Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel S. Hussey (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 95

Water Migration and Swelling in Engineered Barrier Materials for Radioactive Waste Disposal

January 25, 2021
Author(s)
Joanna McFarlane, Lawrence M Anovitz, Michael C. Cheshire, Victoria H. DiStefano, Hassina Z. Bilheux, Jean-Christophe Bilheux, Luke L. Daemen, Richard E. Hale, Ronald L. Howard, A. J. Ramirez-Cuesta, Louis J. Santodonato, Markus Bleuel, Daniel S. Hussey, David L. Jacobson, Jacob LaManna, Edmund Perfect, Logan Qualls
Deep underground repositories are needed to isolate radioactive waste from the biosphere. Bentonite is an integral component of many multibarrier repository systems. Information on the hydraulic behavior of bentonite is needed for modeling the long-term

The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell

December 31, 2020
Author(s)
Po-Ya A. Chuang, Md A. Rahman, Felipe Mojica, Daniel S. Hussey, David L. Jacobson, Jacob LaManna
Despite recent advancement in fuel cell technology, significant challenges remain in achieving high power density operation to meet the stringent targets of performance, durability and cost. This is due to the lack of fundamental understanding in

Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers

December 15, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, A Gago, S Kolb, K Friedrich, Aimy Bazylak
Decarbonizing society's energy infrastructure is foundational for a sustainable future and can be realized by harnessing renewable energy for clean hydrogen and on-demand power with fuel cells. Here, we elucidate how graded porous transport layers (PTLs)

Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO2 Electrolysis

November 25, 2020
Author(s)
Hisan W. Shafaque, ChungHyuk Lee, Kieran F. Fahy, Jason K. Lee, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Despite the advantages of CO2 electrolyzers, efficiency losses due to mass and ionic transport across the membrane electrode assembly (MEA) are critical bottlenecks for commercial-scale implementation. In this study, more efficient electrolysis of CO2 was

NIST NeXT: a system for truly simultaneous neutron and X-ray tomography

September 14, 2020
Author(s)
Jacob LaManna, Daniel S. Hussey, Victoria H. DiStefano, Eli Baltic, David L. Jacobson
Neutrons and X-rays provide excellent complementary, nondestructive probes to understand internal structure of systems across engineering and material science. With its sensitivity to hydrogen, neutrons excel at separating fluids, such as water or oil

Electric-field imaging using polarized neutrons

September 10, 2020
Author(s)
Y.- Y. Jau, Daniel S. Hussey, Thomas R. Gentile, Wangchun Chen
We experimentally demonstrate that electrically neutral particles, neutrons, can be used to directly visualize the electrostatic field inside a target volume that can be physically isolated or occupied. Electric field images are obtained using a spin

Accelerating Bubble Detachment in Porous Transport Layers with Patterned Through-Pores

September 9, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Kevin Krause, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Mass transport losses ultimately suppress gas evolving electrochemical energy conversion technologies, such as fuel cells and carbon dioxide electrolyzers, from reaching the high current densities needed to realize commercial success. In this work, we

Critical Current Density as a Performance Indicator for Gas-Evolving Electrochemical Devices

August 26, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Benzhong Zhao, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Reaching high current densities is absolutely imperative for electrochemical energy conversion, from fuel cells to CO2 reduction. Here, we identify the existence of a performance indicator for gas-evolving electrochemical energy conversion devices: the

Using Operando Techniques to Understand and Design Alkaline Membrane Fuel Cells with Excellent Performance and Long Operational Stability

July 16, 2020
Author(s)
Xiong Peng, Devashish Kulkarni, Ying Huang, Travis J. Omasta, Benjamin Ng, Yiwei Zheng, Lianqin Wang, Jacob LaManna, Daniel S. Hussey, John R. Varcoe, Iryna V. Zenyuk, William E. Mustain
Operando neutron imaging and operando micro X-ray computed tomography were used to understand the water dynamics of AEMFCs under various operating conditions, and this new fundamental information was used to create electrodes that not only enabled high

Sensitive neutron transverse polarization analysis using a 3He spin filter

July 7, 2020
Author(s)
Y.- Y. Jau, Wangchun Chen, Thomas R. Gentile, Daniel S. Hussey
We report an experimental implementation for neutron transverse polarization analysis that is able to detect a small angular change (10^-3 rad) of neutron spin orientation and works for both monochromatic and polychromatic neutron beams. Our approach

Reconciling temperature-dependent factors affecting mass transport losses in polymer electrolyte membrane electrolyzers

June 1, 2020
Author(s)
Jacob LaManna, Aimy Bazylak, ChungHyuk Lee, Jason K. Lee, Kieran F. Fahy, Eli Baltic, Daniel S. Hussey, David L. Jacobson
In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport

