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I. INTRODUCTION
A. Background

This paper gives the complete 2006 CODATA self-
consistent set of recommended values of the fundamen-
tal physical constants and describes in detail the 2006
least-squares adjustment, including the selection of the
final set of input data based on the results of least-
squares analyses. Prepared under the auspices of the
CODATA Task Group on Fundamental Constants, this
is the fifth such report of the Task Group since its estab-
lishment in 1969' and the third in the four-year cycle of
reports begun in 1998. The 2006 set of recommended
values replaces its immediate predecessor, the 2002 set.
The closing date for the availability of the data consid-
ered for inclusion in this adjustment was 31 December
2006. As a consequence of the new data that became
available in the intervening four years, there has been a
significant reduction of the uncertainty of many con-
stants. The 2006 set of recommended values first became
available on 29 March 2007 at http:/physics.nist.gov/
constants, a web site of the NIST Fundamental Con-
stants Data Center (FCDC).

The 1998 and 2002 reports describing the 1998 and
2002 adjustments (Mohr and Taylor, 2000, 2005), re-
ferred to as CODATA-98 and CODATA-02 throughout
this article, describe in detail much of the currently
available data, its analysis, and the techniques used to
obtain a set of best values of the constants using the
standard method of least squares for correlated input
data. This paper focuses mainly on the new information
that has become available since 31 December 2002 and
references the discussions in CODATA-98 and
CODATA-02 for earlier work in the interest of brevity.
More specifically, if a potential input datum is not dis-
cussed in detail, the reader can assume that it (or a
closely related datum) has been reviewed in either
CODATA-98 or CODATA-02.

The reader is also referred to these papers for a dis-
cussion of the motivation for and the philosophy behind

'The Committee on Data for Science and Technology was
established in 1966 as an interdisciplinary committee of the
International Council for Science.
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the periodic adjustment of the values of the constants
and for descriptions of how units, quantity symbols, nu-
merical values, numerical calculations, and uncertainties
are treated, in addition to how the data are character-
ized, selected, and evaluated. Since the calculations are
carried out with more significant figures than are dis-
played in the text to avoid rounding errors, data with
more digits are available on the FCDC web site for pos-
sible independent analysis.

However, because of their importance, we recall in
detail the following two points also discussed in these
references. First, although it is generally agreed that the
correctness and overall consistency of the basic theories
and experimental methods of physics can be tested by
comparing values of particular fundamental constants
obtained from widely differing experiments, throughout
this adjustment, as a working principle, we assume the
validity of the underlying physical theory. This includes
special relativity, quantum mechanics, quantum electro-
dynamics (QED), the standard model of particle physics,
including combined charge conjugation, parity inversion,
and time reversal (CPT) invariance, and the theory of
the Josephson and quantum Hall effects, especially the
exactness of the relationships between the Josephson
and von Klitzing constants Kj and Ry and the elemen-
tary charge e and Planck constant 4. In fact, tests of
these relations Ky=2e¢/h and Rg=h/e? using the input
data of the 2006 adjustment are discussed in Sec.
XIL.B.2.

The second point has to do with the 31 December
2006 closing date for data to be considered for inclusion
in the 2006 adjustment. A datum was considered to have
met this date, even though not yet reported in an archi-
val journal, as long as a description of the work was
available that allowed the Task Group to assign a valid
standard uncertainty u(x;) to the datum. Thus, any input
datum labeled with an 07 identifier because it was pub-
lished in 2007 was, in fact, available by the cutoff date.
Also, some references to results that became available
after the deadline are included, even though the results
were not used in the adjustment.

B. Time variation of the constants

This subject, which was briefly touched upon in
CODATA-02, continues to be an active field of experi-
mental and theoretical research, because of its impor-
tance to our understanding of physics at the most funda-
mental level. Indeed, a large number of papers relevant
to the topic have appeared in the last four years; see
the FCDC bibliographic database on the fundamen-
tal constants using the keyword time variation
at http://physics.nist.gov/constantsbib. For example, see
Fortier et al. (2007) and Lea (2007). However, there has
been no laboratory observation of the time dependence
of any constant that might be relevant to the recom-
mended values.
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C. Outline of paper

Section II touches on special quantities and units, that
is, those that have exact values by definition.

Sections III-XI review all available experimental and
theoretical data that might be relevant to the 2006 ad-
justment of the values of the constants. As discussed in
Appendix E of CODATA-98, in a least-squares analysis
of the fundamental constants, the numerical data, both
experimental and theoretical, also called observational
data or input data, are expressed as functions of a set of
independent variables called adjusted constants. The
functions that relate the input data to the adjusted con-
stants are called observational equations, and the least-
squares procedure provides best estimated values, in the
least-squares sense, of the adjusted constants. The focus
of the review-of-data sections is thus the identification
and discussion of the input data and observational equa-
tions of interest for the 2006 adjustment. Although
not all observational equations that we use are expli-
citly given in the text, all are summarized in Tables
XXXVIII, XL, and XLII of Sec. XIL.B.

As part of our discussion of a particular datum, we
often deduce from it an inferred value of a constant,
such as the fine-structure constant « or Planck constant
h. It should be understood, however, that these inferred
values are for comparison purposes only; the datum
from which it is obtained, not the inferred value, is the
input datum in the adjustment.

Although just four years separate the 31 December
closing dates of the 2002 and 2006 adjustments, there are
a number of important new results to consider. Experi-
mental advances include the 2003 Atomic Mass Evalua-
tion from the Atomic Mass Data Center (AMDC),
which provides new values for the relative atomic
masses A,(X) of a number of relevant atoms; a new
value of the electron magnetic moment anomaly a, from
measurements on a single electron in a cylindrical Pen-
ning trap, which provides a value of the fine-structure
constant «; better measurements of the relative atomic
masses of H, *H, and *He; new measurements of tran-
sition frequencies in antiprotonic helium (p”"He" atom)
that provide a competitive value of the relative atomic
mass of the electron A,(e); improved measurements of
the nuclear magnetic resonance (NMR) frequencies of
the proton and deuteron in the HD molecule and of the
proton and triton in the HT molecule; a highly accurate
value of the Planck constant obtained from an improved
measurement of the product K3Rk using a moving-coil
watt balance; new results using combined x-ray and op-
tical interferometers for the {220} lattice spacing of
single crystals of naturally occurring silicon; and an ac-
curate value of the quotient 4/m(®’Rb) obtained by
measuring the recoil velocity of rubidium-87 atoms upon
absorption or emission of photons—a result that pro-
vides an accurate value of « that is virtually independent
of the electron magnetic moment anomaly.

Theoretical advances include improvements in certain
aspects of the theory of the energy levels of hydrogen
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and deuterium; improvements in the theory of antipro-
tonic helium transition frequencies that, together with
the new transition frequency measurements, have led to
the aforementioned competitive value of A (e); a new
theoretical expression for a. that, together with the new
experimental value of a., has led to the aforementioned
value of «; improvements in the theory for the g-factor
of the bound electron in hydrogenic ions with nuclear
spin quantum number /=0 relevant to the determination
of A,(e); and improved theory of the ground-state hy-
perfine splitting of muonium Ay, (the p*e™ atom).

Section XII describes the analysis of the data, with the
exception of the Newtonian constant of gravitation,
which is analyzed in Sec. X. The consistency of the data
and potential impact on the determination of the 2006
recommended values were appraised by comparing
measured values of the same quantity, comparing mea-
sured values of different quantities through inferred val-
ues of a third quantity such as « or A, and finally by
using the method of least squares. Based on these inves-
tigations, the final set of input data used in the 2006
adjustment was selected.

Section XIII provides, in several tables, the 2006
CODATA recommended values of the basic constants
and conversion factors of physics and chemistry, includ-
ing the covariance matrix of a selected group of con-
stants.

Section XIV concludes the paper with a comparison
of the 2006 and 2002 recommended values of the con-
stants, a survey of implications for physics and metrol-
ogy of the 2006 values and adjustment, and suggestions
for future work that can advance our knowledge of the
values of the constants.

II. SPECIAL QUANTITIES AND UNITS

Table I lists those quantities whose numerical values
are exactly defined. In the International System of Units
(SI) (BIPM, 2006), used throughout this paper, the defi-
nition of the meter fixes the speed of light in vacuum c,
the definition of the ampere fixes the magnetic constant
(also called the permeability of vacuum) g, and the
definition of the mole fixes the molar mass of the carbon
12 atom M('?C) to have the exact values given in the
table. Since the electric constant (also called the permit-
tivity of vacuum) is related to uy by €,=1/uc?, it too is
known exactly.

The relative atomic mass A, (X) of an entity X is de-
fined by A(X)=m(X)/m,, where m(X) is the mass of X
and m, is the atomic mass constant defined by

my=m(?C)=1u~1.66x 107 kg, (1)

where m('?C) is the mass of the carbon 12 atom and u is
the unified atomic mass unit (also called the dalton, Da).
Clearly, A,(X) is a dimensionless quantity and A,(20)
=12 exactly. The molar mass M(X) of entity X, which is
the mass of one mole of X with SI unit kg/mol, is given
by
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TABLE I. Some exact quantities relevant to the 2006 adjustment.

Quantity Symbol Value

speed of light in vacuum ¢, ¢ 299792458 ms~!

magnetic constant o 4t x 1077 N A72=12.566 370 614... X 1077 N A2
electric constant € (ugc?) 1=8.854187817... X102 Fm™!

relative atomic mass of 2C Ar(]zC) 12

molar mass constant M, 1073 kg mol ™!

molar mass of >C A,(’C)M, M(?C) 12X 1073 kg mol ™!

conventional value of Josephson constant Ky o 483597.9 GHz V-!

conventional value of von Klitzing constant Ry _o 25 812.807 Q)

M(X) = Nam(X) = A(X)M,, 2)

where N, =~6.02x10%/mol is the Avogadro constant
and M,=10"% kg/mol is the molar mass constant. The
numerical value of N4 is the number of entities in one
mole, and since the definition of the mole states that one
mole contains the same number of entities as there are
in 0.012 kg of carbon 12, M(*2C)=0.012 kg/mol exactly.

The Josephson and quantum Hall effects have played
and continue to play important roles in adjustments of
the values of the constants, because the Josephson and
von Klitzing constants Kj and Rk, which underlie these
two effects, are related to e and & by

2e h e
—, Rg= —_—.
h K

K= -
! e 2a

3)
Although we assume these relations are exact, and no
evidence—either theoretical or experimental—has been
put forward that challenges this assumption, the conse-
quences of relaxing it are explored in Sec. XII.B.2. Some
references to recent work related to the Josephson and
quantum Hall effects may be found in the FCDC biblio-
graphic database (see Sec. .B).

