of this coefficient is 

Cov(X, Y ) E(X Y ) − E(X)E(Y )
ρ(X, Y ) = Corr(X, Y ) = = _  . (1)     σX σY  2  2

E X − E(X) E Y − E(Y )

where E(X) is the expected value of the random variable X. Then, the hypothesis which matches with 
the real key should return a significantly higher coefficient than the other hypotheses. Note that other 
functions may be used to exploit the correlation between measured traces and the secret key used, like 
those based on template analyses or mutual information exploitation. 

The attack described above remains valid when analyzing electromagnetic (EM) emanation traces 
instead of power consumption ones. In this case, we talk about Correlation-based ElectroMagnetic 
Analysis (CEMA). Although there are many different ways to measure EM emissions (sensor types, 
positioning. . . ), this side channel has properties that make it more interesting than the “traditional” 
power consumption measurements. Among those properties, the ability to measure locally and in a 
contactless manner [2] makes electromagnetic emanations very attractive. Furthermore, power analysis 
often requires a slight modification of a device’s printed circuit board (PCB) (e.g. by setting up a point 
to monitor core voltage), which is not necessary with EM analysis. These reasons led us to choose this 
side channel. 

Regarding LWC, side channel attacks have been performed againsts ciphers like PRESENT [39,27,30], 
CLEFIA [29] or PRINCE and RECTANGLE [32]. 
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3.2 Fault attacks 

Fault attacks, introduced in [10], consist in disturbing the behaviour of the circuit in order to alter the 
correct execution of the cipher. Faults can be injected into the device by various means such as light 
pulses [35], laser [34], clock glitches [1], spikes on the voltage supply [8] or EM perturbations [13]. Some 
other techniques are not invasive, i.e. glitches (power, clock, electromagnetic). Clock and voltage glitches 
disturb the whole component while EM glitches allow to have more local effects with relatively high 
spatial and temporal precisions, using equipment at “affordable costs” [13]. 

One of the objectives of fault attacks, especially when considering cryptographic ciphers, is to perform 
Differential Fault Analysis (DFA). DFA, originally described in [6], consists in retrieving a cryptographic 
key by comparing the correct ciphertexts with the faulty ones yielded by computations during which 
a physical perturbation was applied. In the particular field of LWC, differential fault attacks have 
been proposed against ciphers like PRESENT [40], SPECK [38], TRIVIUM [25], PRINCE [36] and 
PRIDE [23]. DFA techniques are very efficient to retrieve keys used during a cryptographic computation, 
usually requiring only a few executions. For this main reason, in our analysis of PRIDE implementations 
security, we decided to first focus on its resistance against fault attacks in order to identify possible 
attack paths. 

4 Setting up the attacks 

In this section, we first describe how our device has been programmed and then detail the ‘reverse­
engineering’ done to carry out the attacks presented afterwards. 

4.1 Implementation 

In order to test the feasibility of our attacks against PRIDE, we have implemented and run the cipher 
on a chip embedding an ARM Cortex-M3 micro-controller. That specific chip was chosen because it is 
quite representative of the off-the-shelf devices used for IoT applications. Note that the chip does not 
embed any countermeasures against the kind of attacks presented in this paper. Our implementation, 
whose source code is given in Appendix D, works on bytes of data. In our experiment, we used a key 
k = k0||k1 where k0 = 0xa371b246f90cf582 and k1 = 0xe417d148e239ca5d. 

4.2 Simple Electromagnetic Analysis 

First, we performed a simple electromagnetic analysis (SEMA) during one execution of PRIDE in order 
to identify our attack targets. 

By inspecting the trace shown in Figure 3, we could clearly distinguish every twenty rounds. 
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Figure 3: Electromagnetic emanations of the whole PRIDE block cipher 

Then, we tried to recognize each operation by zooming onto the first two rounds, the corresponding 
trace is shown in Figure 4. 
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At first sight, it was easy to differentiate one round from the other but not one operation from the 
other. To distinguish each operation whithin a round, we first took a look at the last one, where the 
L−layer is omitted. Consequently, it allowed us to determine the pattern corresponding to the L−layer 
and so where the S−layer’s one ends. Finally, we had to distinguish the round key whitening and the 
S−layer. As the round key whitening consist of 4 additions and 8 XORs, we made the educated guess 
depicted in Figure 4 intuitively. 
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Figure 4: Electromagnetic emanations of the first two rounds of PRIDE block cipher 

5 Correlation electromagnetic analysis 

In this section, we introduce our attack to retrieve the secret key using CEMA on unprotected PRIDE 
computations. Then, we propose a pragmatic execution of the attack on our 8-bit implementation. 

5.1 General principle 

The principle is to make the attack in two stages: one for each halves of the key. The first step consists 
in recovering P(k0). To do this, we chose to focus on the last round, as in the first round, P(k0) and 
f1(k1) are added successively to the state. 

By characterizing our chip embedding an ARM Cortex-M3, we observed that information leaked 
upon register updates through the STRB ARM instruction. As the leak does not concern the previous 
state value, we used a leakage model based on the Hamming weight 7 (HW) of the manipulated data. 

CEMA against block ciphers usually focuses on the input (or output, depending on whether the 
attack focuses on the last round or not) of the S-box operation which is the only non-linear element of 
the algorithm. This non-linearity ensures a good distinguishability between the correct and incorrect 
key guesses for CEMA. Indeed, correlation between the observed and the predicted EM leakage will be 
close to zero if the key guess is incorrect, due to the non-linear relationship between the predicted state 
and the key. Although we could focus on the input of the last S−layer by starting from ciphertexts, 
we did not opt for this approach. At first glance, it seemed too convoluted because of our bitsliced 
implementation. It is due to the fact the permutations P and P−1 form an integral part of the S−layer 
and have not been explicitly implemented. Therefore, to recover the state’s first byte at the last S−layer 
input, one should make hypotheses on P(k0)0, P(k0)2 and P(k0)4 (i.e. on 24 bits). Contrary to some 
other block ciphers such as AES, where each byte passes through the S-box independently, in the case of 
PRIDE each byte depends on several others during the S−layer operation. Consequently, we decided to 
focus on the key additions where each byte could be treated independently. The first stage consists in 
recovering P(k0) by predicting the state value at the S−layer output while the second one consists in 
recovering f20(k1) by predicting the state value at the L−layer output. 

