Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 51 - 75 of 83

High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing

September 18, 2013
Author(s)
Brice R. Calkins, Paolo L. Mennea, Adriana E. Lita, Benjamin Metcalf, Steven Kolthammer, Antia A. Lamas-Linares, Justin Spring, Peter C. Humphreys, Richard P. Mirin, James Gates, Peter Smith, Ian Walmsley, Thomas Gerrits, Sae Woo Nam
The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon

Two-photon interference with continuous-wave operating multi-mode coherent light

September 12, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V = 0.5. While scanning the

Mode reconstruction of a light field by multi-photon statistics

July 15, 2013
Author(s)
Elizabeth A. Goldschmidt, Fabrizio Piacentini, I. Ruo Berchera, Sergey V. Polyakov, Silke Peters, Stefan Kuck, Giorgio Brida, Ivo P. Degiovanni, Alan L. Migdall, Marco Genovese
Knowing the underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and decoherence of quantum information. Typically, full characterization of the mode structure involves a series of several separate

Conditions for two-photon interference with coherent pulses

July 1, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report experiments on two-photon interference between temporally non-overlapping weak coherent pulses. While the single-photon interference is washed out, the two-photon interference shows a Hong-Ou-Mandel dip with visibility of 0.50±0.09, which shows

Frequency Correlated Bi-Photon Spectroscopy using a Tunable Up-Conversion Detector

May 21, 2013
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be

Reducing noise in single-photon frequency conversion

April 10, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, Martin M. Fejer, Xiao Tang
We demonstrate low-noise and efficient frequency conversion using sum-frequency mixing in a periodically poled LiNbO3 (PPLN) waveguide. Using a 1556 nm pump, 1302 nm photons are efficiently converted to 709 nm photons. We obtain 70% conversion efficiency

Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal coherent-state discrimination

January 6, 2013
Author(s)
Francisco E. Becerra Chavez, Jingyun Fan, Gerald Baumgartner, Julius Goldhar, Jonathan Kosloski, Alan L. Migdall
The measurement of the state of a quantum system with inherent quantum uncertainty (noise) approaching the ultimate physical limits is of both technological and fundamental interest. Quantum noise prevents any mutually nonorthogonal quantum states, such as

Adaptive measurements in nonorthogonal state discrimination

December 18, 2012
Author(s)
Francisco E. Becerra Chavez, Alan L. Migdall
Adaptive measurements represent important resources in quantum information science and quan- tum technologies. They take advantage of the knowledge of partial measurements of the system to optimize subsequent measurements and perform tasks that are dicult

LDPC for QKD Reconcilation

May 22, 2012
Author(s)
Alan Mink, Anastase Nakassis
We present the Low Density Parity Check (LDPC) forward error correction algorithm adapted for the Quantum Key Distribution (QKD) protocol in a form readily applied by developers. A sparse parity check matrix is required for the LDPC algorithm and we

M-ary state phase-shift keying discrimination below the homodyne limit

December 22, 2011
Author(s)
Francisco E. Becerra Chavez, Jingyun Fan, Gerald Baumgartner, Sergey V. Polyakov, Julius Goldhar, Jonathan Kosloski, Alan L. Migdall
We investigate a strategy for M-ary discrimination of nonorthogonal phase states with error rates below the homodyne limit. This strategy uses feed forward to update a reference field and Signal nulling for the state discrimination. We experimentally

State Discriminiation Signal Nulling Receivers

September 6, 2011
Author(s)
Francisco E. Becerra Chavez, Jingyun Fan, Gerald Baumgartner, Sergey V. Polyakov, Julius Goldhar, Jonathan Kosloski, Alan L. Migdall
Optimized state-discrimination receiver strategies for nonorthogonal states can improve the capacity of the communication channels operating with error rates below the ones corresponding to conventional receivers. Coherent signal-nulling receivers use a

Single-Photon Sources and Detectors

July 27, 2011
Author(s)
M D. Eisaman, Jingyun Fan, Alan L. Migdall, Sergey Polyakov
We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field that is currently

Frequency Up-conversion Single Photon Detectors for Quantum Communication Systems

April 27, 2011
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang, Joshua Bienfang
Frequency up-conversion technology can be used to increase detection efficiency for near infrared photons, as has been demonstrated in fiber-based quantum communication systems. In a continuous wave pumped up-conversion detector, the temporal resolution is

Grating-Enhanced Narrow-Band Spontaneous Parametric Down Conversion

March 10, 2010
Author(s)
Xiao Tang, Lijun Ma
We propose a new method to narrow the linewidth of entangled photons from spontaneous parametric down conversion incorporated with an internal Bragg grating. We study and show that it is a promising way to generate narrow-line entangled photons.

High Speed Quantum Key Distribution over Optical Fiber Network System

May 28, 2009
Author(s)
Xiao Tang, Lijun Ma, Alan Mink
NIST has developed a number of complete fiber-based high-speed quantum key distribution QKD)systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network

1310 nm Differential Phase Shift QKD System Using Superconducting Single Photon Detectors

April 30, 2009
Author(s)
Xiao Tang, Lijun Ma, Sae Woo Nam, Burm Baek, Oliver T. Slattery, Alan Mink, Hai Xu, Tiejun Chang
We have implemented a differential-phase-shift (DPS) quantum key distribution (QKD) system at 1310 nm with superconducting single photon detectors (SSPD). The timing jitter of the SSPDs is small and its dark counts are very low. 1310 nm is an ideal quantum

Long-distance entanglement-based quantum key distribution over optical fiber

November 10, 2008
Author(s)
Toshimori Honjo, Sae Woo Nam, Hiroki Takesue, Qiang Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, Burm Baek, Robert Hadfield, Shigehito Miki, Mikio Fujiwara, Masahide Sasaki, Z. Wang, K. Inoue, Yoshihisa Yamamoto
We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-υm telecom band
Displaying 51 - 75 of 83