The next-to-last two entries in Table I are the conven-
tional values of the Josephson and von Klitzing con-
stants adopted by the International Committee for
Weights and Measures (CIPM) and introduced on Janu-
ary 1, 1990 to establish worldwide uniformity in the
measurement of electrical quantities. In this paper,
all electrical quantities are expressed in SI units. How-
ever, those measured in terms of the Josephson and
quantum Hall effects with the assumption that Ky and
Ry have these conventional values are labeled with a
subscript 90.

For high-accuracy experiments involving the force of
gravity, such as the watt balance, an accurate measure-
ment of the local acceleration of free fall at the site of
the experiment is required. Fortunately, portable and
easy-to-use commercial absolute gravimeters are avail-
able that can provide a local value of g with a relative
standard uncertainty of a few parts in 10°. That these
instruments can achieve such a small uncertainty if prop-
erly used is demonstrated by a periodic international
comparison of absolute gravimeters (ICAG) carried out
at the International Bureau of Weights and Measures
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(BIPM), Sévres, France; the seventh and most recent,
denoted ICAG-2005, was completed in September 2005
(Vitushkin, 2007); the next is scheduled for 2009. In the
future, atom interferometry or Bloch oscillations using
ultracold atoms could provide a competitive or possibly
more accurate method for determining a local value of g
(Peters et al., 2001; McGuirk et al., 2002; Cladé et al.,
2005).

III. RELATIVE ATOMIC MASSES

Included in the set of adjusted constants are the rela-
tive atomic masses A.(X) of a number of particles, at-
oms, and ions. Tables II-VI and the following sections
summarize the relevant data.

A. Relative atomic masses of atoms

Most values of the relative atomic masses of neutral
atoms used in this adjustment are taken from the 2003
atomic mass evaluation (AME2003) of the Atomic Mass
Data Center, Centre de Spectrométrie Nucléaire et de
Spectrométrie de Masse (CSNSM), Orsay, France (Audi
et al., 2003; Wapstra et al., 2003; AMDC, 2006). The re-
sults of AME2003 supersede those of both the 1993
atomic mass evaluation and the 1995 update. Table II
lists the values from AME2003 of interest here, while
Table III gives the covariance for hydrogen and deute-
rium (AMDC, 2003). Other non-negligible covariances
of these values are discussed in the appropriate sections.

Table IV gives six values of A, (X) relevant to the 2006
adjustment reported since the completion and publica-
tion of AME2003 in late 2003 that we use in place of the
corresponding values in Table II.

The *H and *He values are those reported by the
SMILETRAP group at the Manne Siegbahn Laboratory
(MSL), Stockholm, Sweden (Nagy et al., 2006) using a
Penning trap and a time-of-flight technique to detect cy-
clotron resonances. This new “He result is in good
agreement with a more accurate, but still preliminary,
result from the University of Washington group in Se-
attle, WA, USA (Van Dyck, 2006). The AME2003 values
for *H and *He were influenced by an earlier result for
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TABLE II. Values of the relative atomic masses of the neutron
and various atoms as given in the 2003 atomic mass evaluation
together with the defined value for 2¢c.

TABLE 1IV. Values of the relative atomic masses of various
atoms that have become available since the 2003 atomic mass
evaluation.

Relative atomic Relative standard

Relative atomic Relative standard

Atom mass A (X) uncertainty u, Atom mass A(X) uncertainty u,
1.008 664 915 74(56)  5.6x 10710 ’H 2.014 101 778 040(80) 4.0x101

'H 1.007 825032 07(10)  1.0x 10710 H 3.016 049 2787(25) 83x10710
’H 2.014 101 777 85(36)  1.8x 10710 He 3.016 029 3217(26) 8.6x 10710
*H 3.016 049 2777(25) 82x10710 ‘He 4.002 603 254 131(62) 1.5x 1071
*He 3.016 029 3191(26) 8.6x10710 160 15.994 914 619 57(18) 1.1x101
‘He 4.002 603 254 153(63)  1.6x 107! 2si 28.976 494 6625(20) 6.9x 10711
2c 12 (Exact)
0 15.994 914 619 56(16) ~ 1.0x 107! by Van Dyck et al. (2006) based on the analysis of only
2sj 27.976 926 5325(19) 6.9x 1011 three runs.
si 28.976 494 700(22) 7.6x10710 The covariance and correlation coefficient of A,(°H)
30g; 29.973 770 171(32) 1.1%x107° and A,(*He) given in Table V are due to the common
36A1 35.967 545 105(28) 7.8%10-10 component of uncertainty u,=1.4x 107" of the relative
BAL 37.962 732 39(36) 9.5%10°9 atomic mass of the H," reference ion used in the
W0p; 39.962 383 1225(29) 79%10-11 SMILETRAP .measurements;' the.covarlance's and cor-
SR £6.909 180 526(12) L4 10-10 relation coefficients of the University of Washington val-
1075 106.905 0968(46) 4'3 108 ues of A,(*H), A,(*He), and Ar(16O) given in Table VI
100 & : ‘ . are due to the uncertainties of the image-charge correc-

Ag 108.904 7523(31) 2.9%10° tions, which are based on the same experimentally de-
133¢cs 132.905 451 932(24) 1.8x10710 termined relation.

3He from the University of Washington group, which is
in disagreement with their new result.

The values for “He and '°O are those reported by the
University of Washington group (Van Dyck et al., 2006)
using their improved mass spectrometer; they are based
on a thorough reanalysis of data that yielded prelimi-
nary results for these atoms that were used in
AME?2003. They include an experimentally determined
image-charge correction with a relative standard uncer-
tainty 1,=7.9%x1072 in the case of “He and u,=4.0
% 10712 in the case of '°O. The value of A,(*H) is also
from this group and is a near-final result based on the
analysis of ten runs carried out over a 4 year period
(Van Dyck, 2006). Because the result is not yet final, the
total uncertainty is conservatively assigned; u,=9.9
%X 10712 for the image-charge correction. This value of
A,(’H) is consistent with the preliminary value reported

TABLE III. The variances, covariance, and correlation coeffi-
cient of the AME2003 values of the relative atomic masses of
hydrogen and deuterium. The number in bold above the main
diagonal is 10'® times the numerical value of the covariance,
the numbers in bold on the main diagonal are 10'® times the
numerical values of the variances, and the number in italics
below the main diagonal is the correlation coefficient.

The %Si value is that implied by the ratio
A(PSi")/A,(*Si HY)=0.999 715 124 1812(65) obtained
at the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, using a recently developed tech-
nique of determining mass ratios by directly comparing
the cyclotron frequencies of two different ions simulta-
neously confined in a Penning trap (Rainville et al,
2005). (The relative atomic mass work of the MIT group
has now been transferred to Florida State University,
Tallahassee, FL, USA.) This approach eliminates many
components of uncertainty arising from systematic ef-
fects. The value for A,(*’Si) is given in the supplemen-
tary information to Rainville ef al. (2005) and has a sig-
nificantly smaller uncertainty than the corresponding
AME2003 value.

B. Relative atomic masses of ions and nuclei

The relative atomic mass A,(X) of a neutral atom X is
given in terms of the relative atomic mass of an ion of
the atom formed by the removal of n electrons by

TABLE V. The variances, covariance, and correlation coeffi-
cient of the values of the SMILETRAP relative atomic masses
of tritium and helium 3. The number in bold above the main
diagonal is 10'® times the numerical value of the covariance,
the numbers in bold on the main diagonal are 10'® times the
numerical values of the variances, and the number in italics
below the main diagonal is the correlation coefficient.

A,('H) A,(CH) A,CH) A,(He)
A,(‘H) 0.0107 0.0027 A,(CH) 6.2500 0.1783
A, (CH) 0.0735 0.1272 A,(PHe) 0.0274 6.7600
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TABLE VI. The variances, covariances, and correlation coef-
ficients of the University of Washington values of the relative
atomic masses of deuterium, helium 4, and oxygen 16. The
numbers in bold above the main diagonal are 10%° times the
numerical values of the covariances, the numbers in bold on
the main diagonal are 10%° times the numerical values of the
variances, and the numbers in italics below the main diagonal
are the correlation coefficients.

A(CH) A,(*He) A("°0)
A,(H) 0.6400 0.0631 0.1276
A,(*He) 0.1271 0.3844 0.2023
A(*0) 0.0886 0.1813 3.2400
E — Ep(X™*
A0 = 4,5 4 n (o) - DO =EXD )

myc

Here E,(X)/myc? is the relative-atomic-mass equivalent
of the total binding energy of the Z electrons of the
atom, where Z is the atomic number (proton number),
and E,(X"")/m,c? is the relative-atomic-mass equivalent
of the binding energy of the Z—n electrons of the X"*
ion. For a fully stripped atom, that is, for n=Z2, X%*is N,
where N represents the nucleus of the atom, and
En(X?*)/myc?=0, which yields the first few equations of
Table XL in Sec. XII.B.

The binding energies E;, used in this work are the
same as those used in the 2002 adjustment; see Table IV
of CODATA-02. For tritium, which is not included
there, we use the value 1.097 185439x 10’ m~! (Ko-
tochigova, 2006). The uncertainties of the binding ener-
gies are negligible for our application.

C. Cyclotron resonance measurement of the electron relative
atomic mass A (e)

A value of A,(e) is available from a Penning-trap
measurement carried out by the University of Washing-
ton group (Farnham et al., 1995); it is used as an input
datum in the 2006 adjustment, as it was in the 2002 ad-
justment:

A,(e)=0.000 548 5799111(12) [2.1X107°].  (5)

IV. ATOMIC TRANSITION FREQUENCIES

Atomic transition frequencies in hydrogen, deute-
rium, and antiprotonic helium yield information on the
Rydberg constant, the proton and deuteron charge radii,
and the relative atomic mass of the electron. The hyper-
fine splitting in hydrogen and fine-structure splitting in
helium do not yield a competitive value of any constant
at the current level of accuracy of the relevant experi-
ment and/or theory. All of these topics are discussed in
this section.
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A. Hydrogen and deuterium transition frequencies, the
Rydberg constant R, and the proton and deuteron charge
radii R, Ry

The Rydberg constant is related to other constants by
the definition

,MC
2h

It can be accurately determined by comparing measured
resonant frequencies of transitions in hydrogen (H) and
deuterium (D) to the theoretical expressions for the en-
ergy level differences in which it is a multiplicative fac-
tor.

R.=« (6)

1. Theory relevant to the Rydberg constant

The theory of the energy levels of hydrogen and deu-
terium atoms relevant to the determination of the Ryd-
berg constant R, based on measurements of transition
frequencies, is summarized in this section. Complete in-
formation necessary to determine the theoretical values
of the relevant energy levels is provided, with an empha-
sis on results that have become available since the pre-
vious adjustment described in CODATA-02. For brevity,
references to earlier work, which can be found in Eides
et al. (2001b) for example, are not included here.