7 The Hamming weight correponds to the number of ones in the binary representation of the data. 

5 



5.2 Practical implementation 

PRIDE was executed for 1000 random plaintexts with the fixed key k stated in the previous section. The 
last two rounds were targeted for the data acquisition and EM traces were captured with 6500 points 
per encryption of 1000 samples. Thereafter, we will note the matrix of traces. ⎤⎡⎤⎡ 

T0 t0,0 t1,1 · · · t0,999 

T = 
⎢⎢⎢⎣ 

T2 
. . . 

⎥⎥⎥⎦ 
= 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
. (2) 

t2,0 t2,1 · · · t2,999 
. . ... . . ... . . 

T6499 t6499,1 t6499,2 · · · t6499,999 

To recover each byte P(k0)i for 0 ≤ i ≤ 7, we first computed the estimation matrices Ei by 
computing the Hamming weight of each ciphertext Cj for 0 ≤ j ≤ 999 XORed with each key hypothesis 
0 ≤ HK ≤ 255. ⎡⎤⎡ ⎤

i i iEi 
0 · · ·e e e0,0 0,1 0,999 ⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 
⎢⎢⎢⎣ 

⎥⎥⎥⎦
i i iEi 

1 
. . . 

· · ·e e e1,0 1,1 1,999 
Ei = (3). . ... . . ... . . 

i i iEi e · · · e255 255,0 e255,1 255,999 

iwhere e = HW (Cj,i ⊕ HK ).HK ,j 

Then, we performed a classical CEMA attack (also called Vertical) by computing the correlation 
coefficients matrices P i from Ei and T � where T � ⊂ T denotes the traces points corresponding to the 
last S−layer. ⎡⎤⎡ ⎤ 

ρi ρi · · · ρi 0,0 0,1 0,255P i 0 ⎢⎢⎢⎣ 

⎥⎥⎥⎦ 
= 
⎢⎢⎢⎣ 

⎥⎥⎥⎦ρi ρi · · · ρi 1,0 1,1 1,255P i 1 
. . . 

P i = (4). . ... . . ... . . 
P i ρin−1,0 ρ

i · · · ρi n−1 n−1,1 n−1,255 

where #T � = n ≈ 1300 and ρi = Corr(T �, Ei ).t,HK t HK 

Figure 5 shows the plot corresponding to P 1 . 
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Figure 5: Key recovery of P(k0)0 with 256-bit hypotheses 
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We can clearly distinguish a symmetry about the x-axis, which occurs due to the fact that the key 
hypotheses are simply XORed with the ciphertexts. Thus, the two’s complement HK (i.e. 255 − HK ) of 
each key byte hypothesis HK leads to a symmetric relation regarding the Hamming weight estimation 
matrix i.e. ∀i ∀j, Ei = 8 − Ei . This results in a negative correlation coefficient as stated in HK ,jHK ,j 
Proposition 1. The proof of this proposition is given in Appendix B. 

Proposition 1 Let X be an arbitrary variable. Let Yi = (yi,1, yi,2, ..., yi,n) and Yj = (yj,1, yj,2, ..., yj,n) 
be two variables such as Yi = z −Yj i.e. ∀n, yi,n = z −yj,n with z ∈ R. Then, Corr(X, Yi) = −Corr(X, Yj ). 

Furthermore, we can differentiate 8 correlation classes. Each class corresponds to a set of key byte 
hypotheses Sd where the Hamming distance between the real key byte and each element equals d (i.e. 
∀HK ∈ Sd, HD(HK ,K) = d). 

Therefore, we deduced that it was sufficient to make key byte hypotheses on 7 bits instead of 8. 
Consequently, in that way, if max(|P i|) = max(P i) then the correct key byte is the matching HK , 
otherwise it is HK . Figure 6 shows the plot corresponding to P 1 with 128-bit hypotheses and Figure 7 
shows the plot corresponding to P 2 as well with 128-bit hypotheses which illustrates the other case (i.e. 
highest negative correlation coefficient). 
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Figure 6: Key recovery of P(k0)0 with 
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Figure 7: Key recovery of P(k0)1 with 
128-bit key hypotheses 

In the same way, we were able to recover all the other bytes of P(k0). 
After that, we were able to apply the S−layer without any complications and then we repeated the 
same reasoning to recover f20(k1). The only differences concern the part of the trace which is analyzed 
T �� ⊂ T (i.e. the L−layer operation instead of the S−layer one) and the way to compute the estimation 

imatrices: e = HW (C � ⊕ HK ) where C � = S−layer−1 Cj ⊕ P(k0) .HK ,j j,i j 

6 Differential faults analysis of PRIDE 

In this section, we briefly recall the technique proposed in [23] to retrieve the secret key using fault 
injections on PRIDE computations. More details on this attack are given in [23]. Then, we propose a 
practical implementation of the attack on our 8-bit PRIDE implementation. Note that in this section, 
we chosed to apply P−1 to the differential inputs (resp. outputs) to clearly exhibit each S-box nibble 
input (resp. output). 

6.1 General principle 

In the first state of this attack, we corrupt, one by one, some rows of the inner state between the last two 
substitution layers in order to retrieve k0. Indeed, a flip of the bit 1 ≤ α ≤ 16 on the row 1 ≤ β ≤ 4 of Xr 

at round 1 ≤ r ≤ 20 gives us a difference ΔInr[α] equals to 24−β on the S-box input α. Moreover, from 
the knowledge of the correct and the faulty ciphertexts C and C∗, we can compute the corresponding 
difference ΔOutr[α] on the S-box output. Thereby, we obtain a known differential (ΔInr[α], ΔOutr[α]). 
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The best case consists then in flipping all the bits of the row in order to activate all the S-boxes in the 
last round. For example Figure 8 shows the obtained state difference from a flip of the second row before 
the substitution layer. In this case, we got a difference equal to 0x4 on the input of each S-box. 

