Scalable imaging of trapped ions

Dave Kielpinski

Griffith University, Brisbane, Australia

Theory collaborators:

Dr Joel Corney (U Qld) Prof Harry Quiney (U Melb) Prof Howard Wiseman Dr Erik Streed Dr Andreas Jechow Dr Till Weinhold (U Qld)

Experimental team:

Benjamin Norton Matthew Petrasiunas Valdis Blums

Australian Government

"Quantum CCD"

Kielpinski, Monroe, Wineland, Nature 417, 709 (2002)

Large numbers of ions are hard to control!

How to scale up? *Modular architecture* shuttle ions around

Highly parallel imaging

Streed, Norton, Chapman, Kielpinski, Quant Inform Comp 9, 0203 (2009)

Fault-tolerance: parallel error correction rate-limiting step: *ion readout* efficient, scalable light collection Quantum communication: match to single-mode fiber *imaging*, not just collection

Traditional multi-element lens: bulky, complex, inefficient

Fresnel lens: engineer surface directly Up to 32% solid angle (20x better than lens) Microfabricated lens arrays

Fresnel lens design and fabrication

Simple two-level lens design: trenches with square x-section, depth = π phase shift trench spacing: phase profile of perfect lens Fabrication: e-beam lithography on fused silica substrate

focal length = 3 mm, diameter = 5 mm 12% of total solid angle (0.12 \times 4 π steradians)

fabrication: M. Ferstl

Scalable ion imaging

Streed, Norton, Jechow, Weinhold, Kielpinski PRL 106, 010502 (2011)

Imaging at standard detection wavelength of 369.5 nm 4% collection efficiency (30% diffraction) 140 µm field of view, signal = 23×background

Scalable with performance similar to other systems

Imaging at the wavelength scale

Jechow, Streed, Norton, Petrasiunas, Kielpinski, arXiv:1101:4403 (2011)

Record resolution for imaging an isolated atom: 440 nm FWHM 20% larger than wavelength Est. 36x higher entanglement rate

aberration-free imaging volume only a few µm on a side nanopositioning becomes crucial!

Ideal resolution at our numerical aperture: 294 nm FWHM Temperature should not limit resolution for Doppler cooling Need to locate aberration-free volume better? Vibration issues?

Applications of high resolution

Laser addressing Low-crosstalk fiber coupling Smaller traps (stray light not a problem!)

Spatial thermometry

0.3 mK resolution, 15 mK accuracy

Equilibrium technique (unlike spectral thermometry)

Novel laser cooling dynamics

Spatial wavefunction of ion photons

Series of defocused ion images

Assume Fresnel diffraction between images Reconstructs amplitude and phase of wavefront

Improving Fresnel lenses

80% diffraction efficiency Use more complex groove profile

Sandia / Griffith, Proc. SPIE 6482, 648209 (2007)

28% solid angle coverage (diameter = 4 x focal length)

Gil et al., J. Vac. Sci. Technol. B 20, 2597 (2002)

22% collection efficiency, 200 nm resolution, diffraction-limited x 2500 increase in ion-ion entanglement rate

Superresolution imaging of ions

Superresolution microscopy: beat the wavelength limit Example: STED (stimulated emission depletion) microscopy Scanned vortex beam with dark spot $<< \lambda$ Simple for ions!

- STED: $\lambda/60 = 6$ nm resolution (scan laser beam)
- Resolve quantized motion by fluorescence
- Quantum feedback on motional state
- Application to BEC imaging?

Quantum repeaters with trapped ions

Long-distance quantum communication: extend range of quantum light pulses using quantum repeaters key capability: entangle ion qubit with quantum light pulse

Dipole coupling limits bandwidth to << 1 GHz (even with cavity)

Spontaneous emission: single-sided exponential

Fixed wavelength

Interface to telecom networks?

Fiber telecommunications: short pulses (tens of ps for optimum use of DWDM) smooth pulses (dispersion management) many wavelength slots in 1550-1650 nm band *How to interface with ion light pulses?*

Current lines of research: Nonlinear wavelength conversion of single photons Narrowband SPDC engineering (match to quantum emitter) Try to speed up ion photon... still limited to 1 GHz

Quantum optical waveform conversion

Access full time-bandwidth product of telecom link Kielpinski, Corney, Wiseman, arXiv:1010.2104, accepted to PRL

Ultrafast all-fiber lasers for fast gates

Tunable seed with scalable repetition rate (300 MHz)

Power amplification and upconversion

Conclusions

Fresnel lens imaging of trapped ions

- efficient, low-aberration collection into single mode
- should increase ion-photon entanglement rate
- clear path to highly parallel operation

Quantum optical waveform conversion

- compress and reshape fluorescence photon waveform
- negligible error in state transfer

Ultrafast lasers for fast gates

Telecom-compatible quantum repeaters with fast quantum logic