An important consideration is that the theoretical val-
ues of the energy levels of different states are highly
correlated. For example, for S states, the uncalculated
terms are primarily of the form of an unknown common
constant divided by n3. This fact is taken into account by
calculating covariances between energy levels in addi-
tion to the uncertainties of the individual levels as dis-
cussed in detail in Sec. IV.A.1.l. In order to take these
correlations into account, we distinguish between com-
ponents of uncertainty that are proportional to 1/x°, de-
noted by u,, and components of uncertainty that are es-
sentially random functions of n, denoted by u,,.

The energy levels of hydrogenlike atoms are deter-
mined mainly by the Dirac eigenvalue, QED effects
such as self energy and vacuum polarization, and nuclear
size and motion effects, all of which are summarized in
the following sections.

a. Dirac eigenvalue

The binding energy of an electron in a static Coulomb
field (the external electric field of a point nucleus of
charge Ze with infinite mass) is determined predomi-
nantly by the Dirac eigenvalue

ED :f(nvj)mecz’ (7)
where
Za)? |12
o= 1e 20 ®

n and j are the principal quantum number and total an-
gular momentum of the state, respectively, and
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2 12
6:j+%—[(j+%> —(Za)z] . 9)

Although we are interested only in the case in which the
nuclear charge is e, we retain the atomic number Z in
order to indicate the nature of various terms.

Corrections to the Dirac eigenvalue that approxi-
mately take into account the finite mass of the nucleus
my are included in the more general expression for
atomic energy levels, which replaces Eq. (7) (Barker and
Glover, 1955; Sapirstein and Yennie, 1990),

mic?
Ey =M +[fn,j) = 1Imc® = [f(n,j) - 17 2;\/1

1- 8y (Za)'mic?
+ 3 2 + ) ,
k2l+1) 2n°my

(10)

where [ is the nonrelativistic orbital angular momentum
quantum number, « is the angular-momentum-parity
quantum number K:(—l)f”*l/z(j+%), M=m,+my, and
my=mmy/ (m.+my) is the reduced mass.

b. Relativistic recoil

Relativistic corrections to Eq. (10) associated with
motion of the nucleus are considered relativistic-recoil
corrections. The leading term, to lowest order in Z« and
all orders in m./my, is (Erickson, 1977; Sapirstein and
Yennie, 1990)

3 5
Z 1 8
ES: er ( ag me.c {—5loln(Za)_2——lnk0(n,l)
mgmy TH 3 3
172
g 20 3an mzN—mg 10
X{mi] ln(%> - mg ln(@”}, (11)
ml’ mr
where
2\ &1 1 1-68
a,=-2|1 —+1l-— 6+ .
!n<n>+§i+ 2n] Ol DI

(12)

To lowest order in the mass ratio, higher-order correc-

tions in Za have been extensively investigated; the con-
tribution of the next two orders in Za is

m. (Za)® )
—5meC
n

Eg=
my

X [Dgo+ DpnZan*(Za) 2+ -+ ], (13)

where for nS;), states (Pachucki and Grotch, 1995; Eides
and Grotch, 1997¢)

Dg=4In2-1 (14)

and (Melnikov and Yelkhovsky, 1999; Pachucki and
Karshenboim, 1999)
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1
60’

and for states with /=1 (Golosov et al., 1995; Elkhovskii,
1996; Jentschura and Pachucki, 1996)

(1+1) 2
DG“:{3_ n? ](412—1)(21+3)' (16)

In Eq. (16) and subsequent discussion, the first subscript
on the coefficient of a term refers to the power of Za
and the second subscript to the power of In(Za)~2. The
relativistic recoil correction used in the 2006 adjustment
is based on Egs. (11)-(16). The estimated uncertainty for
S states is taken to be 10% of Eq. (13), and for states
with /=1 it is taken to be 1% of that equation.

Numerical values for the complete contribution of Eq.
(13) to all orders in Za have been obtained by Shabaev
et al. (1998). Although the difference between the all-
orders calculation and the truncated power series for S
states is about three times their quoted uncertainty, the
two results are consistent within the uncertainty as-
signed here. The covariances of the theoretical values
are calculated by assuming that the uncertainties are
predominately due to uncalculated terms proportional
to (mg/my)/n.

Doy =- (15)

c. Nuclear polarization

Interactions between the atomic electron and the
nucleus which involve excited states of the nucleus give
rise to nuclear polarization corrections. For hydrogen,
we use the result (Khriplovich and Sen’kov, 2000)

Ep(H) =—0. 070(13)h— kHz. (17)

For deuterium, the sum of the proton polarizability, the
neutron polarizability (Khriplovich and Sen’kov, 1998),
and the dominant nuclear structure polarizability (Friar
and Payne, 1997a) gives

Ep(D)=-21. 37(8)h— kHz. (18)

We assume that this effect is negligible in states of
higher /.

d. Self energy
The one-photon electron self energy is given by

@ _ 0‘@
n

Egp=— F(Za)mc?, (19)

where
F(Za) = Ay In(Za) > + Ayy+ Aso(Za)
+Aep(Za)? In*(Za)? + Ag(Za)* In(Za) 2
+ Gsp(Za)(Za)’. (20)

From Erickson and Yennie (1965) and earlier papers
cited therein,
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TABLE VII. Bethe logarithms In kq(#,/) relevant to the deter-
mination of R..

n S P D
1 2.984 128 556
2 2.811 769 893 —0.030 016 709
3 2.767 663 612
4 2.749 811 840 —0.041 954 895 —0.006 740 939
6 2.735 664 207 —0.008 147 204
8 2.730 267 261 —0.008 785 043
12 ~0.009 342 954
A =ts
41 — 3 105
A 41k(l) 104 L (1= 5y)
=——Inkyn,)+—6y— ————(1-),
R S 9 N 2k(20+1) 0

139
Aso— 5—211'12 ’1T5]0,
A62:_ 5109

A—4<11 l)§1241 oot
61 = +2+ +n +3 n nn 180

77 1 2 1
a5 |20\ \is T30

96n% — 3211+ 1)
- 3221 -1)2D Q21+ 1)(21 + 2)(21 + 3)

(1-6p).

(21)

The Bethe logarithms In ky(n,/) in Eq. (21) are given in
Table VII (Drake and Swainson, 1990).

The function Ggg(Za) in Eq. (20) is the higher-order
contribution (in Za) to the self energy, and the values
for Ggg(a) that we use here are listed in Table VIII. For
S and P states with n<4, the values in the table are
based on direct numerical evaluations by Jentschura and
Mohr (2004, 2005) and Jentschura et al. (1999, 2001). The
values of Ggg(a) for the 6S and 8S states are based on
the low-Z limit of this function Ggg(0)=A¢, (Jentschura,

TABLE VIII. Values of the function Gggp(a).

Czarnecki, and Pachucki, 2005) together with extrapola-
tions of complete numerical calculation results of F(Za)
[see Eq. (20)] at higher Z (Kotochigova and Mohr, 2006).
The values of Ggg(a) for D states are from Jentschura,
Kotochigova, Le Bigot, et al. (2005).

The dominant effect of the finite mass of the nucleus
on the self energy correction is taken into account by
multiplying each term of F(Z«) by the reduced-mass fac-
tor (m,/m.)?, except that the magnetic moment term
-1/[2k(21+1)] in A4, is multiplied instead by the factor
(m,/m)?. In addition, the argument (Za)? of the loga-
rithms is replaced by (m./m,)(Za)™ (Sapirstein and
Yennie, 1990).

The uncertainty of the self energy contribution to a
given level arises entirely from the uncertainty of Ggg(«a)
listed in Table VIII and is taken to be entirely of type u,,.

e. Vacuum polarization

The second-order vacuum-polarization level shift is

o _aZa)?
VP — T n3

H(Za)m.c?, (22)

where the function H(Z«) is divided into the part corre-
sponding to the Uehling potential, denoted here by
H"Y(Za), and the higher-order remainder H®(Za),
where

HY(Za)=Vy+ Vsy(Za) + Vg (Za)* n(Za)?

+ GUNZa)(Za)?, (23)
H®(Za) = GR(Za)(Za)?, (24)
with
V40 = 14_551()a

5
Vso= @"T@o,

Vi =— 1530 (25)

The part G\)(Za) arises from the Uehling potential
with values given in Table IX (Mohr, 1982; Kotochigova
et al., 2002). The higher-order remainder G%)(Za) has
been considered by Wichmann and Kroll, and the lead-
ing terms in powers of Za are (Wichmann and Kroll,
1956; Mohr, 1975, 1983)

n Sip Pip P3p Dsp Dsp

1 —-30.290 240(20)

2 —31.185150(90) —-0.973 50(20) —-0.486 50(20)

3 —31.047 70(90)

4 -30.9120(40) -1.1640(20) —-0.6090(20) 0.031 63(22)
6 -30.711(47) 0.034 17(26)
8 -30.606(47) 0.007 940(90) 0.034 84(22)
12 0.0080(20) 0.0350(30)
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TABLE IX. Values of the function G(\}l),(a).

n Sin Pip P3p Dsp Dsp

1 -0.618 724

2 -0.808 872 —-0.064 006 -0.014 132

3 -0.814 530

4 -0.806 579 —0.080 007 -0.017 666 —0.000 000
6 —-0.791 450 —0.000 000
8 -0.781197 —0.000 000 —0.000 000
12 —0.000 000 —0.000 000

19 = 1 31%°
GVp(Ze) = (45 27)(S (__ )“(Za)’s’”

. (26)

Higher-order terms omitted from Eq. (26) are negligible.
In a manner similar to that for the self energy, the
leading effect of the finite mass of the nucleus is taken
into account by multiplying Eq. (22) by the factor
(m,/m.)? and including a multiplicative factor of
(m¢/m,) in the argument of the logarithm in Eq. (23).
There is also a second-order vacuum polarization
level shift due to the creation of virtual particle pairs
other than the e”e* pair. The predominant contribution
for nS states arises from p*p~, with the leading term
being (Eides and Shelyuto, 1995; Karshenboim, 1995)

2 3
o= S (e (e e e

T N mg

The next-order term in the contribution of muon
vacuum polarization to nS states is of relative order
Zamg/m, and is therefore negligible. The analogous
contribution E2), from 7't~ (-18 Hz for the 18 state) is
also negligible at the level of uncertainty of current in-
terest.