Apply S-box ⎞ 
0 
1 
0 
0 

⎛ ⎜⎜⎜⎜⎝ 

0 · · · 0 0 
1 · · · 1 1 

⎟⎟⎟⎟⎠0 · · · 0 0 
0 · · · 0 0 

Figure 8: State difference obtained from a flip of the second row before the substitution layer 

Then, we exploit the difference distribution table of the PRIDE S-box given in [23]. Indeed, obtaining 
information on k0 is possible from the following equation on each nibble 1 ≤ α ≤ 16: 

ΔIn20[α] = S (P−1(C) ⊕ k0)[α] ⊕ S (P−1(C ∗ ) ⊕ k0)[α] 

Indeed, 
x = (P−1(C) ⊕ k0)[α] and y = (P−1(C∗) ⊕ k0)[α] satisfy 

x ⊕ y = ΔOut20[α] and S(x) ⊕ S(y) = ΔIn20[α] 

and, from the knowledge of a nonzero input difference ΔIn20[α] and of an output difference ΔOut20[α] 
for S, we deduce 2 or 4 candidates for the input value x because the differential uniformity of S equals 
4 (as we can see from the difference distribution table of the PRIDE S-box). Moreover, Proposition 2 
introduced in [23] enables us to exhibit pairs of differentials for the S-box which are simultaneously 
satisfied for a single element. The proof of this proposition is given in [23]. 

Proposition 2 Let S be an n-bit S-box with differential uniformity 4. Let (a1, b1) and (a2, b2) be two 
differentials with a1  such that the system of two equations = a2 

S(x ⊕ a1) ⊕ S(x) = b1 (5) 

S(x ⊕ a2) ⊕ S(x) = b2 (6) 

has at least two solutions. Then, each of the three equations (5), (6) and 

S(x ⊕ a1 ⊕ a2) ⊕ S(x) = b1 ⊕ b2 

has at least four solutions. 

In other words, if we can find two differentials (a1, b1) and (a2, b2) such that one out of the three 
entries in the difference distribution table (a1, b1), (a2, b2) and (a1 ⊕ a2, b1 ⊕ b2) equals to 2, then we 
can guarantee that the input satisfying these two differentials simultaneously is unique. 

Note: if one of the three equations does not have any solution, then the system of two equations (5) 
and (6) does not have any solution either. 

Finally, for the first stage (which objective is to find k0), we just have to flip two rows such that 
the obtained pairs of differentials complies with the proposition. For example, flipping the first row and 
then the last one, allows us to obtain respectively for all 1 ≤ α ≤ 16 pairs of differentials (ΔOut20[α], 
ΔIn20[α])1 = (a1, 0x8) and (ΔOut20[α], ΔIn20[α])2 = (a2, 0x1) with a1 and a2 known. Since 0x8⊕0x1 
= 0x9 from the Proposition 2 (and the difference distribution table of the PRIDE S-box), only one 
element in the intersection of the two sets of solutions is obtained for each nibble. Therefore, we have 
shown that we get only one candidate for each nibble of P−1(C) ⊕ k0 and, from the knowledge of C, we 
retrieve k0. 
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Once k0 has been recovered, X20 and X∗ can be computed from the ciphertexts C and C∗ . Then20 
ΔOut19 can be computed and the following equation, on each nibble 1 ≤ α ≤ 16, 

ΔIn19[α] = S ◦ P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) [α] 

⊕ S ◦ P−1 ◦ L−layer−1 S−layer C ∗ ⊕ P(k0) ⊕ f20(k1) [α], 

allows the attacker to recover f20(k1), and therefore k1 with the same method but from fault injections 
between the penultimate two substitution layers. Indeed, 

x = P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) [α] and 

y = P−1 ◦ L−layer−1 S−layer C∗ ⊕ P(k0) ⊕ f20(k1) [α] satisfy 

x ⊕ y = ΔOut19[α] and S(x) ⊕ S(y) = ΔIn19[α]. 

6.2 Practical implementation 

In order to inject exploitable faults into such a chip, we used EM pulses because, with this approach, we 
did not need to decapsulate the chip and were able to inject faults at precise spatial locations and at 
precise enough instants to target specific rounds of the cipher during its execution. The set-up we used is 
quite similar to the one described in [13] but we did not need any motorized X-Y stage: injecting faults 
‘in the center’ of the chip was good enough to have a random fault model (one chance out of two to 
flip a bit). Indeed, as we saw in the previous section, it is possible to target a precise 8-bit word (more 
precisely a specific instruction) but the injected faults follow a random pattern. We can thus retrieve the 
value of a random fault from the position of active S-boxes. 

The plaintext used for all executions was 0xe8d3157f246e80cb and the correct ciphertext was 
0x0b735baaf63aac9e. We used the SEMA presented in figure 3 to identify the last rounds in time. 
Then, we used an electromagnetic pulse generator to disrupt the PRIDE execution. All the obtained 
faults which were exploitable are given in Appendix A. Among the obtained faults, we underline in 
Appendix A those that give as much information as all faults. It also lists the candidates that we can 
extract from them. 

From the obtained faults on the last two substitution layers and from P−1(C) = 0x3636d3ec58eb71f8, 
with k0[3] ∈ {0x0, 0x1, 0x4, 0x5} and k0[11] ∈ {0x8, 0x9, 0xc, 0xd}, we got 16 possible values for k0. 
In order to reduce the number of possible keys, we then used faulty ciphertexts obtained from fault 
injection between the penultimate two substitution layers. For this, we computed the difference output 
ΔOut19 from all the 16 remaining candidates for the key. Then, we observed that some differentials 
(ΔOut19, ΔIn19) were not possible on the inverse S-box and therefore we removed the corresponding 
candidates. 

Indeed, from the faulty ciphertext 0xc42ec0dbb65e18db, we obtained the 16 following values for 
ΔOut19 for each possible value of k0: 

k0 ΔOut19 k0 ΔOut19 

0xa370b246f908f582 0x000800096445640e 0xa374b246f908f582 0x000800096445640e 
0xa370b246f909f582 0x020800096447440e 0xa374b246f909f582 0x020800096447440e 
0xa370b246f90cf582 0x0000000064446407 0xa374b246f90cf582 0x0000000064446407 
0xa370b246f90df582 0x0000000164456406 0xa374b246f90df582 0x0000000164456406 
0xa371b246f908f582 0x000800096445640e 0xa375b246f908f582 0x000800096445640e 
0xa371b246f909f582 0x020800096447440e 0xa375b246f909f582 0x020800096447440e 
0xa371b246f90cf582 0x0000000064446407 0xa375b246f90cf582 0x0000000064446407 
0xa371b246f90df582 0x0000000164456406 0xa375b246f90df582 0x0000000164456406 

and as we knew that we injected faults on the last row of X19, we knew that each nibble of ΔIn19 was 
either 0x0 or 0x1. From the difference distribution table of the S-box, we saw that an input difference 
equals to 0x1 implies an output difference in {0x4, 0x5, 0x6, 0x7}. Then, we got only four possible 
candidates for k0 (displayed in red). Similarly, from the faulty ciphertext 0x3165d7eea5f5f4dc, we 
obtained the following values for ΔOut19 based on remaining values of k0: 
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k0 ΔOut19 

0xa370b246f90cf582 0x03a98a8300000001 
0xa371b246f90cf582 0x03a88a8200000000 
0xa374b246f90cf582 0x03a9ce8b40080009 
0xa375b246f90cf582 0x21a9ce8b40082009 

and as we knew that the fault was injected on the first row of X19, we were able to retrieve k0 (displayed 
in red). 