Study of the neutron spin-orbit interaction in silicon

September 30, 2019
Author(s)
Thomas R. Gentile, Michael G. Huber, Muhammad D. Arif, Daniel S. Hussey, David L. Jacobson, Donald D. Koetke, Murray Peshkin, Thomas Dombeck, Paul Nord, Dimitry A. Pushin, Robert Smither
The neutron spin-orbit interaction, which results from the interaction of a moving neutron's magnetic dipole moment (MDM) with the atomic electric elds, induces a small rotation of the neutron's spin in one Bragg re ection. In our experiment neutrons

Correlation of Neutron-Based Strain Imaging and Mechanical Behavior of Armor Steel Welds Produced with the Hybrid Laser Arc Welding Process

June 11, 2018
Author(s)
Jeffrey W. Sowards, Daniel S. Hussey, David L. Jacobson, Stan Ream, Paul A. Williams
Bragg edge neutron transmission imaging was used to characterize the spatial distribution of thermally induced residual strains in a steel armor plate welded with a hybrid laser arc process. This residual strain distribution was compared to the spatial

Simultaneous Neutron and X-Ray Imaging of 3D Structure of Organic Matter and Fracture in Shales

April 1, 2018
Author(s)
Wei-Shan NMN Chiang, Jacob M LaManna, Daniel S. Hussey, David L. Jacobson, Yun Liu, Jilin Zhang, Daniel T. Georgi, Jordan R. Kone, Jin-hong Chen
Hydrocarbon production from shales using horizontal drilling and hydraulic fracturing has been the key development in the US energy industry in the past decade and has now become more important globally. Nevertheless, many fundamental problems related to

Neutron Interferometry Detection of Early Crack Formation in Fatigued Additively Manufactured SS316 Dogbones

February 15, 2018
Author(s)
Daniel S. Hussey, Hong Yao, Adam J. Brooks, Ali Haghshenas, Jumao Yuan, Caroline G. Lowery, Jacob M. LaManna, David L. Jacobson, Nikolay Kardjilov, Shengmin Guo, Michael M. Khonsari, Leslie G. Butler
Fatigue in selective laser melted (SLM) and conventional SS316 dogbones was studied with neutron imaging methods for attenuation, scattering, and diffraction. To detect the microcrack evolution in fatigued samples,two methods of grating-based neutron

Beyond Catalysis and Membranes: Visualizing and Solving the Electrode Water Challenge in AEMFCs

February 8, 2018
Author(s)
Daniel S. Hussey, Travis J. Omasta, Andrew M. Park, Jacob M. LaManna, Yufeng Zheng, Xiong Peng, Lianqin Wang, David L. Jacobson, John R. Varcoe, Bryan S. Pivovar, William E. Mustain
A majority of anion exchange membrane fuel cells (AEMFCs) reported in the literature have been unable to achieve high current or power. A recently proposed theory is that the achievable current is largely limited by poorly balanced water during cell

Influence of Substrate Moisture State and Roughness on Interface Microstructure and Bond Strength: Slant Shear vs. Direct Tension Testing

December 8, 2017
Author(s)
Dale P. Bentz, Igor de la Varga, Jose Munoz, Robert Spragg, Benjamin Graybeal, Daniel S. Hussey, David L. Jacobson, Scott Z. Jones, Jacob M. LaManna
There are conflicting views in the literature concerning the optimum moisture state for an existing substrate prior to the application of a repair material. Both saturated-surface-dry (SSD) and dry substrates have been found to be preferable to the other

Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

November 27, 2017
Author(s)
Jacob M. LaManna, Daniel S. Hussey, Elias M. Baltic, David L. Jacobson
Dual mode tomography offers the potential of improved estimation of the composition of a sample from the complimentary of the interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is

Studying Water and Solute Transport through Desalination Membranes via Neutron Radiography

October 25, 2017
Author(s)
Devin L. Shaffer, Jacob M. LaManna, David L. Jacobson, Daniel S. Hussey, Menachem Elimelech, Edwin P. Chan
Neutron radiography, a non-destructive imaging technique, is applied to study water and solute transport through desalination membranes. Specifically, we use neutron radiography to quantify lithium chloride draw solute concentrations across a thin-film

Measurement and Modeling of the Ability of Crack Fillers to Prevent Chloride Ingress into Mortar

August 1, 2017
Author(s)
Scott Z. Jones, Dale P. Bentz, Jeffrey Davis, Daniel S. Hussey, David L. Jacobson, John L. Molloy, John R. Sieber
One of the most common repair procedures applied to damaged concrete is the filling of cracks by the application (injection) of an organic polymer. This operation is performed to increase the service life of the concrete by removing a preferential pathway

Simultaneous Neutron and X-Ray Imaging of 3D Kerogen and Fracture Structure in Shales

June 17, 2017
Author(s)
Wei-Shan NMN Chiang, Jacob M LaManna, Daniel S. Hussey, David L. Jacobson, Yun Liu, Jilin Zhang, Daniel T. Georgi, Jin-hong Chen
Hydrocarbon production from shales using horizontal drilling and hydraulic fracturing has been the key development in US energy industry in the past decade and has now become more important globally. Nevertheless, many fundamental problems related to the