For the hadronic vacuum polarization contribution,
we use the result given by Friar et al. (1999) that utilizes
all available e*e™ scattering data,

ER)y vp=0.671(15)ER)p, (28)

where the uncertainty is of type u.
The muonic and hadronic vacuum polarization contri-
butions are negligible for P and D states.

f. Two-photon corrections

Corrections from two virtual photons have been par-
tially calculated as a power series in Za,

£ ( )(Zna) me’FY(Za), (29)
where
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FY(Za) = Byy+ Bso(Za) + Bez(Za)* In(Za) 2

+Bo(Za)> nX(Za)? + Bg(Za)? In(Za)™?
+Begy(Za)> + . (30)
The leading term By is well known,
5 37721 5 10m* 2179 9 (3) s
WT| T MET T T eas 0
m™In2 @ 197 3{3)| 1-8
+ e — = — (3])
2 12 144 4 [k(2I+1)

The second term is (Pachucki, 1993a, 1994; Eides and
Shelyuto, 1995; Eides et al., 1997)

Bsy=—21.5561(31) 8, (32)

and the next coefficient is (Karshenboim, 1993; Manohar
and Stewart, 2000; Yerokhin, 2000; Pachucki, 2001)

Bes =~ 300- (33)
For S states, the coefficient By, is given by
16 1 1
B62 a—ln2+’y+lﬁ(n)—lnn—;+m s

(34)

where y=0.577... is Euler’s constant and  is the psi
function (Abramowitz and Stegun, 1965). The difference
Bg;(1)—Bgy(n) was calculated by Karshenboim (1996)
and confirmed by Pachucki (2001), who also calculated
the n-independent additive constant. For P states, the
calculated value is (Karshenboim, 1996)

3 4 n’-1
2= 57 2 (35)
This result has been confirmed by Jentschura and Nan-
dori (2002), who also showed that for D and higher an-
gular momentum states Bg,=0.

Recent work has led to new results for Bg; and higher-
order coefficients. In the paper of Jentschura, Czarnecki,
and Pachucki (2005), an additional state-independent
contribution to the coefficient B, for S states is given,
which differs slightly (2%) from the earlier result of Pa-
chucki (2001) quoted in CODATA 2002. The revised co-

efficient for S states is



Mobhr, Taylor, and Newell: CODATA recommended values of the fundamental ... 643

TABLE X. Values of N used in the 2006 adjustment.

TABLE XI. Values of by, Bgy, and AB5; used in the 2006
adjustment. See the text for an explanation of the uncertainty

n N(nS) N(nP) (33.7).
1 17.855 672 03(1) n by (nS) Byo(nS) AB4((nS)
2 12.032 141 58(1) 0.003 300 635(1)
3 10.449 809(1) 1 -81.4(0.3) -95.3(0.3)(33.7)
4 9.722 413(1) —0.000 394 332(1) 2 -66.6(0.3) -80.2(0.3)(33.7) 16(8)
6 9.031 832(1) 3 -63.5(0.6) -77.0(0.6)(33.7) 22(11)
g 8.697 639(1) 4 -61.8(0.8) -75.3(0.8)(33.7)  25(12)
6 -39.8(0.8) -73.3(0.8)(33.7)  28(14)
8 -58.8(2.0) —-72.3(2.0)(33.7) 29(15)
5 413581 4N(nS) 2027w* 616In2
61 = + + -
64 800 3 864 135 31307 ) 53 ﬁ 419
2n’In2  40In’2 * 108002/ *® *\ 60 " 80 1202 )P

3+ (304 321n2)

3 9 135 9

X §+)/+gl/(n)—lnn—l+i], (36)

4 n 4n
where  is the Riemann zeta function (Abramowitz and
Stegun, 1965). The coefficients N(nS) are listed in Table
X. The state-dependent part By (nS)—Bg (1S) was con-
firmed by Jentschura, Czarnecki, and Pachucki (2005) in
their Egs. (4.26) and (6.3). For higher-/ states, Bg; has
been calculated by Jentschura, Czarnecki, and Pachucki
(2005); for P states,

B¢ (nPyp) = 4N( P)+ 1<166 8 —1 2) (37)
Gt " n \405 27 "
4 -1/31 8
B61(HP3/2) N(nP) + n2 <405 27 —In 2) (38)
and for D states,
B¢ (nD) =0. (39)

The coefficient By also vanishes for states with [>2.
The necessary values of N(nP) are given in Eq. (17) of
Jentschura (2003) and are listed in Table X.

The next term is Bgy, and recent work has also been
done for this contribution. For S states, the state depen-
dence is considered first, and is given by Czarnecki et al.
(2005) and Jentschura, Czarnecki, and Pachucki (2005),

Beo(nS) = Bgy(1S) = br(nS) - br(1S) + A(n),  (40)

where
38 4 337 043
An) = (4 <73 ~In 2>[N(nS) N(1S)] - 159 600
94261 902 609 (4 16 4 )
_ + —+—|In?2
21600n  129600n% \3 9n  9n?
76 304 76 53 35
+ - N2+ - —+—
“45 T 1350 135m 15 2n

419 28 003 11
{2)In2 + -—
30 10 800 2n
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(37793 o2 3% 0 8e@)n 2
10800 " 9 " 135 M2 +802)n

13
- ?5(2) —25(3))[7+ y(n) —Inn]. (41)

The term A(n) makes a small contribution in the range
0.3 to 0.4 for the states under consideration.

The two-loop Bethe logarithms by in Eq. (40) are
listed in Table XI. The values for n=1 to 6 are from
Jentschura (2004) and Pachucki and Jentschura (2003),
and the value at n=8 is obtained by extrapolation
of the calculated values from n=4to6 [by(5S)
=-60.6(8)] with a function of the form

b c
by (nS - 42
L(nS)=a+ PRISETS (42)
which yields
24
by (nS)=-558-—. (43)
n

It happens that the fit gives c=0. An estimate for By
given by

Bg(nS) = by (nS) + LN (nS) + - (44)

was derived by Pachucki (2001). The dots represent un-
calculated contributions at the relative level of 15% (Pa-
chucki and Jentschura, 2003). Equation (44) gives
Be(1S)=-61.6(9.2). However, more recently Yerokhin et
al. (2003, 2005a, 2005b, 2007) have -calculated the
1S-state two-loop self energy correction for Z=10. This
is expected to give the main contribution to the higher-
order two-loop correction. Their results extrapolated to
Z=1 yield a value for the contribution of all terms of
order Bgy, or higher of —127X(1+0.3), which corre-
sponds to a value of roughly Bgy=-129(39), assuming a
linear extrapolation from Z=1 to 0. This differs by
about a factor of 2 from the result given by Eq. (44). In
view of this difference between the two calculations, for
the 2006 adjustment, we use the average of the two val-
ues with an uncertainty that is half the difference, which
gives
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Be(1S) = — 95.3(0.3)(33.7). (45)

In Eq. (45), the first number in parentheses is the state-
dependent uncertainty u,(Bg,) associated with the two-
loop Bethe logarithm, and the second number in paren-
theses is the state-independent uncertainty uy(Bg,) that
is common to all S-state values of Bg,. Values of By, for
all relevant S states are given in Table XI. For higher-/
states, Bg, has not been calculated, so we take it
to be zero, with uncertainties u,[Bgy(nP)]=5.0 and
u,[Bgy(nD)]=1.0. We assume that these uncertainties ac-
count for higher-order P- and D-state uncertainties as
well. For S states, higher-order terms have been esti-
mated by Jentschura, Czarnecki, and Pachucki (2005)
with an effective potential model. They find that the
next term has a coefficient of B, and is state indepen-
dent. We thus assume that the uncertainty ug[ Bgy(nS)] is
sufficient to account for the uncertainty due to omitting
such a term and higher-order state-independent terms.
In addition, they find an estimate for the state depen-
dence of the next term, given by

AB7(nS) = B71(nS) — B, (1S)

(427 16 )
=17 —1n2

36 3
3 1 1
X[Z—;+4—nz+’y+lﬂ(n)—lnn:| (46)

with a relative uncertainty of 50%. We include this ad-
ditional term, which is listed in Table XI, along with the
estimated uncertainty u,(B7{)=B7,/2.

The disagreement of the analytic and numerical calcu-
lations results in an uncertainty of the two-photon con-
tribution that is larger than the estimated uncertainty
used in the 2002 adjustment. As a result, the uncertain-
ties of the recommended values of the Rydberg constant
and proton and deuteron radii are slightly larger in the
2006 adjustment, although the 2002 and 2006 recom-
mended values are consistent with each other. On the
other hand, the uncertainty of the 2P state fine structure
is reduced as a result of the new analytic calculations.

As in the case of the order « self energy and vacuum-
polarization contributions, the dominant effect of the fi-
nite mass of the nucleus is taken into account by multi-
plying each term of the two-photon contribution by the
reduced-mass factor (m,/m.)?, except that the magnetic
moment term, the second line of Eq. (31), is instead mul-
tiplied by the factor (m,/m)*. In addition, the argument
(Za)™? of the logarithms is replaced by (m./m,)(Za)™2.

g. Three-photon corrections

The leading contribution from three virtual photons is
expected to have the form

3 4
E© = (2) (Zn—g)mecz[cm +Cso(Za) + -+ ], (47)

v

in analogy with Eq. (29) for two photons. The leading
term Cy, is (Baikov and Broadhurst, 1995; Eides and
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Grotch, 1995a; Laporta and Remiddi, 1996; Melnikov
and van Ritbergen, 2000)

o {_ S68a, 854(5) 1217¢(3) 84 07143)
40 9 24 72 2304
71In*2 2397°1In?2  4787w*In2
T2 T 13 108
15917* 25225172 679 441]
3240 9720 93312 |
X {_ 100a, 215((5) _ 83m4(3)  139403)
3 24 7 18
25In*2 25w In*2 298w?In2 2397*
T8 T8 T 9 T 2e0
171017 28 259} 1- 6
- - , (48)
810 5184 |x(2+1)

where a,=3"_1/(2"n*)=0.517 479 061... . Higher-order
terms have not been calculated, although partial results
have been obtained (Eides and Shelyuto, 2007). An un-
certainty is assigned by taking uy(Csy)=308, and
u,(Cg)=1, where Cg; is defined by the usual convention.
The dominant effect of the finite mass of the nucleus is
taken into account by multiplying the term proportional
to & by the reduced-mass factor (m,/m.)* and the term
proportional to 1/«(2/+1), the magnetic moment term,
by the factor (m,/m.)>.

The contribution from four photons is expected to be
of order

4 4
(2) (ZnO;) mec?, (49)

I

which is about 10 Hz for the 1S state and is negligible at
the level of uncertainty of current interest.

h. Finite nuclear size

At low Z, the leading contribution due to the finite
size of the nucleus is

E%\(J)% = EnsO0, (50)
with

3 2 2
g(Q) (Za) mec2<ZaRN> ’ (51)

3\m./ n’ Ac

Ens =

where Ry is the bound-state root-mean-square (rms)
charge radius of the nucleus and A is the Compton
wavelength of the electron divided by 2. The leading
higher-order contributions have been examined by Friar
(1979b), Friar and Payne (1997b), and Karshenboim
(1997) [see also Borisoglebsky and Trofimenko (1979)
and Mohr (1983)]. The expressions that we employ to
evaluate the nuclear size correction are the same as
those discussed in more detail in CODATA-98.