Then, by doing the intersection between the sets for each nibble obtained from the faults injected 
between the penultimate two substitution layers, we got 

P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) = 0xdf36eb60a400d4e9. 

Thus, S−layer C ⊕ P(k0) ⊕ f20(k1) = 0xffb81d4c69243ad7, and from 

S−layer C ⊕ P(k0) = 0x1b93cc608ba9f016, 

we deduced f20(k1) = 0xe42bd12ce28dcac1 and finally, we retrieved k1 = 0xe417d148e239ca5d. 

7 Costs analysis of CEMA and DFA on PRIDE 

7.1 Attack paths 

In terms of attack paths, CEMA exploits the key addition layer while DFA exploits the design of 
the PRIDE S−layer. This latter makes the CEMA more tricky since it uses the transparent bitwise 
permutation layers given in [3] unlike classical substitution layers, which apply n-bit S-boxes singly on 
each n-bit words of the state. In the case of PRIDE, the substitution layer applies bitwise mathematical 
operations between each 16-bit words of the state (or bytes in our implementation). Consequently, it 
makes the intermediate state corresponding to input (or output) of the S−layer more delicate to target. 
However, attacking a simple XOR operation still allowed us to carry out the attack. 

On the other hand, this property makes DFA much easier. Indeed, flipping the 16 bits of any row at 
its input activates all S-boxes in the next round. Hence, applying this property in the last round allows 
the attacker to recover information on all nibbles of the subkey k0. Then, the number of remaining 
candidates for k0 is upper-bounded by δ(S)16, where δ(S) = 4 is the differential-uniformity of the PRIDE 
S-box. Moreover, the differential properties of the S-box avoids the existence of differentials with high 
probability over a large number of rounds. The counterpart of this resistance against classical differential 
cryptanalysis is that the number of inputs which satisfy two valid differentials simultaneously is usually 
reduced to a single element. This property enables the attacker to drastically reduce the number of 
subkey candidates. In the case of PRIDE, two faults, each on 16 consecutive bits before the substitution 
layer, are enough to obtain a single candidate for the subkey. 

7.2 Costs 

We now analyze the total cost of each attack. First, we study the attacks implementation cost. CEMA 
only requires many curves of simple electromagnetic analysis of the last rounds from different plaintexts. 
In this case the ring oscillator does not need to be particularly efficient and a simple picoscope would 
amply do the job. DFA is more difficult to implement: it only needs one simple electromagnetic analysis 
but requires an electromagnetic pulse generator. The number of needed pulses in order to obtain enough 
exploitable faults is close to the number of required curves for the CEMA but DFA requires only one 
plaintext. Then, we compute an approximation of each attack complexity from the required parameters. 

In case of CEMA, we have shown that, by attacking the key addition layer, it is sufficient to make 
210hypotheses on 7 bits only. So, for each half of the key, we have to make 27 × 8 = hypotheses. It 

means that our attack reduces the key search space from 2128 to 211 . To generalize, we denote nK the 
number of portion key hypotheses, nT the number of texts and nP the number of points per trace. Then, 
CEMA requires to compute nK × nC estimations and nK × nP correlation coefficients for each part of 
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the key. Note that the attack can be optimized by reducing the number of points treated. For example, 
an educated guess on the interval to attack can be made in order to avoid computations overhead. This 
underlines that CEMA requires much more memory than DFA. In this experimentation, approximately 
100Mo were required but depending on nK , nT and nC values, it can quickly become a handicap. 

In case of DFA, we compute the number of remaining candidates from 8-bit random faults. We call 
8-bit random fault the fact of having one chance out of two to flip each bit of a byte. This is close to what 
we have obtained in practice with electromagnetic pulses on our implementation. It is possible to target 
a precise word (more precisely a specific instruction) but the injected faults follow a random pattern. 
Moreover, injecting the faults before the linear layer allows us to obtain a difference pattern close to a 
16-bit random difference pattern at the output. Thus, the complexity is close to an exhaustive search of 
the remaining candidates from random faults on the first and last row before the last two substitution 
layers. Then, when n random faults (one chance out of two to flip each bit) have been injected on one 
row, the probability to obtain no difference on a nibble is equal to 1/2n and the probability to obtain tnone difference is equal to 1/2i = 1 − 1/2n = (2n − 1)/2n . Moreover, if we get no difference with all i=1 
faults (on the first and last row) then, we still have 16 candidates for the corresponding nibble. On the 
other hand, if we get only one difference, we obtain 4 candidates. Finally, if we get the two differences, 
we retrieve the correct value. 

Finally, the average number of remaining candidates for k0 (resp. k1 once k0 have been recovered) 
from random faults before the last (resp. penultimate) linear layer, n1 on the first row and n2 on the 
last row, is equals to: 

n1 n2 n1 n216 4 4 1 1 
( + + + ( )( ))16 

2n1+n2 2i+n2 2i+n1 2i 2i 
i=1 i=1 i=1 i=1 

or equivalently 
16 + 4(2n1 − 1) + 4(2n2 − 1) + (2n1 − 1)(2n2 − 1)

)16( 
2n1+n2 

or similarly 
9 3 3 

( + + + 1)16 

2n1+n2 2n1 2n2 

As we can see, n1 and n2 are interchangeable. Moreover, for a given n = n1 + n2, the minimum of 
the previous equation is reached for n1 = l(n/2)J and n2 = 1(n/2)1. Table 1 shows the average number 
of remaining candidates for a subkey according to n from n1 = l(n/2)J (resp. n2 = 1(n/2))1 random 
faults on the first (resp. last) row of the linear layer input in the previous round. 

Table 1: Remaining candidates R for a subkey from n random faults 
n 2 4 6 8 10 12 14 16 18 20 
R 242.3 225.8 214.7 27.9 17.6 4.33 2.10 1.45 1.21 1.10 

Note : we can also reduce the number of remaining candidates for k0 from the faults obtained before 
the penultimate substitution layer as we have seen in the previous section. 

