NSRL Next Generation – Diskprinting

Mary T. Laamanen¹, Alex J. Nelson²,³

¹ NIST
² Prometheus Computing
³ University of California, Santa Cruz

December 3, 2014
Disclaimer

• This talk mentions several software products.

• No mentions are or should be construed as endorsements of that software.

• In this research, they are test subjects.
Diskprints show when artifacts appear.

- Baseline
- Installation
- Running
- Uninstallation
- Rebooting
Diskprints show when artifacts appear.

- Baseline
- Installation
- Running
- Uninstallation
- Rebooting
Diskprints show when artifacts appear.

- Baseline
- Installation
- Running
- Uninstallation
- Rebooting

Registry entries: 460,000
Diskprints show when artifacts appear.

- Baseline
- Installation
- Running
- Uninstallation
- Rebooting

Registry entries: 460,000

+ 10 – 10,000
Diskprints show when artifacts appear.

- Baseline
- Installation
- Running
- Uninstallation
- Rebooting

Registry entries: 460,000

+ 10 – 10,000

+ more
Diskprints show when artifacts appear.

- Baseline
 - Registry entries: 460,000

- Installation
 - + 10 – 10,000

- Running
 - + more

- Uninstallation
 - + less & more

- Rebooting
We need to understand artifact origins.

• Files, Registry cells – mostly unknown origins.
 – Most created by software.
 – Some recognized from malware signatures.
 – Most just *in the way of finding relevant data.*
Diskprints help recognize *artifacts* and *behaviors*.

- Whole virtual machine states are available.

- We compute changes between states, making:
 - Catalogues of system behavior
 - Known-file lists
 - Software signatures
Diskprint data are being made from *forensic differencing*.

- New NSRL data sets based on diskprint sequences.
 - Using forensic differential analysis [Garfinkel *et al.*, DFRWS 2012]
 - Extension: *Forensic sequence analysis*
Outline: Data set production

• File system analysis language
• Diskprint lineage analysis workflow
• Results (with URL)
• Research on software signatures
• Conclusions
File system analysis language

Digital Forensics XML
File system analysis with DFXML

- Digital Forensics XML describes storage system metadata.
 - Currently hosted by NIST.
 - Originally by Garfinkel [SADFE, 2009; DI, 2012].
 - Document language (with XML schema).
 - Python bindings available.
 - In use by forensic researchers, digital archivists.
DFXML describes storage, and changes.

- Simple annotations for files.
 - New, removed, modified.

- New analytics on *reduced data*.
 - *E.g.* timeline of changes, instead of whole system.
The structure of diskprint data

Lineage graph
The diskprint lineage graph

A machine’s state is related to its ancestors.
The diskprint lineage graph

A machine’s state is related to its ancestors.

The history can fork.

The tree is rooted at the baseline OS.
The diskprint lineage graph

A machine’s state is related to its ancestors.

The history can fork.

The tree is rooted at the baseline OS.
The diskprint lineage graph

A machine’s state is related to its ancestors.

The history can fork.

The tree is rooted at the baseline OS.

The lineage graph is all of the trees.
The diskprint analysis workflow

Lineage-based differencing
The diskprint analysis workflow

Some results can be derived from a single snapshot.
The diskprint analysis workflow

Some results can be derived from a single snapshot.
The diskprint analysis workflow

Some results come from two snapshots.
Results

New-content data sets
Now available: File system difference data

- File system changes available in:
 - Differential DFXML
 - NSRL RDS format (CSV)
 - CybOX

- Sector hashes of new and modified files

- http://www.nsrl.nist.gov/dskprt/sequence.html
Research

Registry-based software signatures
Developing software signatures

• What artifacts are distinct to an application?
 – Or, have sufficient affinity?

• Can the Windows Registry show the software history of a computer?
 – A boon to triage.
Methodology: “Document” search

1. Observe the sets of Registry artifacts created by a snapshot.

2. Assemble those sets into “Fingerprint documents”

3. Query with a Registry.
Signature challenges

• Some indistinct artifacts confuse signatures.
 – Need “Background noise” identification.

• (See me at poster session for more.)
Summary

Data in use,
research on horizon.
Community

- Forensic standards
 - MITRE
- Archival applications of Digital Forensics
 - BitCurator
- Academia
 - George Mason University
 - San Jose State University
 - University of California, Santa Cruz
Conclusion

• Diskprints are a record of system states.

• The workflow extracts artifacts and behaviors.

• Artifact attribution tells a computer’s software story.