Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Flavio Caldas da Cruz (Assoc)

Publications

Nonlinear Silicon waveguides produce tunable frequency combs spanning 2.0-8.5 ?m

Author(s)
Nima Nader, Abijith S. Kowligy, Jeffrey T. Chiles, Eric J. Stanton, Henry R. Timmers, Alexander J. Lind, Kimberly Briggman, Scott Diddams, Flavio Caldas da Cruz, Richard Mirin, Sae Woo Nam, Daniel M. Lesko
We present fully air clad suspended-silicon waveguides for efficient nonlinear interactions limited only by the silicon transparency. Novel fork-shaped couplers

Octave-spanning dual frequency comb spectroscopy in the molecular fingerprint region

Author(s)
Henry R. Timmers, Abijith S. Kowligy, Alexander J. Lind, Flavio Caldas da Cruz, Nima Nader, Myles C. Silfies, Thomas K. Allison, Gabriel G. Ycas, Peter G. Schunemann, Scott B. Papp, Scott A. Diddams
Spectroscopy in the molecular fingerprint spectral region (6.5-20 $\mu$m) yields critical information on material structure for physical, chemical and

Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

Author(s)
Nima Nader, Daniel Maser, Flavio Caldas da Cruz, Abijith S. Kowligy, Henry R. Timmers, Jeffrey T. Chiles, Connor D. Fredrick, Daron A. Westly, Richard P. Mirin, Jeffrey M. Shainline, Scott A. Diddams
Infrared spectroscopy is a powerful tool for basic and applied science. The rich “spectral fingerprints” of compounds in the 3 um - 20 um region provide a means

Coherent Frequency Combs for Spectroscopy in the 3-5 Micron Region

Author(s)
Daniel I. Maser, Gabriel G. Ycas, William I. Depetri, Flavio Caldas da Cruz, Scott A. Diddams
A tunable mid-infrared frequency comb was created via diff erence frequency generation. Pulses between 1 and 1.5 μm were mixed to make idlers of 2.6-5.2 μm. Two
Created April 30, 2019