8 Countermeasures 

In this section, we present and briefly analyze three possible countermeasures to thwart such attacks. The 
first one protects against correlation electromagnetic analysis, the second one against differential faults 
analysis and the last one against both but requires protocol modifications. This list of countermeasures 
is not exhaustive and any combination of those three can be used in practice. 

8.1 Against correlation electromagnetic analysis 

There are many strategies to protect a cipher from side channel attacks. At the software level, the most 
common countermeasure is masking, which consists in applying secret sharing at the implementation 
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level. Most of the proposed solutions are polynomial-based masking schemes in which multiplications over 
a binary finite field are secured using the ISW scheme [20]. In order to reduce the overhead introduced 
by this kind of countermeasure, bitslice masking has been recently proposed [18,16,31]. As the PRIDE 
S-box is designed for bitsliced implementation, we have naturally investigated this method. For a nibble 
denoted n = a || b || c || d, a mask of first order m = ma || mb || mc || md and nb = n ⊕ m = ba ||bb || bc || db, the 
S-Box returns the output nibble b = b B || Cb || Db whereN A || bb bA = bc ⊕ (ba · b) 

Bb = db⊕ (bb · cb) b a ⊕ ( b Bb)C = b A · b b bD = b ⊕ ( b C)B · 

The challenging part of gate-level masking is to provide a construction for AND gates. Such a 
construction is proposed in [37]. It consists in introducing a random r as a new mask and modifying bthe AND gate computation. For example, to compute zb= ba · b = (a ⊕ ma) · (b ⊕ mb) we will generate a 
random bit r and compute: 

mz = r (7)b bzb= (ba · b) ⊕ (ma · mb) ⊕ (ma · b) ⊕ (mb · ba) ⊕ r (8) 

In the particular case of PRIDE, by using the method described above, we will need to gener­
ate 4 random bits (rA, rB , rC , rD) for each secure AND gate to compute the updated mask M = 
MA || MB || MC || MD where 

MA = mc ⊕ rA 

MB = md ⊕ rB 

MC = ma ⊕ rC 

MD = mb ⊕ rD 

Concerning the L−layer, as it is a linear operation, we just have to compute it over the state mask M in 
parallel in order to be able to correctly unmask the masked state (i.e. to recover N from bN and M ). 

8.2 Against differential faults analysis 

Making two computations for the last rounds is a simple countermeasure against this kind of attack. We 
save the state of the cipher X18 in memory, possibly k times for more security - as it concerns lightweight 
cryptography it seems reasonable to take k = 1 or k = 2. Then, we make the computations up to O20 

and save the state again. We repeat the computation with the saved state (X18) and compare it with 
the first result - possibly k times again. If two different computations give different results, we trap the 
cipher and no output is produced by the system. Otherwise, the execution performs normally. We can 
also apply a majority vote by duplicating the computations twice, possibly 2k times and give as output 
the one that appears most. Figure 9 shows a majority vote using duplication. 

X18 
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O20 

O" 
20 

enc. 

enc. 
O20 = O" 

20? 

O"
20
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ue

False 

X18 O"" 
20 

enc. 
O"" 

20 = O" 
20? 
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O"" 
20 
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True 

Figure 9: Majority vote using duplication 

This countermeasure uses, for encryption and decryption, two additional matrix layers and three 
additional substitution layers, subkey updates and subkey additions per duplication. It introduces an 
overhead of 15% of the total PRIDE cost per duplication. 
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8.3 Against both 

Another countermeasure proposed by Guilley and al. in [19] is to add a random mask to the message 
in order to prevent two consecutive executions of the same plaintext. More precisely, in its original 
description, it consists in generating a 64-bit random mask different at each execution, which is XORed 
it with the asked plaintext and the corresponding ciphertext is sent with the mask. 

In our case, we use a simple LFSR defined by a minimal primitive polynomial of degree 64 (X64 + 
X63 + X61 + X60 + 1 for example) and an initialization made public. The LFSR thus generates 264 − 1 
different masks. It must not be accessible to the user to avoid its reset. For that, it must be correctly 
implemented in hardware. We apply the mask by an XOR on the input of the 10-th round. This allows 
to prevent the adversary from getting two encryptions of the same plaintext, and therefore to run a 
DFA. For decryption, we apply an XOR between the mask and the output of the 10-th round and get 
the correct plaintext. We then have two options. The first one is to send the mask with the ciphertext. 
Unfortunately, in this case, this method does not protect against an attack on decryption. Indeed, the 
attacker can choose the same mask on each decryption. However, in the context of IoT, it is common 
that the device is only used for encryption and that decryption is carried out on a protected server. The 
second option is to synchronize the encryption and the decryption. They both use the same LFSR with 
the same initialization and the decryption must be applied in the same order as ciphertexts received. 
Therefore, the countermeasure protects both the encryption and the decryption, but with an additional 
synchronisation constraint. 

In both cases, with same plaintext and key as inputs, the countermeasure protects against correlation 
power analysis (as the operations are not the same between two computations) and against differential 
faults analysis (as it does not return twice the same output). These two options are notexpensive but 
request a procedure constraint. Figure 10 illustrates the countermeasure. 

Init PRNG Out 

enc. Ciphertext, Outenc. 
I10⊕OutPlaintext 

Figure 10: Mask based on the Guilley countermeasure 

The cost depends on the choice of the random mask generation. A simple LFSR - like the one 
mentioned above - implemented in hardware has a low cost with respect to IoT constraints. Moreover, 
in the second case, applying the mask requests an additional cost of an XOR for encryption and for 
decryption. 

9 Conclusion 

In this paper, we underline the importance of considering physical attacks when implementing lightweight 
cryptography by illustrating how passive and active physical attacks can be carried against a PRIDE 
software implementation. The results show that PRIDE is vulnerable to CEMA as well as DFA and so 
additional countermeasures are required when put into practice. Finally, we propose such countermeasures 
for both attacks. The next steps shall now be to analyse the countermeasures’ effects in terms of security 
and performance. 
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A Exploitable obtained faults 

Table 2 (resp. Table 3) shows the faults we obtained from the electromagnetic injection between the 
last two (resp. the penultimate) substitution layers. For each fault, Table 2 (resp. Table 3) provides the 
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value of ΔOut20 (resp. ΔOut19), obtained from the correct and the faulty ciphertexts, which allowed us 
to retrieve the exact value of the fault and the value of ΔIn20 (resp. ΔIn19). Indeed, as the fault was 
injected in only one row, the positions and the values of the active nibbles in ΔOut20 (resp. ΔOut19) 
allowed us to derive the value of ΔIn20 (resp. ΔIn19) and then the value of the fault. Finally, some 
faults have corrupted two 8-bit instructions but remain exploitable as the fault model is on 16 bits. 