For S states, the leading and next-order corrections
are given by
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me e n
Sn+9)(n-1
SOl co} <Za)2},

(52)

where C, and C, are constants that depend on the de-
tails of the assumed charge distribution in the nucleus.
The values used here are C,=1.7(1) and C,=0.47(4) for
hydrogen or C,=2.0(1) and Cy=0.38(4) for deuterium.
For the Py, states in hydrogen, the leading term is

(Za)*(n*-1)
4n? )

R
Fxs = 5N5{1 —C, Nz {m(

me KC

+ (n) +

Ens = Ens (53)
For P;), states and D states, the nuclear-size contribu-
tion is negligible.

i. Nuclear-size correction to self energy and vacuum polarization

For the self energy, the additional contribution due to
the finite size of the nucleus is (Pachucki, 1993b; Eides
and Grotch, 1997b; Milstein et al., 2002, 2003a)

Exse= (4102 - 2)a(Za)Ens i, (54)

and for the vacuum polarization it is (Friar, 1979a, 1981;
Hylton, 1985; Eides and Grotch, 1997b)

Envp = 2 Za)ExsSp.- (55)

For the self energy term, higher-order size corrections
for S states (Milstein et al., 2002) and size corrections for
P states have been calculated (Jentschura, 2003; Milstein
et al., 2003b), but these corrections are negligible for the
current work, and are not included. The D-state correc-
tions are assumed to be negligible.

J. Radiative-recoil corrections

The dominant effect of nuclear motion on the self en-
ergy and vacuum polarization has been taken into ac-
count by including appropriate reduced-mass factors.
The additional contributions beyond this prescription
are termed radiative-recoil effects with leading terms
given by

3 5 2
Z 357w
o %me&%{ws) 2w 2+~ -

ERR: 2
memN mn
448
—7+ Tr(Za)lnz(Za) + - } (56)

The constant term in Eq. (56) is the sum of the analytic
result for the electron-line contribution (Czarnecki and
Melnikov, 2001; Eides et al., 2001a) and the vacuum-
polarization contribution (Eides and Grotch, 1995b; Pa-
chucki, 1995). This term agrees with the numerical value
(Pachucki, 1995) used in CODATA-98. The log-squared
term has been calculated by Pachucki and Karshenboim
(1999) and by Melnikov and Yelkhovsky (1999).

For the uncertainty, we take a term of order
(Za)In(Za)7? relative to the square brackets in Eq. (56)
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with numerical coefficients 10 for u, and 1 for u,. These
coefficients are roughly what one would expect for the
higher-order uncalculated terms. For higher-/ states in
the present evaluation, we assume that the uncertainties
of the two- and three-photon corrections are much
larger than the uncertainty of the radiative-recoil correc-
tion. Thus, we assign no uncertainty for the radiative-
recoil correction for P and D states.

k. Nucleus self energy

An additional contribution due to the self energy of
the nucleus has been given by Pachucki (1995),

472 Za)* m’ 2{1n< my )

c 1)
3mn’ mIZ\I m(Za)? 0

SEN =

—In ko(n,l)}. (57)

This correction has also been examined by Eides et al.
(2001b), who consider how it is modified by the effect of
structure of the proton. The structure effect would lead
to an additional model-dependent constant in the square
brackets in Eq. (57).

To evaluate the nucleus self energy correction, we use
Eq. (57) and assign an uncertainty u that corresponds to
an additive constant of 0.5 in the square brackets for S
states. For P and D states, the correction is small and its
uncertainty, compared to other uncertainties, is negli-
gible.

I. Total energy and uncertainty

The total energy E;YLj of a particular level (where L
=S,P,... and X=H,D) is the sum of the various contri-
butions listed above plus an additive correction 5ij that
accounts for the uncertainty in the theoretical expres-
sion for EnXL] Our theoretical estimate for the value of
5HL for a particular level is zero with a standard uncer-
tainty of u(8Y ;) equal to the square root of the sum of
the squares of the individual uncertainties of the contri-
butions; as they are defined above, the contributions to
the energy of a given level are independent. (Compo-
nents of uncertainty associated with the fundamental
constants are not included here, because they are deter-
mined by the least-squares adjustment itself.) Thus, we
have for the square of the uncertainty, or variance, of a
particular level

n]_,) E uol(XL]) +u; (XLj) ’ (58)

I’l

where the individual values u;(XLj)/n? and u,(XLj)/n?
are the components of uncertainty from each of the con-
tributions, labeled by i, discussed above. [The factors of
1/n? are isolated so that uy(XLj) is explicitly indepen-
dent of n.]

The covariance of any two &'s follows from Eq. (F7) of
Appendix F of CODATA-98. For a given isotope X, we
have
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2 (YT
H(CSnXle? 551(2Lj) = 2 My (59)

i (nln2)3

which follows from the fact that wu(ug;,u,;)=0 and
u(unli,unzi)=0 for n; #n,. We also set

u(8, )=0 (60)

if L] SﬁLz or jl :/:]2
For covariances between &’s for hydrogen and deute-
rium, we have for states of the same n

U1’ “nalaiy

ug,(HLj)uo,(DL)) + u,,,(HLj)u,,,(DLj)

u(z‘)‘}ij, 5nDLj) = 2 120 )
(61)
and for n; #n,
uo(HLj)up,(DLy)
u(‘ﬁle» 5nDzLj) = gz () ) (62)

where the summation is over the uncertainties common
to hydrogen and deuterium. In most cases, the uncer-
tainties can in fact be viewed as common except for a
known multiplicative factor that contains all of the mass
dependence. We assume

u( )=0 (63)

5§’—IlLl-j1’é‘}")2L2j2
if Ll;&LZ Orjl7&j2.

The values of u(&nXLi) of interest for the 2006 adjust-
ment are given in Table XXVIII of Sec. XII, and the
non-negligible covariances of the &'s are given in the
form of correlation coefficients in Table XXIX of that
section. These coefficients are as large as 0.9999.

Since the transitions between levels are measured in
frequency units (Hz), in order to apply the above equa-
tions for the energy level contributions we divide the
theoretical expression for the energy difference AE of
the transition by the Planck constant 4 to convert it to a
frequency. Further, since we take the Rydberg constant
R..=a’mc/2h (expressed in m™') rather than the elec-
tron mass 71, to be an adjusted constant, we replace the
group of constants a?m.c?/2h in AE/h by cR...

m. Transition frequencies between levels with n=2

As an indication of the consistency of the theory sum-
marized above and the experimental data, we list below
values of the transition frequencies between levels with
n=2 in hydrogen. These results are based on values of
the constants obtained in a variation of the 2006 least-
squares adjustment in which the measurements of the
directly related transitions (items A38, A39.1, and A39.2
in Table XXVIII) are not included, and the weakly de-
pendent constants A.(e), A.(p), A,(d), and a are as-
signed their 2006 adjusted values. The results are

v (2P, — 281,) = 1 057 843.9(2.5) kHz
[2.3 X 107°],
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(281, — 2P5) =9 911 197.6(2.5) kHz
[2.5X1077],

(2P, 5 — 2Ps0) = 10 969 041.475(99) kHz
[9.0 X 107, (64)

which agree well with the relevant experimental results
of Table XXVIII. Although the first two values in Eq.
(64) have changed only slightly from the results of the
2002 adjustment, the third value, the fine-structure split-
ting, has an uncertainty that is almost an order of mag-
nitude smaller than the 2002 value, due mainly to im-
provements in the theory of the two-photon correction.

A value of the fine-structure constant a can be ob-
tained from data on the hydrogen and deuterium transi-
tions. This is done by running a variation of the 2006
least-squares adjustment that includes all the transition
frequency data in Table XXVIII and the 2006 adjusted
values of A,(e), A,(p), and A,(d). The resulting value is

a1 =137.036 002(48) [3.5%x 1077], (65)

which is consistent with the 2006 recommended value,
although substantially less accurate. This result is in-
cluded in Table XXXIV.

2. Experiments on hydrogen and deuterium

Table XII summarizes the transition frequency data
relevant to the determination of R... With the exception
of the first entry, which is the most recent result for the
1S,,-2S,, transition frequency in hydrogen from the
group at the Max-Planck-Institute fiir Quantenoptik
(MPQ), Garching, Germany, all these data are the same
as those used in the 2002 adjustment. Since these data
are reviewed in CODATA-98 or CODATA-02, they are
not discussed here. For a brief discussion of data not
included in Table XII, see Sec. 11.B.3 of CODATA-02.

The new MPQ result,

(1815281 5) = 2 466 061 413 187.074(34) kHz
[1.4 % 10714], (66)

was obtained in the course of an experiment to
search for a temporal variation of the fine-structure
constant « (Fischer et al, 2004a, 2004b; Héinsch
et al., 2005; Udem, 2006). It is consistent with, but has a
somewhat smaller uncertainty than, the previous
result from the MPQ group, vu(1S1,-2S1p)
=2466 061 413 187.103(46) kHz [1.9 X 1071] (Niering et
al., 2000), which was the value used in the 2002 adjust-
ment. The improvements that led to the reduction in
uncertainty include a more stable external reference
cavity for locking the 486 nm cw dye laser, thereby re-
ducing its linewidth; an upgraded vacuum system that
lowered the background gas pressure in the interaction
region, thereby reducing the background gas pressure
shift and its associated uncertainty; and a significantly
reduced within-day Type A (i.e., statistical) uncertainty
due to the narrower laser linewidth and better signal-to-
noise ratio.
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TABLE XII. Summary of measured transition frequencies v considered in the present work for the determination of the Rydberg

constant R., (H is hydrogen and D is deuterium).

