Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Size-independent effects on nanoparticle retention behavior in asymmetric flow field-flow fractionation

Published

Author(s)

Julien C. Gigault, Vincent A. Hackley

Abstract

In this work we highlight the size-independent influence of the material properties of nanoparticles on their retention behavior in asymmetric-flow field-flow fractionation (A4F). The phenomena described here suggest there are limits to the effectiveness and accuracy of using a single type of nanoparticle standard (polystyrene beads most typically) in order to generically calibrate retention time in normal mode elution. The dual objectives of this paper are to (1) demonstrate the uncertainties resulting from current practice and (2) initiate a discussion of these effects and their origins. The results presented here illustrate clearly that the retention time is higher for metallic nanoparticles relative to lower (bulk) density nanoparticles of the same nominal size. By modifying the fundamental field flow fractionation equation to account for differences in particle density, we show that the effect of gravitational forces is finite but insignificantly small for nanoparticles. We postulate that the observed material dependent retention behavior may be attributed to differences in the attractive van der Waals force between the nanoparticles and the accumulation wall (membrane surface). We hope that the work presented here will stimulate discussion and reassessment of the calibration procedure, perhaps by more fully accounting for all influential material parameters relevant to the fractionation of nanoscale particles by A4F.
Citation
Analytical and Bioanalytical Chemistry
Volume
405

Keywords

field flow fractionation, nanoparticles

Citation

Gigault, J. and Hackley, V. (2013), Size-independent effects on nanoparticle retention behavior in asymmetric flow field-flow fractionation, Analytical and Bioanalytical Chemistry, [online], https://doi.org/10.1007/s00216-013-7055-2 (Accessed April 18, 2024)
Created May 29, 2013, Updated June 2, 2021