Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Fan Zhang (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 68

On the precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al- Mn-Sc alloy fabricated by selective laser melting

July 1, 2020
Author(s)
Qingbo Jia, Fan Zhang, Paul Rometsch, Jitendra Mata, Jingwei Li, Matthew Weyland, Laure Bourgeois, Manling Sui, Xinhua Wu
The dynamic metallurgical characteristics of the selective laser melting (SLM) process offer fabricated materials with non-equilibrium microstructures compared to their cast and wrought counterparts. To date, few studies on the precipitation kinetics of

Outcomes and Conclusions from the 2018 AM-Bench Measurements, Challenge Problems, Modeling Submissions, and Conference

February 13, 2020
Author(s)
Lyle E. Levine, Brandon M. Lane, Jarred C. Heigel, Kalman D. Migler, Mark R. Stoudt, Thien Q. Phan, Richard E. Ricker, Maria Strantza, Michael R. Hill, Fan Zhang, Jonathan E. Seppala, Edward J. Garboczi, Erich D. Bain, Daniel Cole, Andrew J. Allen, Jason C. Fox, Carelyn E. Campbell
The Additive Manufacturing Benchmark Test Series (AM-Bench) was established to provide rigorous measurement test data for validating additive manufacturing (AM) simulations for a broad range of AM technologies and material systems. AM-Bench includes

Pressure-Thresholded Response in Cylindrically Shocked Cyclotrimethylene Trinitramine (RDX)

February 1, 2020
Author(s)
Leora E. Dresselhaus-Cooper, Dmitro Martynowych, Fan Zhang, Charlene Tsay, Jan Ilavsky, SuYin Wang, Yu-Sheng Chen, Lara Leininger, Keith A. Nelson
We demonstrate a strongly thresholded response in cyclotrimethylene trinitramine (RDX) that is cylindrically shocked using a novel waveguide geometry. Using ultrafast single-shot multi-frame imaging, we demonstrate that a 100-μm diameter single crystal of

Phase Fraction and Evolution of Additively Manufactured 15-5 Stainless Steel and Inconel 625 AM- Benchmark Artifacts

August 5, 2019
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Sandra A. Young, Maureen E. Williams, Mark R. Stoudt, Kil-Won Moon, Jarred C. Heigel, Jan Ilavsky
A proper understanding of the structure and microstructure of additive manufactured (AM) alloys is essential not only to the prediction and assessment of their material properties, but also to the validation and verification of computer models essential to

Simulation of TTT curves for additively manufactured Inconel 625

January 1, 2019
Author(s)
Carelyn E. Campbell, Greta Lindwall, Eric Lass, Fan Zhang, Mark R. Stoudt, Andrew J. Allen, Lyle E. Levine
The ability to use common computational thermodynamic and kinetic tools to study the microstructure evolution in Inconel 625 (IN625) manufactured using the additive manufacturing (AM) technique of laser powder-bed fusion is evaluated. Solidification

Transformation of Engineered Nanomaterials through the Prism of Silver Sulfidation

January 1, 2019
Author(s)
Fan Zhang, Andrew J. Allen, Aaron C. Johnston-Peck, Jingyu Liu, John M. Pettibone
Structure transformation of engineered nanomaterials (ENMs) often dictates their efficacy, safety, and environmental impact. To address the existing significant knowledge gap regarding the fundamental kinetic rate and extent of ENMs transformation in

High-efficiency Coherence-Preserving Harmonic Rejection with Crystal Optics

September 1, 2018
Author(s)
Fan Zhang, Andrew J. Allen, Lyle E. Levine, Gabrielle G. Long, Ivan Kuzmenko, Jan Ilavsky
We report a harmonic rejection scheme based on the combination of Si (111) monochromator and Si (220) harmonic-rejection crystal optics. This approach is of importance to a wide range of X- ray applications in all three major branches of modern X-ray

Effect of Heat Treatment on the Microstructural Evolution of a Nickel-Based Superalloy Additive-Manufactured by Powder Bed Fusion Laser Sintering

June 15, 2018
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Mark R. Stoudt, Greta Lindwall, Eric Lass, Maureen E. Williams, Yaakov S. Idell, Carelyn E. Campbell
Elemental segregation is a ubiquitous phenomenon in additive-manufactured (AM) parts due to solute rejection and redistribution during the rapid solidification process. Using electron microscopy, in situ synchrotron X-ray scattering and diffraction, and

Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source

June 1, 2018
Author(s)
Jan Ilavsky, Fan Zhang, Ross N. Andrews, Ivan Kuzmenko, Pete R. Jemian, Lyle E. Levine, Andrew J. Allen
Following many years of evolutionary development, first at the National Synchrotron Light Source, Brookhaven National Laboratory, and then at the Advanced Photon Source (APS), Argonne National Laboratory, the APS ultra-small-angle X-ray scattering (USAXS)

The Influence of Annealing Temperature and Time on the Formation of delta-Phase in Additively-Manufactured Inconel 625

May 10, 2018
Author(s)
Mark R. Stoudt, Eric Lass, Daniel S. Ng, Maureen E. Williams, Fan Zhang, Carelyn E. Campbell, Greta Lindwall, Lyle E. Levine
This research evaluated the kinetics of delta-phase growth in laser powder bed additively- manufactured (AM) Inconel 625 during post-build stress-relief heat treatments. The temperatures ranged between 650 °C to 1050 °C, and the times from 0.25 h to 168 h

In situ Angstrom-to-Micrometer Characterization of the Structural and Microstructural Changes in Kaolinite on Heating using Ultra-Small-Angle, Small-Angle, and Wide-Angle X-ray Scattering (USAXS/SAXS/WAXS)

September 26, 2017
Author(s)
Fan Zhang, Andrew J. Allen, Greeshma Gadikota
In this study, synchrotron-based in-operando multi-scale X-ray scattering analyses are used to connect the microstructural changes to the phase changes in kaolinite on heating from 30 °C to 1150 °C. Combined ultra-small-angle and small-angle X-ray

Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys

September 21, 2017
Author(s)
Trevor Keller, Greta Lindwall, Supriyo Ghosh, Li Ma, Brandon M. Lane, Fan Zhang, Ursula R. Kattner, Eric Lass, Yaakov S. Idell, Maureen E. Williams, Andrew J. Allen, Jonathan E. Guyer, Lyle E. Levine
Numerical simulations are used in this work to investigate aspects of microstructure and microsegregation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element

Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes

July 14, 2017
Author(s)
Zoran S. Petrovic, Jelena Milic, Fan Zhang, Jan Ilavsky
Fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids

29Si NMR and SAXS investigation of the hybrid organic-inorganic glasses obtained by consolidation of the melting gels

March 15, 2017
Author(s)
Andrei Jitianu, Sylvian Cadars, Fan Zhang, Gabriela Rodriguez, Quentin Picard, Mario Aparicio, Jadra Mosa, Lisa C. Klein
This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65

Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering

January 26, 2017
Author(s)
Fan Zhang, Lyle E. Levine, Andrew J. Allen, Eric Lass, Sudha Cheruvathur, Mark R. Stoudt, Maureen E. Williams, Yaakov S. Idell, Carelyn E. Campbell
Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would