
An Expanded NSCI HPC Ecosystem and
Cybersecurity

Phillip Colella

Senior Analyst, OSTP

NSCI Implementation Plan (7/2016)

“Objective 4: The current HPC ecosystem (of software, hardware,
networks, and workforce) is neither widely available nor sufficiently
flexible to support emerging opportunities. […] The NSCI seeks to
develop and adopt new approaches, technologies and software
architectures to support HPC application development, reusability,
trustworthiness, and sustainability.”

Inexpensive Hardware -> HPC as a Ubiquitous Technology

• Low power revolution in hardware (cellphones) now reaching HPC.
• By 2024: Flops will cost 1% of what they do now, both in terms of dollars and

power, at all scales (Petascale for $200K, 20KW).

• This price / performance / power point makes HPC potentially accessible to a
much broader range of users.

• Possible Future: HPC for S&T as a ubiquitous technology (analogous
to cellphone apps). Coming up with new ideas for applications, rather
then the cost of the hardware, or the cost of writing code, becomes
the rate-limiting step.

Fundamental Question: what will it take to productively use a 100x
scaleup in HPC capacity ?

Complex Hardware -> Semantic Gap is a Barrier

• Low-power technologies lead to more complex architectures on a single chip or
board.
• High degree of parallelism (1000x on a chip), hierarchically organized.

• Complex memory hierarchies at the board and chip level.

• Programming at high performance is a challenge.

• Complexity of architectures leads to ever-widening semantic gap.
• 1996: two lines of mathematics required 20 lines of code to obtain high performance.

• 2016: two lines of mathematics requires 100’s (up to 1000) lines of code to obtain high
performance. The details depend on the algorithm and on the architecture.

High Level Abstractions to Close the Semantic Gap

A higher level of abstraction in the programming system is essential to close
the semantic gap; return to 10x expansion to go from math to HPC
applications code.

• Algorithmic patterns: combinations of computation and data access that are
derived from the underlying mathematical structure of particular ways of
representing S&T problems on a computer.
• Simulation patterns: dense linear algebra, sparse linear algebra, structured grids,

unstructured grids, FFT, particles.
• Big data patterns: basic statistics, “n-body”, graphs, linear algebra, optimization,

integration, alignment (e.g. genomics).

• Approach: programming system based on a high-level representation of
these patterns, combined with tools to automate the generation of
optimized code from HL pattern code.

• This approach has been used with great success since the 1990s for some
patterns, e.g. dense linear algebra, FFT.

Layered Software Stack

Applications: use libraries and pattern-based toolset, general-

purpose software stack.

Libraries: use pattern-based toolset, general-purpose software

stack.

Pattern-based

toolset: uses

general-purpose

software stack

Pattern 1 … Pattern N

Shared tools: translation tools, autotuners,

performance tools

Hardware and associated general-purpose software stack

Autotuning
• Automatically generate code variants, choose one that runs fastest.

• Use pattern-specific knowledge to generate space of variants.

• Requires high-fidelity, fine-grained measurements (both flops and
data traffic)

• Intervention in the compilation process. Source-to-source
translation of embedded pattern-specific library syntax,
manipulation of AST.

Core Software Stack -> Robust Ecosystem
Expressive, performant, portable software stack is necessary, but not
sufficient to get to a broadly-used software ecosystem.

• Relatively small core software: pattern, library layers; at any given time, a
small number of “early adopter” applications (the latter rotate).

• Market forces lead to a much larger community of adopters to take the
core and build out S&T capabilities.

• Design and priorities based on broad needs assessments. Feedback from
larger community informs trajectory of core.

• Agility: ecosystem must include lots of new model development, new
science. Different modalities for different communities.

Institutional Issues

• Tools cut across scientific disciplines, Federal agency boundaries.
• Funding mechanisms ?

• Performers? (Probably Universities / National Labs, at least initially)

• Stakeholder Engagement?

• Accountability?

• Support model: software has multi-decadal lifespan.
• Open source development model ?

• Software as facility, similar to light sources / telescopes / supercomputer
centers?

• Educational infrastructure. Teaching a broad range of S&T students
the math and CS skills required to effectively use the technology.

Traditional HPC vs. Expanded Ecosystem
• High performance! CPU, data

transfer.

• Centralized compute facility at
large scales.

• Software environment:
• General purpose software stack.

• Libraries.

• Modest HPC-specific toolset.

• Relatively small number of
applications codes, written by
highly specialized teams.

• High performance! CPU, data
transfer.

• Ubiquitous HPC computing at all
scales, from centralized facilities
to individual workstations.

• Software environment.
• General purpose software stack.
• Much larger number of libraries.
• New pattern-based tools.
• Highly capable crosscutting

toolset.

• Much larger number of
applications codes, written by
diverse set of participants.

Cybersecurity Issues
• Fundamental tension between performance and security.

• Traditional HPC security concerns (from Sean Peisert’s talk).
• Confidentiality - data leakage (even in “open science”).

• Integrity - alteration of code or data, misuse of computing cycles.

• Availability -Disruption/denial of service against HPC systems.

• Solutions take advantage of centralized nature, specialized
computational patterns of traditional HPC.

• Open source / open computing culture of HPC: partially because
it is academic-style research, partially because it is
noncommercial (and therefore thinly resourced).

Cybersecurity Issues
• In an expanded ecosystem, the integrity question changes.

• The HPC development enterprise is much larger, much more
distributed.

• Tools are much more intrusive.

• Software stack has more moving parts, is more specialized. Ownership
is dispersed.

• Integrity of the software stack itself is an issue.

• More data, more data motion, more broadly dispersed data.

• Specialization -> divergence of concerns between S&T users and
commercial users.

• Increasing the level of abstraction will expose use patterns, enabling
easier detection of security breaches (see Peisert’s talk).

Autotuning
• Automatically generate code variants, choose one that runs fastest.

• Use pattern-specific knowledge to generate space of variants.

• Requires high-fidelity, fine-grained measurements (both flops and
data traffic).

• Intervention in the compilation process. Source-to-source
translation of embedded pattern-specific library syntax,
manipulation of AST.

• Not just applied to libraries: applications-specific code will need to
be tuned.

Consequences
• In the traditional HPC world, the security-critical parts of the

software stack are owned by the vendors: general-purpose
compilers, run-time libraries.

• The new components of the toolset are going to be driven by
applications-specific requirements, and be developed by co-
design collaborations in the research community (CS, math,
apps).

• The ownership / stewardship of this software stack is not just a
business decision, but has security consequences.
• Currently, the vendors don’t own this level of domain-specific tools -

they are developed in-house by their large commercial customers as
part of the latter’s core IP.

Conclusions (Tentative)
• Security issues have an impact on how we go about developing a

broadly useful HPC ecosystem.

• In the long term, a pattern-based software stack matches up well
with the needs of cybersecurity.
• Provides performance without exposing users (and systems) to

nonsecure access.

• Patterns codify execution patterns, making some forms of monitoring
easier.

• Feasible approach: factorization of the expanded pattern-based
software stack to split out a small subset of security-sensitive pieces,
which then become the responsibility of trusted vendors.

Conclusions (Tentative)
• Issues that need to be resolved.

• The business model for the expanded ecosystem - growing number of
smaller users - does not match up well with the current HPC (or
broader IT) business model. Software as facility ? Analogue to NRE
funding?

• Design of the new toolchain is a research question – needs to be done
in the open.

• Security issues are yet another argument for a more top-down
organizational approach to developing a patterns-based software stack.
Difficult match to agency / mission-centric federal funding model.