Reported value Rel. stand.
Authors Laboratory Frequency interval(s) (v/kHz) uncert. u,
Fischer et al., 2004a, 2004b  MPQ vu(181,-2S15) 2466 061 413 187.074(34)  1.4x 107
Weitz et al., 1995 MPQ (28124810 — $v(181,-281) 4797 338(10) 2.1x10°°
vu(281,-4Dsp) - zl_1 vu(1S12-2S1,) 6490 144(24) 3.7%10°°
(28124812~ $vp(181,-2S1) 4801 693(20) 42x1076
vp(2817-4Ds) — 3 vp(1815-2S,) 6494 841(41) 6.3%x10°°
Huber et al., 1998 MPQ vp(181,-28152) — vir(181,-2812) 670 994 334.64(15) 22x10710
de Beauvoir et al., 1997 LKB/SYRTE  vy4(2S;,-8S;5) 770 649 350 012.0(8.6) 1.1x10M
v(2S1,-8D5))) 770 649 504 450.0(8.3) 1.1x10M
vr(2S1,-8Ds),) 770 649 561 584.2(6.4) 83x10712
vp(2S1,-8S1) 770 859 041 245.7(6.9) 8.9x10712
vp(2S1,-8D3)) 770 859 195 701.8(6.3) 8.2x10712
vp(2S1,-8Ds)) 770 859 252 849.5(5.9) 7.7%x10712
Schwob et al., 1999, 2001 LKB/SYRTE  vy(2S;,-12D5,) 799 191 710 472.7(9.4) 1.2x1071
vu(2S1,-12Ds5)) 799 191 727 403.7(7.0) 8.7x10712
vp(2S1,-12D3)) 799 409 168 038.0(8.6) 1.1x1071
vp(2S,-12Ds),) 799 409 184 966.8(6.8) 8.5x10712
Bourzeix et al., 1996 LKB v(2S1,-6812) — $vu(181,-3S10) 4197 604(21) 4.9%10°°
v(2S1,-6Dsp0) — 5 v(181,-3S12) 4699 099(10) 22x10°°
Berkeland et al., 1995 Yale (281 4P )~ svp(181,-281,) 4664 269(15) 32x10°°
v(2S1,-4P3) — vn(181,-281,)  6035373(10) 1.7%107°
Hagley and Pipkin, 1994 Harvard vu(2S12,-2P35) 9911 200(12) 1.2x107°
Lundeen and Pipkin, 1986 Harvard vu(2P15-2S15) 1 057 845.0(9.0) 8.5%x10°°
Newton et al., 1979 U. Sussex v(2P1p-2S1)) 1 057 862(20) 1.9x107°

The MPQ result in Eq. (66) and Table XII for
v(1S:,-2S,,) was provided by Udem (2006) of
the MPQ group. It follows from the measured
value viy(1S1,-2S,) =2 466 061 102 474.851(34) kHz
[1.4Xx107] obtained for the (1S,F=1,mp==+1)
—(2S,F'=1,mp==+1) transition frequency (Fischer et
al., 2004a, 2004b; Hansch et al., 2005) by using the well
known 1S and 2S hyperfine splittings (Ramsey, 1990;
Kolachevsky et al., 2004) to convert it to the frequency
corresponding to the hyperfine centroid.

3. Nuclear radii

The theoretical expressions for the finite nuclear size
correction to the energy levels of hydrogen H and deu-
terium D (see Sec. IV.A.1.h) are functions of the bound-
state nuclear rms charge radius of the proton R, and of
the deuteron R. These values are treated as variables in
the adjustment, so the transition frequency data, to-
gether with theory, determine values for the radii. The
radii are also determined by elastic electron-proton scat-
tering data in the case of R, and from elastic electron-
deuteron scattering data in the case of R4. These inde-
pendently determined values are used as additional
information on the radii. There have been no new re-
sults during the last four years and thus we take as input
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data for these two radii the values used in the 2002 ad-
justment,

R, =0.895(18) fm, (67)

Ry =2.130(10) fm. (68)

The result for R, is due to Sick (2003) [see also Sick
(2007)]. The result for Ry is that given in Sec. I11.B.7 of
CODATA-98 based on the analysis of Sick and Traut-
mann (1998).

An experiment currently underway to measure the
Lamb shift in muonic hydrogen may eventually provide
a significantly improved value of R, and hence an im-
proved value of R., (Nebel et al., 2007).

B. Antiprotonic helium transition frequencies and A (e)

The antiprotonic helium atom is a three-body system
consisting of a *He or *He nucleus, an antiproton, and
an electron, denoted by pHe". Even though the Bohr
radius for the antiproton in the field of the nucleus is
about 1836 times smaller than the electron Bohr radius,
in the highly excited states studied experimentally, the
average orbital radius of the antiproton is comparable to
the electron Bohr radius, giving rise to relatively long-
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TABLE XIII. Summary of data related to the determination of A,(e) from measurements on anti-

protonic helium.

Transition Experimental Calculated a b

(n,)—(n',l") value (MHz) value (MHz) (2¢R.) (2¢R.)
p *He":(32,31)—(31,30) 1132 609 209(15) 1132 609 223.50(82) 0.2179 0.0437
P *He":(35,33)—(34,32) 804 633 059.0(8.2) 804 633 058.0(1.0) 0.1792 0.0360
p “*He*:(36,34) — (35,33) 717 474 004(10) 717 474 001.1(1.2) 0.1691 0.0340
p “He*:(37,34) — (36,33) 636 878 139.4(7.7) 636 878 151.7(1.1) 0.1581 0.0317
p “He*:(39,35)— (38,34) 501 948 751.6(4.4) 501 948 755.4(1.2) 0.1376 0.0276
P *He*:(40,35)— (39,34) 445 608 557.6(6.3) 445 608 569.3(1.3) 0.1261 0.0253
p *He*:(37,35)— (38,34) 412 885 132.2(3.9) 412 885 132.8(1.8) -0.1640 -0.0329
p *He*:(32,31)—(31,30) 1043 128 608(13) 1043 128 579.70(91) 0.2098 0.0524
p *He*:(34,32)—(33,31) 822 809 190(12) 822809 170.9(1.1) 0.1841 0.0460
p *He*:(36,33) —(35,32) 646 180 434(12) 646 180 408.2(1.2) 0.1618 0.0405
p *He*:(38,34)—(37,33) 505 222 295.7(8.2) 505 222 280.9(1.1) 0.1398 0.0350
p *He*:(36,34)— (37,33) 414 147 507.8(4.0) 414 147 509.3(1.8) -0.1664 -0.0416

lived states. Also, for the high-/ states studied, because
of the vanishingly small overlap of the antiproton wave
function with the helium nucleus, strong interactions be-
tween the antiproton and the nucleus are negligible.

One of the goals of antiprotonic helium experiments
is to measure the antiproton-electron mass ratio. How-
ever, since we assume that CPT is a valid symmetry, for
the purpose of the least-squares adjustment we take the
masses of the antiproton and proton to be equal and use
the data to determine the proton-electron mass ratio.
Since the proton relative atomic mass is known more
accurately than the electron relative atomic mass from
other experiments, the mass ratio yields information pri-
marily on the electron relative atomic mass. Other ex-
periments have demonstrated the equality of the charge-
to-mass ratio of p and p to within 9 parts in 10'!; see
Gabirielse (20006).

1. Theory relevant to antiprotonic helium

Calculations of transition frequencies of antiprotonic
helium have been done by Kino et al. (2003) and by
Korobov (2003, 2005). The uncertainties of calculations
by Korobov (2005) are of the order of 1 MHz to 2 MHz,
while the uncertainties and scatter relative to the experi-
mental values of the results of Kino er al. (2003) are
substantially larger, so we use the results of Korobov
(2005) in the 2006 adjustment. [See also the remarks in
Hayano (2007) concerning the theory.]

The dominant contribution to the energy levels is the
nonrelativistic solution of the Schrodinger equation for
the three-body system together with relativistic and ra-
diative corrections treated as perturbations. The nonrel-
ativistic levels are resonances, because the states can de-
cay by the Auger effect in which the electron is ejected.
Korobov (2005) calculated the nonrelativistic energy by
using one of two formalisms, depending on whether the
Auger rate is small or large. In the case in which the rate
is small, the Feshbach formalism is used with an optical
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potential. The optical potential is omitted in the calcula-
tion of higher-order relativistic and radiative corrections.
For broad resonances with a higher Auger rate, the non-
relativistic energies are calculated with the complex co-
ordinate rotation method. In checking the convergence
of the nonrelativistic levels, attention was paid to the
convergence of the expectation value of the the delta
function operators used in the evaluation of the relativ-
istic and radiative corrections.

Korobov (2005) evaluated the relativistic and radia-
tive corrections as perturbations to the nonrelativistic
levels, including relativistic corrections of order a*R.,,
anomalous magnetic moment corrections of order
@’R., and higher, one-loop self energy and vacuum-
polarization corrections of order o’R.,, and higher-order
one-loop and leading two-loop corrections of order
a*R... Higher-order relativistic corrections of order a*R.,
and radiative corrections of order «’R., were estimated
with effective operators. The uncertainty estimates ac-
count for uncalculated terms of order & In @ R...

Transition frequencies obtained by Korobov (2005,
2006) using the CODATA-02 values of the relevant con-
stants are listed in Table XIII under the column header
“calculated value.” We denote these values of the fre-
quencies by vg)P)Ie(n,l :n',l"), where He is either *He" or
*He*. Also calculated are the leading-order changes in
the theoretical values of the transition frequencies as a
function of the relative changes in the mass ratios
A (p)/A.(e) and A, (N)/A.(p), where N is either SHe?* or
*He?*. If we denote the transition frequencies as func-
tions of these mass ratios by vsy(n,/:n’,l'), then the
changes can be written as

A1)\ Vdvsye(n,ln',l")

“pHe(””:”""):(Axe) a(A_r<p-)) |
Ale)
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Ar(H_e) )(O)avpﬂe(n,l:n’,l’) R
A,(p) §<AI(N))
A(p)

Values of these derivatives, in units of 2cR.., are listed in
Table XIII in the columns with the headers “a” and “b,”
respectively. The zero-order frequencies and the deriva-
tives are used in the expression

0
Vore(n,lin',l') = vi-)f)le

x[<Ar<e>)<‘”<Ar<p>) _1}
Ap)) \Ade)

Ap) )“’)
A(N)

x(A‘(]Y)>—1]+---, (71)
A(p)

which provides a first-order approximation to the tran-
sition frequencies as a function of changes to the mass
ratios. This expression is used to incorporate the experi-
mental data and calculations for the antiprotonic system
as a function of the mass ratios into the least-squares
adjustment. It should be noted that even though the
mass ratios are the independent variables in Eq. (71) and
the relative atomic masses A(e), A,(p), and A (N) are
the adjusted constants in the 2006 least-squares adjust-
ment, the primary effect of including these data in the
adjustment is on the electron relative atomic mass, be-
cause independent data in the adjustment provide values
of the proton and helium nuclei relative atomic masses
with significantly smaller uncertainties.

