Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Alexey Gorshkov (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 116

Dark state optical lattice with sub-wavelength spatial structure

February 20, 2018
Author(s)
Sarthak Subhankar, Tsz-Chun Tsui, James V. Porto, Steve Rolston, Przemek Bienias, Alexey Gorshkov, Mateusz Lacki, Michael Baranov, Peter Zoller
We report on the experimental realization of a conservative optical lattice for cold atoms with sub-wavelength spatial structure. The potential is based on the nonlinear optical response of three- level atoms in laser-dressed dark states, which is not

Efimov States of Strongly Interacting Photons

December 4, 2017
Author(s)
Jacob M. Taylor, Alexey V. Gorshkov, Michael Gullans, D Ruzik, Seth Rittenhouse, J.P. D'Incao, Paul Julienne, S Diehl
We introduce a new system to study Efimov physics based on interacting photons in cold gases of Rydberg atoms. This system has a large anisotropy between the longitudinal mass of the photons, arising from dispersion, and the transverse mass of the photons

Spontaneous avalanche dephasing in large Rydberg ensembles

November 13, 2017
Author(s)
Thomas L. Boulier, Eric Magnan, Carlos Bracamontes, James Maslek, Elizabeth Goldschmidt, Jeremey Young, Alexey Gorshkov, Steven Rolston, James V. Porto
Strong dipole-exchange interactions due to spontaneously produced contaminant states can trigger rapid dephasing in many-body Rydberg ensembles [E. Goldschmidt et al., PRL 116, 113001 (2016)]. Such broadening has serious implications for many proposals to

Effective Field Theory for Rydberg Polaritons

September 9, 2016
Author(s)
Michael Gullans, Yidan Wang, Jeff D. Thompson, Qiyu Liang, Vladan Vuletic, Mikhail D. Lukin, Alexey V. Gorshkov
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one- dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a