Table 2: Faults obtained between the last two substitution layers 
Faulty ciphertext Fault value Fault position Value of ΔOut20 Value of ΔIn20 

0x83735baa7632ac9e 0x0080 1-st row of Y19 0xa000800000002000 0x8000800000008000 
0x03f3d30276128c9e 0xa8a8 2-nd row of X20 0x6010c000c0606000 0x4040400040404000 
0xcb339beaf67aacde 0x0400 3-rd row of Y19 0xcc0000000f000000 0x2200000002000000 
0xc47397aaf23aa09e 0xcf00 3-rd row of X20 0xcc00df8800000000 0x2200222200000000 
0xcb329beaf67aacde 0x0081 3-rd row of Y19 0xcc0000000f000008 0x2200000002000002 
0xadd5df8ad21c88b8 0xa6a6 3-rd row of X20 0xc0b00f8080f00bb0 0x2020022020200220 
0x0b739f2276b22c96 0x004c 4-th row of Y19 0x7400040060007000 0x1100010010001000 
0x0b730e41f793bcb4 0xbe00 4-th row of Y19 0x0405040664707056 0x0101010111101011 
0x0b73d3a276322496 0x8000 4-th row of Y19 0x7000500000007000 0x1000100000001000 
0x0b73c23377b33486 0x9999 4-th row of X20 0x7005500660057006 0x1001100110011001 
0x0b73a40f759b34be 0x5a00 4-th row of Y19 0x7445546660700406 0x1111111110100101 
0x0b737b88f61aacbc 0x0002 4-th row of Y19 0x0040000000700050 0x0010000000100010 
0x0b73eb1176933ca4 0x000b 4-th row of Y19 0x7045000060757056 0x1011000010111011 

Table 3: Faults obtained between the penultimate two substitution layers 
Faulty ciphertext Fault value Fault position Value of ΔOut19 Value of ΔIn19 

0xb3035fae64aabc8e 0x006a 1-st row of X19 0x0000000003208080 0x0000000008808080 
0x3f6713aecea2948e 0xc100 1-st row of X19 0x8300000200000000 0x8800000800000000 
0x1bdad38aff8aa4ae 0x0039 1-st row of X19 0x000000000022800a 0x0000000000888008 
0x3165d7eea5f5f4dc 0x7f00 1-st row of X19 0x03a88a8200000000 0x0888888800000000 
0x16fdd78aea9ca890 0x000b 2-nd row of X19 0x000000000000a066 0x0000000000004044 
0x077fdeba72a7d9da 0xd100 2-nd row of X19 0xa60c000100000000 0x4404000400000000 
0x12f193ceee10a898 0x0087 2-nd row of X19 0x00000000c0000166 0x0000000040000444 
0x92f9c2927701dcdc 0xd10b 2-nd row of X19 0xa60c00010000a066 0x4404000400004044 
0x81791f6e017bd89e 0x003c 3-rd row of X19 0x000000000088eb00 0x0000000000222200 
0x827873a04d02ac8c 0x0083 3-rd row of X19 0x00000000800000fc 0x0000000020000022 
0xb05e37e04c63acec 0x00d7 3-rd row of X19 0x000000008b080bfc 0x0000000022020222 
0x411737ca9638aeba 0x0600 3-rd row of X19 0x00000dd000000000 0x0000022000000000 
0x08bf2c2551e6f6bf 0x7a00 3-rd row of X19 0x0bedf0d000000000 0x0222202000000000 
0x303fbc2c4076debe 0xe200 3-rd row of X19 0xebe000d000000000 0x2220002000000000 
0xd4bfe13bb63fa8e8 0x00cb 4-th row of X19 0x0000000064006077 0x0000000011001011 
0x91f0e1b0f632ada9 0x0063 4-th row of X19 0x0000000004400077 0x0000000001100011 
0xc42ec0dbb65e18db 0x00fd 4-th row of X19 0x0000000064446407 0x0000000011111101 
0x4cbfd8ca365e88d2 0x00fc 4-th row of X19 0x0000000064446400 0x0000000011111100 
0x856cc59ff218d813 0x004d 4-th row of X19 0x0000000004006407 0x0000000001001101 

Now we present the faults that give as much information as all other. Table 4 shows all sets of 
candidates obtained for each nibble Nibi of k0 ⊕ P−1(C) with i ∈ {0, · · · , 15}, from faults injected 
between the last two substitution layers. Symbol ∅ means that the fault did not provide any information 
about the nibble (i.e. the 16 values are possible). Then, Table 5 shows all sets of candidates obtained 
for each nibble Nibi of P−1 ◦ L−layer−1 S−layer C ⊕ P(k0) ⊕ f20(k1) with i ∈ {0, · · · , 15}, from 
faults injected between the penultimate two substitution layers. We again denote by ∅ cases where the 
fault did not provide any information about the nibble (i.e. the 16 values are possible). 
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Table 4: Sets of candidates obtained from faults injected between the last two substitution layers 
Value of (ΔO20, ΔI20) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15 

(0xa000800000002000, 
0x8000800000008000) 

0x1 
0x3 
0x9 
0xb 

∅ ∅ ∅ 

0x5 
0x6 
0xd 
0xe 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 

0x0 
0x2 
0x8 
0xa 

∅ ∅ ∅ 

(0xcc00df8800000000, 
0x2200222200000000) 

0x5 
0x9 

0x5 
0x9 

∅ ∅ 
0x6 
0xb 

0x1 
0xe 

0x0 
0x2 
0x8 
0xa 

0x0 
0x2 
0x8 
0xa 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

(0xcc0000000f000008, 
0x2200000002000002) 

0x5 
0x9 

0x5 
0x9 

∅ ∅ ∅ ∅ ∅ ∅ ∅ 
0x1 
0xe 

∅ ∅ ∅ ∅ ∅ 

0x0 
0x2 
0x8 
0xa 

(0xc0b00f8080f00bb0, 
0x2020022020200220) 