The uncertainties in the theoretical expressions for
the transition frequencies are included in the adjustment
as additive constants Sspe(n,/:n",l"). Values for the the-
oretical uncertainties and covariances used in the adjust-
ment are given in Sec. XII, Tables XXXII and XXXIII,
respectively (Korobov, 2006).

bsue(n,ln',l") :(

(n,l:n" ") + agye(n,lin' 1"

+ bﬁHe(n,l:n',l’)|:(

2. Experiments on antiprotonic helium

Experimental work on antiprotonic helium began in
the early 1990s and it continues to be an active field of
research; a comprehensive review through 2000 has
been given by Yamazaki et al. (2002) and a concise re-
view through 2006 by Hayano (2007). The first measure-
ments of pHe* transition frequencies at CERN with u,
<107 were reported in 2001 (Hori et al., 2001), im-
proved results were reported in 2003 (Hori et al., 2003),
and transition frequencies with uncertainties sufficiently
small that they can, together with the theory of the tran-
sitions, provide a competitive value of A (e), were re-
ported in 2006 (Hori et al., 2006).

The 12 transition frequencies—seven for “He and five
for *He given by Hori et al. (2006)—which we take as
input data in the 2006 adjustment, are listed in column 2
of Table XIII with the corresponding transitions indi-
cated in column 1. To reduce rounding errors, an addi-
tional digit for both the frequencies and their uncertain-
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ties as provided by Hori (2006) have been included. All
12 frequencies are correlated; their correlation coeffi-
cients, based on detailed uncertainty budgets for each,
also provided by Hori (2006), are given in Table XXXIII
in Sec XII.

In the current version of the experiment, 5.3 MeV an-
tiprotons from the CERN Antiproton Decelerator (AD)
are decelerated using a radio-frequency quadrupole de-
celerator (RFQD) to energies in the range 10 keV to 120
keV controlled by a dc potential bias on the RFQD’s
electrodes. The decelerated antiprotons, about 30% of
the antiprotons entering the RFQD, are then diverted to
a low-pressure cryogenic helium gas target at 10 K by an
achromatic momentum analyzer, the purpose of which is
to eliminate the large background that the remaining
70% of undecelerated antiprotons would have pro-
duced.

About 3% of the p stopped in the target form pHe",
in which a p with large principle quantum number (n
~38) and angular momentum quantum number (/=~n)
circulates in a localized, nearly circular orbit around the
He?* nucleus while the electron occupies the distributed
1S state. These p energy levels are metastable with life-
times of several microseconds and de-excite radiatively.
There are also short-lived p states with similar values of
n and [ but with lifetimes on the order of 10 ns and
which de-excite by Auger transitions to form pHe?* hy-
drogenlike ions. These undergo Stark collisions, which
cause the rapid annihilation of the p in the helium
nucleus. The annihilation rate versus time elapsed since
pHe™* formation, or delayed annihilation time spectrum
(DATS), is measured using Cherenkov counters.

With the exception of the (36,34) — (35,33) transition
frequency, all frequencies given in Table XIII were ob-
tained by stimulating transitions from the pHe* meta-
stable states with values of n and / indicated in column
one on the left-hand side of the arrow to the short-lived,
Auger-decaying states with values of n and / indicated
on the right-hand side of the arrow.

The megawatt-scale light intensities needed to induce
the pHe™ transitions, which cover the wavelength range
265 nm to 726 nm, can only be provided by a pulsed
laser. Frequency and linewidth fluctuations and fre-
quency calibration problems associated with such lasers
were overcome by starting with a cw “seed” laser beam
of frequency v, known with u,<4x107!° through its
stabilization by an optical frequency comb, and then am-
plifying the intensity of the laser beam by a factor of 10°
in a cw pulse amplifier consisting of three dye cells
pumped by a pulsed Nd:YAG laser. The 1 W seed laser
beam with wavelength in the range 574 nm to 673 nm
was obtained from a pumped cw dye laser, and the 1 W
seed laser beam with wavelength in the range 723 nm to
941 nm was obtained from a pumped cw Ti:sapphire la-
ser. The shorter wavelengths (265 nm to 471 nm) for
inducing transitions were obtained by frequency dou-
bling the amplifier output at 575 nm and 729 nm to 941
nm or by frequency tripling its 794 nm output. The fre-
quency of the seed laser beam v, and thus the fre-
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quency v, of the pulse amplified beam, was scanned
over a range of +4 GHz around the pHe" transition fre-
quency by changing the repetition frequency f., of the
frequency comb.

The resonance curve for a transition was obtained by
plotting the area under the resulting DATS peak versus
v Because of the approximate 400 MHz Doppler
broadening of the resonance due to the 10 K thermal
motion of the pHe™ atoms, a rather sophisticated theo-
retical line shape that takes into account many factors
must be used to obtain the desired transition frequency.

Two other effects of major importance are the so-
called chirp effect and linear shifts in the transition fre-
quencies due to collisions between the pHe™ and back-
ground helium atoms. The frequency v, can deviate
from v, due to sudden changes in the index of refrac-
tion of the dye in the cells of the amplifier. This chirp,
which can be expressed as Av(t)=vy (1)~ vy, can shift
the measured pHe* frequencies from their actual values.
Hori et al. (2006) eliminated this effect by measuring
Av,(#) in real time and applying a frequency shift to the
seed laser, thereby canceling the dye-cell chirp. This ef-
fect is the predominant contributor to the correlations
among the 12 transitions (Hori, 2006). The collisional
shift was eliminated by measuring the frequencies of ten
transitions in helium gas targets with helium atom den-
sities p in the range 2 X 10'%/cm? to 3x10?!/cm? to de-
termine dv/dp. The in vacuo (p=0) values were ob-
tained by applying a suitable correction in the range —14
MHz to 1 MHz to the initially measured frequencies
obtained at p~2 X 10'8/cm?.

In contrast to the other 11 transition frequencies in
Table XIII, which were obtained by inducing a transition
from a long-lived, metastable state to a short-lived,
Auger-decaying state, the (36,34)— (35,33) transition
frequency was obtained by inducing a transition from
the (36,34) metastable state to the (35,33) metastable
state using three different lasers. This was done by first
depopulating at time ¢; the (35, 33) metastable state by
inducing the (35,33) — (34,32) metastable state to short-
lived-state transition, then at time ¢, inducing the
(36,34)— (35,33) transition using the cw pulse-amplified
laser, and then at time #; again inducing the (35,33)
—(34,32) transition. The resonance curve for the
(36,34) —(35,33) transition was obtained from the
DATS peak resulting from this last induced transition.

The 4 MHz to 15 MHz standard uncertainties of the
transition frequencies in Table XIII arise from the reso-
nance line-shape fit (3 MHz to 13 MHz, statistical or
Type A), not completely eliminating the chirp effect (2
MHz to 4 MHz, nonstatistical or Type B), collisional
shifts (0.1 MHz to 2 MHz, Type B), and frequency dou-
bling or tripling (1 MHz to 2 MHz, Type B).

3. Values of A (e) inferred from antiprotonic helium

From the theory of the 12 antiprotonic transition fre-
quencies discussed in Sec IV.B.1, the 2006 recommended
values of the relative atomic masses of the proton, alpha
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particle («, nucleus of the “He atom), and the helion (h,
nucleus of the *He atom), A.(p), A(a), and A,(h), re-
spectively, together with the 12 experimental values for
these frequencies given in Table XIII, we find the fol-
lowing three values for A,(e) from the seven p*He" fre-
quencies alone, from the five p°He" frequencies alone,
and from the 12 frequencies together:

A,(e) =0.000 548 579 9103(12) [2.1 X 107°],  (72)
A,(e) =0.000 548 579 9053(15) [2.7 X 107°],  (73)

A,(e) =0.000 548 579908 81(91) [1.7 X 107]. (74)

The separate inferred values from the p*He" and p*He*
frequencies differ somewhat, but the value from all 12
frequencies not only agrees with the three other avail-
able results for A (e) (see Table XXXVI, Sec. XII.A),
but has a competitive level of uncertainty as well.

C. Hyperfine structure and fine structure

1. Hyperfine structure

Because the ground-state hyperfine transition fre-
quencies Avy, Awvyy, and Avp, of the comparatively
simple atoms hydrogen, muonium, and positronium, re-
spectively, are proportional to o’R.c, in principle a
value of @ can be obtained by equating an experimental
value of one of these transition frequencies to its pre-
sumed readily calculable theoretical expression. How-
ever, currently only measurements of Awy, and the
theory of the muonium hyperfine structure have suffi-
ciently small uncertainties to provide a useful result for
the 2006 adjustment, and even in this case the result is
not a competitive value of «a, but rather the most accu-
rate value of the electron-muon mass ratio m./m,. In-
deed, we discuss the relevant experiments and theory in
Sec. VL.B.

Although the ground-state hyperfine transition fre-
quency of hydrogen has long been of interest as a poten-
tial source of an accurate value of « because it is experi-
mentally known with u,~107'> (Ramsey, 1990), the
relative uncertainty of the theory is still of the order of
107°. Thus, Avy cannot yet provide a competitive value
of the fine-structure constant. At present, the main
sources of uncertainty in the theory arise from the inter-
nal structure of the proton, namely (i) the electric charge
and magnetization densities of the proton, which are
taken into account by calculating the proton’s so-called
Zemach radius; and (ii) the polarizability of the proton
(that is, protonic excited states). For details of the
progress made over the last four years in reducing the
uncertainties from both sources, see Carlson (2007), Pa-
chucki (2007), Sick (2007), and references therein. Be-
cause the muon is a structureless pointlike particle, the
theory of Awy, is free from such uncertainties.

It is also not yet possible to obtain a useful value of «
from Awp, since the most accurate experimental result
has u,=3.6 X 107° (Ritter et al., 1984). The theoretical un-
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certainty of Awvp is not significantly smaller and may in
fact be larger (Adkins et al., 2002; Penin, 2004).

2. Fine structure

As in the case of hyperfine splittings, fine-structure
transition frequencies are proportional to «’R.c and
could be used to deduce a value of a. Some data related
to the fine structure of hydrogen and deuterium are dis-
cussed in Sec. IV.A.2 in connection with the Rydberg
constant. They are included in the adjustment because
of their influence on the adjusted value of R... However,
the value of « that can be derived from these data is not
competitive; see Eq. (65). See also Sec. IIL.B.3 of
CODATA-02 for a discussion of why earlier fine
structure-related results in H and D are not considered.

Because the transition frequencies corresponding to
the differences in energy of the three 2°P levels of
“He can be both measured and calculated with reason-
able accuracy, the fine structure of *He has long been
viewed as a potential source of a reliable value of a.
The three frequencies of interest are wy;=~29.6 GHz,
v1,=~2.29 GHz, and vy, ~31.9 GHz, which correspond to
the intervals 2 °P,—2 °P,, 2 *P,-2 °P,, and 2 °P,-2 P, re-
spectively. The value with the smallest uncertainty for
any of these frequencies was obtained at Harvard
(Zelevinsky et al., 2005),

o1 =29 616 951.66(70) kHz  [2.4 X 1078]. (75)

It is consistent with the value of vy, reported by George
et al. (2001) with u,=3.0x107% and that reported by
Giusfredi et al. (2005) with u,=3.4x 1078, If the theoret-
ical expression for v,; were exactly known, the weighted
mean of the three results would yield a value of « with
u,~8x107°.

