An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Adam McCaughan, Yao Zhai, Boris Korzh, Jason Allmaras, Bakhrom Oripov, Matthew Shaw, Sae Woo Nam
Although superconducting nanowire single-photon detectors (SNSPDs) are a promising technology for quantum optics, metrology, and astronomy, they currently lack
Saeed Khan, Bryce Primavera, Jeff Chiles, Adam McCaughan, Sonia Buckley, Alexander Tait, Adriana Lita, John Biesecker, Anna Fox, David Olaya, Richard Mirin, Sae Woo Nam, Jeff Shainline
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and
Poolad Imany, Zixuan Wang, Ryan DeCrescent, Robert Boutelle, Corey McDonald, Travis Autry, SAMUEL BERWEGER, Pavel Kabos, Sae Woo Nam, Richard Mirin, Kevin L. Silverman
Fast, efficient, and low-power modulation of light at microwave frequencies is crucial for chip-scale classical and quantum processing as well as for long-range
Katy Keenan, Joe Aumentado, Harold Booth, Kimberly Briggman, Mikail Kraft-Molleda, Michele Martin, Rene Peralta, Angela Robinson, Krister Shalm, Michelle Stephens, Emily Townsend, Sae Woo Nam
The coronavirus disease 2019 (COVID-19) pandemic led to the need for tracking of physical contacts and potential exposure to disease. Traditional contact
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to
Jeff Shainline
,
Adam McCaughan
,
Sae Woo Nam
and
Manuel Castellanos Beltran
patent description We recently invented and patented a new type of hardware for neuromorphic computing (Phys. Rev. Applied, 7, 034013 (2017) (attached to email). The key ideas are to use integrated photonic devices for massive connectivity nd superconducting electronics for efficient memory and
patent description We propose a NC system based on superconducting detectors and electronics working with waveguide-integrated nano-LED emitters to behave as complete spiking neurons. Optical signals are communicated through reconfigurable nanophotonic waveguides, capturing the interconnectivity of
Adam McCaughan
,
Varun Verma
,
Sonia Buckley
and
Sae Woo Nam
Patent Description Presently, superconducting electronics are being applied to areas such as computational backends for future quantum processors, high-performance supercomputing, and ultrafast digital signal processing. In all of these areas, data must be communicated between the superconducting