0x5 
0x9 

∅ 

0x4 
0x7 
0xc 
0xf 

∅ ∅ 
0x1 
0xe 

0x0 
0x2 
0x8 
0xa 

∅ 

0x0 
0x2 
0x8 
0xa 

∅ 
0x1 
0xe 

∅ ∅ 

0x4 
0x7 
0xc 
0xf 

0x4 
0x7 
0xc 
0xf 

∅ 

(0x0405040664707056, 
0x0101010111101011) ∅ 

0x0 
0x1 
0x4 
0x5 

∅ 

0x2 
0x3 
0x6 
0x7 

∅ 

0x0 
0x1 
0x4 
0x5 

∅ 

0xa 
0xb 
0xc 
0xd 

0xa 
0xb 
0xc 
0xd 

0x0 
0x1 
0x4 
0x5 

0x8 
0x9 
0xe 
0xf 

∅ 

0x8 
0x9 
0xe 
0xf 

∅ 

0x2 
0x3 
0x6 
0x7 

0xa 
0xb 
0xc 
0xd 

(0x7005500660057006, 
0x1001100110011001) 

0x8 
0x9 
0xe 
0xf 

∅ ∅ 

0x2 
0x3 
0x6 
0x7 

0x2 
0x3 
0x6 
0x7 

∅ ∅ 

0xa 
0xb 
0xc 
0xd 

0xa 
0xb 
0xc 
0xd 

∅ ∅ 

0x2 
0x3 
0x6 
0x7 

0x8 
0x9 
0xe 
0xf 

∅ ∅ 

0xa 
0xb 
0xc 
0xd 

(0x7445546660700406, 
0x1111111110100101) 

0x8 
0x9 
0xe 
0xf 

0x0 
0x1 
0x4 
0x5 

0x0 
0x1 
0x4 
0x5 

0x2 
0x3 
0x6 
0x7 

0x2 
0x3 
0x6 
0x7 

0x0 
0x1 
0x4 
0x5 

0xa 
0xb 
0xc 
0xd 

0xa 
0xb 
0xc 
0xd 

0xa 
0xb 
0xc 
0xd 

∅ 

0x8 
0x9 
0xe 
0xf 

∅ ∅ 

0x0 
0x1 
0x4 
0x5 

∅ 

0xa 
0xb 
0xc 
0xd 

Table 5: Sets of candidates obtained from faults injected between the penultimate two substitution layers 
Value of (ΔY19, ΔX19) Nib0 Nib1 Nib2 Nib3 Nib4 Nib5 Nib6 Nib7 Nib8 Nib9 Nib10 Nib11 Nib12 Nib13 Nib14 Nib15 

(0x03a88a8200000000, 
0x0888888800000000) ∅ 

0x4 
0x7 
0xc 
0xf 

0x1 
0x3 
0x9 
0xb 

0x5 
0x6 
0xd 
0xe 

0x5 
0x6 
0xd 
0xe 

0x1 
0x3 
0x9 
0xb 

0x5 
0x6 
0xd 
0xe 

0x0 
0x2 
0x8 
0xa 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

(0x8300000200000000, 
0x8800000800000000) 

0x5 
0x6 
0xd 
0xe 

0x4 
0x7 
0xc 
0xf 

∅ ∅ ∅ ∅ ∅ 

0x0 
0x2 
0x8 
0xa 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

(0x0000000003208080, 
0x0000000008808080) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

0x4 
0x7 
0xc 
0xf 

0x0 
0x2 
0x8 
0xa 

∅ 

0x5 
0x6 
0xd 
0xe 

∅ 

0x5 
0x6 
0xd 
0xe 

∅ 

(0xa60c00010000a066, 
0x4404000400004044) 

0x7 
0xd 

0x8 
0x9 
0xe 
0xf 

∅ 
0x6 
0xa 

∅ ∅ ∅ 

0x0 
0x1 
0x4 
0x5 

∅ ∅ ∅ ∅ 
0x7 
0xd 

∅ 

0x8 
0x9 
0xe 
0xf 

0x8 
0x9 
0xe 
0xf 

(0x0bedf0d000000000, 
0x0222202000000000) ∅ 

0x4 
0x7 
0xc 
0xf 

0x3 
0xd 

0x6 
0xb 

0x1 
0xe 

∅ 
0x6 
0xb 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

(0x000000008b080bfc, 
0x0000000022020222) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

0x0 
0x2 
0x8 
0xa 

0x4 
0x7 
0xc 
0xf 

∅ 

0x0 
0x2 
0x8 
0xa 

∅ 

0x4 
0x7 
0xc 
0xf 

0x1 
0xe 

0x5 
0x9 

(0x00000dd000000000, 
0x0000022000000000) ∅ ∅ ∅ ∅ ∅ 

0x6 
0xb 

0x6 
0xb 

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

(0x0000000064446407, 
0x0000000011111101) ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ 

0xa 
0xb 
0xc 
0xd 

0x0 
0x1 
0x4 
0x5 

0x0 
0x1 
0x4 
0x5 

0x0 
0x1 
0x4 
0x5 

0xa 
0xb 
0xc 
0xd 

0x0 
0x1 
0x4 
0x5 

∅ 

0x8 
0x9 
0xe 
0xf 
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B Proof of Proposition 1
 

Cov(X, Yi)
Corr(X, Yi) = 

σX σYi 

E(X Yi) − E(X) E(Yi) 
= _

2 
σX E Yi − E(Yi) 

E X (z − Yj ) − E(X) E(z − Yj ) 
= _

2 
σX E z − Yj − E(z − Yj ) 

−E X Yj ) + E(X) E(Yj ) 
= _

2 
σX E − Yj + E(Yj ) 

− E X Yj ) − E(X) E(Yj ) 
= _

2 
σX E Yj − E(Yj ) 

−Cov(X, Yi) 
= 

σX σYi 

= −Corr(X, Yj ) 

C S-box formulation 

A = c ⊕ (a & b) 

B = d ⊕ (b & c) 

C = a ⊕ (A & B) 

D = b ⊕ (B & C) 

D C source code 

D.1 Key addition layer 

1 void key_add_layer ( unsigned char key [ 8 ] , unsigned char s t a t e [ 8 ] ) { 
2 // key schedu le 
3 key [ 1 ] += 193 ; 
4 key [ 3 ] += 165 ; 
5 key [ 5 ] += 81 ; 
6 key [ 7 ] += 197 ; 
7 // key add i t i on 
8 s t a t e [ 0 ] ^= key [ 0 ] ; 
9 s t a t e [ 1 ] ^= key [ 1 ] ; 