However, as discussed in CODATA-02, the theory of
the 2 *P, transition frequencies is far from satisfactory.
First, different calculations disagree, and because of the
considerable complexity of the calculations and the his-
tory of their evolution, there is general agreement that
results that have not been confirmed by independent
evaluation should be taken as tentative. Second, there
are significant disagreements between theory and ex-
periment. Recently, Pachucki (2006) has advanced the
theory by calculating the complete contribution to the
2°3p , fine-structure levels of order ma’ (or @ Ry), with
the final theoretical result for v, being

vo; =29 616 943.01(17) kHz [5.7 X 107°]. (76)

This value disagrees with the experimental value given
in Eq. (75) as well as with the theoretical value vy
=29 616 946.42(18) kHz [6.1X107°] given by Drake
(2002), which also disagrees with the experimental value.
These disagreements suggest that there is a problem
with theory and/or experiment that must be resolved be-
fore a meaningful value of a can be obtained from the
helium fine structure (Pachucki, 2006). Therefore, as in
the 2002 adjustment, we do not include *He fine-
structure data in the 2006 adjustment.
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V. MAGNETIC MOMENT ANOMALIES AND g-FACTORS

In this section, theory and experiment for the mag-
netic moment anomalies of the free electron and muon
and the bound-state g-factor of the electron in hydro-
genic carbon (?C3*) and in hydrogenic oxygen (°07*)
are reviewed.

The magnetic moment of any of the three charged
leptons €=e, ., T is written as

e
Me=8¢z—S, (77)
2m€

where g, is the g-factor of the particle, m, is its mass,
and s is its spin. In Eq. (77), e is the elementary charge
and is positive. For the negatively charged leptons €™, g,
is negative, and for the corresponding antiparticles €*, g,
is positive. CPT invariance implies that the masses and
absolute values of the g-factors are the same for each
particle-antiparticle pair. These leptons have eigenvalues
of spin projection s,==+7%/2, and it is conventional to
write, based on Eq. (77),

g¢ eh

et 78
Mo 2 2m, (78)

where in the case of the electron, ug=efi/2m, is the
Bohr magneton.

The free lepton magnetic moment anomaly a, is de-
fined as

lgel =2(1 +ay), (79)

where gp=-2 is the value predicted by the free-electron
Dirac equation. The theoretical expression for a, may be
written as

a(th) = a((QED) + a,(weak) + a,(had), (80)

where the terms denoted by QED, weak, and had ac-
count for the purely quantum electrodynamic, predomi-
nantly electroweak, and predominantly hadronic (that is,
strong interaction) contributions to a,, respectively.

The QED contribution may be written as (Kinoshita
et al., 1990)

ag(QED) = A1 + Az(mg/mgr) + Az(mg/meu)

+A3(mg/m€/,m€/m€//), (81)

where for the electron, (€,€',€")=(e,w,7) and for the
muon, (€,£',€")=(w,e,7). The anomaly for the 7, which
is poorly known experimentally (Yao et al., 2006), is not
considered here. For recent work on the theory of a,,
see Eidelman and Passera (2007). In Eq. (81), the term
Ay is mass independent, and the mass dependence of A,
and Aj; arises from vacuum polarization loops with lep-
ton €', €", or both. Each of the four terms on the right-
hand side of Eq. (81) can be expressed as a power series
in the fine-structure constant «,
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2 3 4
A:A(»z)(g) +A(4)<g) +A(6)<g) +A(8)(g)
12 1 T l T l T l T

5
+A,(»10)(2> +o (82)

e

where AP'=AP=AY=0. Coefficients proportional to
(a/ )" are of order ¢ and are referred to as 2nth-order
coefficients.

For the mass-independent term A;, the second-order
coefficient is known exactly, and the fourth- and sixth-
order coefficients are known analytically in terms of
readily evaluated functions,

AP =1, (83)
AW =-0.328478965579... (84)
A®=1.181241456.... (85)

A total of 891 Feynman diagrams give rise to the
mass-independent eighth-order coefficient A(lg), and only
a few of these are known analytically. However, in an
effort that has its origins in the 1960s, Kinoshita and
collaborators have calculated A{® numerically; the result
of this ongoing project that is used in the 2006 adjust-
ment is (Kinoshita and Nio, 2006a; Gabrielse et al., 2006,
2007)

AP = -1.7283(35). (86)

Work was done in the evaluation and checking of this
coefficient in an effort to obtain a reliable quantitative
result. A subset of 373 diagrams containing closed elec-
tron loops was verified by more than one independent
formulation. The remaining 518 diagrams with no closed
electron loops were formulated in only one way. As a
check on this set, extensive cross checking was per-
formed on the renormalization terms both among them-
selves and with lower-order diagrams that are known
exactly (Kinoshita and Nio, 2006a) [see also Gabrielse et
al. (2006, 2007)]. For the final numerical integrations, an
adaptive-iterative Monte Carlo routine was used. A
time-consuming part of the work was checking for
round-off error in the integration.

The 0.0035 standard uncertainty of A{® contributes a
standard uncertainty to a.(th) of 0.88x 107", which is
smaller than the uncertainty due to uncalculated higher-
order contributions. Independent work is in progress on
analytic calculations of eighth-order integrals. See, for
example, Laporta (2001), Laporta et al. (2004), and Mas-
trolia and Remiddi (2001).

Little is known about the tenth-order coefficient A{'”
and higher-order coefficients, although Kinoshita et al.
(2006) are starting the numerical evaluation of the
12 672 Feynman diagrams for this coefficient. To evalu-
ate the contribution to the uncertainty of a.(th) due to
lack of knowledge of A{!”, we follow CODATA-98 to
obtain A§10)=0.0(3.7). The 3.7 standard uncertainty of
Aglo) contributes a standard uncertainty component to
a.(th) of 2.2x107"%,; the uncertainty contributions to
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ag(th) from all other higher-order coefficients, which
should be significantly smaller, are assumed to be negli-
gible.

The 2006 least-squares adjustment was carried out us-
ing the theoretical results given above, including the
value of A'® given in Eq. (86). Well after the deadline
for new data and the recommended values from the ad-
justment were made public (Mohr et al., 2007), it was
discovered by Aoyama et al. (2007) that 2 of the 47 in-
tegrals representing 518 QED diagrams that had not
previously been confirmed independently required a
corrected treatment of infrared divergences. The revised
value they give is

AP = -1.9144(35), (87)

although the new calculation is still tentative (Aoyama et
al., 2007). This result would lead to the value

a1=137.035999 070(98) [7.1 X 1071°] (88)

for the inverse fine-structure constant derived from the
electron anomaly using the Harvard measurement result
for a. (Gabrielse et al., 2006, 2007). This number is
shifted down from the previous result by 641 X 10~ and
its uncertainty is increased from (96) to (98) (see Sec.
V.A.3), but it is still consistent with the values obtained
from recoil experiments (see Table XXVI). If this result
for A®® had been used in the 2006 adjustment, the rec-
ommended value of the inverse fine-structure constant
would differ by a similar, although slightly smaller,
amount. The effect on the muon anomaly theory is com-
pletely negligible.

The mass independent term A, contributes equally to
the free electron and muon anomalies and the bound-
electron g-factors. The mass-dependent terms are differ-
ent for the electron and muon and are considered sepa-
rately in the following. For the bound-electron g-factor,
there are bound-state corrections in addition to the free-
electron value of the g-factor, as discussed below.

A. Electron magnetic moment anomaly a, and the
fine-structure constant «

The combination of theory and experiment for the
electron magnetic moment anomaly yields the value for
the fine-structure constant « with the smallest estimated
uncertainty (see Table XIV).

1. Theory of a,

The mass-dependent coefficients of interest and corre-
sponding contributions to the theoretical value of the
anomaly a.(th), based on the 2006 recommended values
of the mass ratios, are

AP (mm,) = 5.197 386 78(26) X 1077
—24.182 X 10", (89)

AV (mgIm,) =1.837 63(60) X 10~°
—0.085 X 101, (90)
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TABLE XIV. Summary of data related to magnetic moments of the electron and muon and inferred
values of the fine-structure constant. (The source data and not the inferred values given here are used

in the adjustment.)

Relative standard

Quantity Value uncertainty u, Identification Sec. and Eq.

a. 1.159 652 1883(42) x 1073 3.7%x107° UWash-87 V.A2.a (102)
al(a,) 137.035 998 83(50) 3.7%x107° V.A.3 (104)

a. 1.159 652 180 85(76) x 1073 6.6x 10710 HarvU-06 V.A.2.b (103)
a(a,) 137.035 999 711(96) 7.0x 10710 V.A.3 (105)

R 0.003 707 2064(20) 541077 BNL-06 V.B.2 (128)
a, 1.165 920 93(63) X 103 541077 V.B.2 (129)
a Y(R) 137.035 67(26) 1.9x107° V.B.2.a (132)

AP (mm,) =—7.373 941 72(27) x 107
——0.797 X 10 %, (91)

AO(m Im,) = - 6.5819(19) X 1078
— —0.007 X 10, (92)

where the standard uncertainties of the coefficients are
due to the uncertainties of the mass ratios but are neg-
ligible for a.(th). The contributions from Agé)(me/mu,
m./m;) and all higher-order mass-dependent terms are
negligible as well.

The value for A§6)(me/mu) in Eq. (91) has been up-
dated from the value in CODATA-02 and is in agree-
ment with the result of Passera (2007) based on a calcu-
lation to all orders in the mass ratio. The change is given
by the term

17x%2(3)  4381x°In’x 24 761x°Inx
36 30 240 158 760

13m2x® 1840256 147x5
1344 3556 224 000 °

(93)

where x=m,/m,, which was not included in CODATA-
02. The earlier result was based on Eq. (4) of Laporta
and Remiddi (1993), which only included terms to order
x*. The additional term was kindly provided by Laporta
and Remiddi (2006).

For the electroweak contribution, we have

a.(weak) = 0.029 73(52) X 10712
=0.2564(45) X 1071, (94)

as calculated in CODATA-98 but with the current val-
ues of G and sin’6yy (see Sec. XI.B).
The hadronic contribution is

a.(had) = 1.682(20) X 10712 =1.450(17) X 10~%a,.
(95)

It is the sum of the following three contributions:
a¥(had)=1.875(18) X 1012 obtained by Davier and
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Hocker (1998), a®(had)=-0.225(5) %1072 given by
Krause (1997), and a{"”(had)=0.0318(58) X 102 calcu-
lated by multiplying the correspo