10 s t a t e [ 2 ] ^= key [ 2 ] ; 
11 s t a t e [ 3 ] ^= key [ 3 ] ; 
12 s t a t e [ 4 ] ^= key [ 4 ] ; 
13 s t a t e [ 5 ] ^= key [ 5 ] ; 
14 s t a t e [ 6 ] ^= key [ 6 ] ; 
15 s t a t e [ 7 ] ^= key [ 7 ] ; 
16 } 

Listing 1.1: Key addition layer C source code 
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35

40

45

50

D.2 S−layer and L−layer 

1 v o i d s _ l a y e r ( u n s i g n e d ch a r s t a t e [ 8 ] ) { 1 v o i d l _ l a y e r ( u n s i g n e d ch a r s t a t e [ 8 ] ) { 
2 u n s i g n e d c har tmp0 , tmp1 , tmp2 , tmp3 ; 2 u n s i g n e d c har tmp0 , tmp1 , tmp2 ; 
3 // s a v e s th e i n p u t s t a t e 3 // a p p l i e s L0 m at rix 
4 tmp0 = s t a t e [ 0 ] ; 4 tmp0 = s t a t e [ 0 ] ; 
5 tmp1 = s t a t e [ 1 ] ; tmp1 = s t a t e [ 1 ] ; 
6 tmp2 = s t a t e [ 2 ] ; 6 tmp2 = s t a t e [ 0 ] << 4 ; 
7 tmp3 = s t a t e [ 3 ] ; 7 tmp2 |= s t a t e [ 0 ] >> 4 ; 
8 // a & b 8 s t a t e [ 0 ] = tmp2 ; 
9 s t a t e [ 0 ] &= s t a t e [ 2 ] ; 9 tmp2 = s t a t e [ 1 ] << 4 ; 

10 s t a t e [ 1 ] &= s t a t e [ 3 ] ; tmp2 |= s t a t e [ 1 ] >> 4 ; 
11 // A = c ^( a & b ) 11 s t a t e [ 1 ] = tmp2 ; 
12 s t a t e [ 0 ] ^= s t a t e [ 4 ] ; 12 s t a t e [ 0 ] ^= s t a t e [ 1 ] ; 
13 s t a t e [ 1 ] ^= s t a t e [ 5 ] ; 13 tmp0 ^= s t a t e [ 0 ] ; 
14 // b & c 14 s t a t e [ 1 ] = tmp0 ; 
15 s t a t e [ 2 ] &= s t a t e [ 4 ] ; s t a t e [ 0 ] ^= tmp1 ; 
16 s t a t e [ 3 ] &= s t a t e [ 5 ] ; 16 // a p p l i e s L1 m at rix 
17 // b = d ^ ( b & c ) 17 tmp0 = s t a t e [ 3 ] << 4 ; 
18 s t a t e [ 2 ] ^= s t a t e [ 6 ] ; 18 tmp0 |= s t a t e [ 3 ] >> 4 ; 
19 s t a t e [ 3 ] ^= s t a t e [ 7 ] ; 19 s t a t e [ 3 ] = tmp0 ; 
20 // c = A tmp0 = s t a t e [ 2 ] << 1 ; 
21 s t a t e [ 4 ] = s t a t e [ 0 ] ; 21 tmp0 |= s t a t e [ 2 ] >> 7 ; 
22 s t a t e [ 5 ] = s t a t e [ 1 ] ; 22 tmp1 = s t a t e [ 3 ] >> 1 ; 
23 // d = B 23 tmp1 |= s t a t e [ 3 ] << 7 ; 
24 s t a t e [ 6 ] = s t a t e [ 2 ] ; 24 s t a t e [ 2 ] ^= tmp1 ; 
25 s t a t e [ 7 ] = s t a t e [ 3 ] ; tmp1 = s t a t e [ 2 ] ; 
26 // A & B 26 s t a t e [ 2 ] ^= tmp0 ; 
27 s t a t e [ 4 ] &= s t a t e [ 6 ] ; 27 s t a t e [ 3 ] ^= tmp1 ; 
28 s t a t e [ 5 ] &= s t a t e [ 7 ] ; 28 // a p p l i e s L2 m at rix 
29 // C = a ^ (A & B) 29 tmp0 = s t a t e [ 4 ] << 4 ; 
30 s t a t e [ 4 ] ^= tmp0 ; tmp0 |= s t a t e [ 4 ] >> 4 ; 
31 s t a t e [ 5 ] ^= tmp1 ; 31 s t a t e [ 4 ] = tmp0 ; 
32 // B & C 32 tmp0 = s t a t e [ 4 ] << 1 ; 
33 s t a t e [ 6 ] &= s t a t e [ 4 ] ; 33 tmp0 |= s t a t e [ 4 ] >> 7 ; 
34 s t a t e [ 7 ] &= s t a t e [ 5 ] ; 34 tmp1 = s t a t e [ 5 ] >> 1 ; 
35 // D = b ^ (B & C) tmp1 |= s t a t e [ 5 ] << 7 ; 
36 s t a t e [ 6 ] ^= tmp2 ; 36 s t a t e [ 4 ] ^= tmp1 ; 
37 s t a t e [ 7 ] ^= tmp3 ; 37 tmp1 = s t a t e [ 4 ] ; 
38 } 38 s t a t e [ 4 ] ^= tmp0 ; 

Listing 1.2: S−layer C source code 
39 s t a t e [ 5 ] 

// a p p l i e s 
^= 
L3 

tmp1 ; 
m at rix 

41 tmp0 = s t a t e [ 6 ] ; 
42 tmp1 = s t a t e [ 7 ] ; 
43 tmp2 = s t a t e [ 6 ] << 4 ; 
44 tmp2 |= s t a t e [ 6 ] >> 4 ; 

s t a t e [ 6 ] = tmp2 ; 
46 tmp2 = s t a t e [ 7 ] << 4 ; 
47 tmp2 |= s t a t e [ 7 ] >> 4 ; 
48 s t a t e [ 7 ] = tmp2 ; 
49 s t a t e [ 6 ] ^= s t a t e [ 7 ] ; 

tmp1 ^= s t a t e [ 6 ] ; 
51 s t a t e [ 7 ] = tmp1 ; 
52 s t a t e [ 6 ] ^= tmp0 ; 
53 } 

Listing 1.3: L−layer C source code 
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