Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Thermoelectric imaging of structural disorder in epitaxial graphene

Published

Author(s)

Sanghee Cho, Stephen D. Kang, Wondong Kim, Eui-Sup Lee, Sung-Jae Woo, Ki-Jeong Kong, Ilyou Kim, Hyeong-Do Kim, Tong Zhang, Joseph A. Stroscio, Yong-Hyun Kim, Ho-Ki Lyeo

Abstract

Many structural defects and strain fields develop during the preparation of thin films and nanostructures, with their origins being at the atomic level1,2. Sensitively detecting these subtle features with high sensitivity and resolution, and their influence3 on electronic, thermal, and mechanical properties, remains challenging. Scanning probe microscopy (SPM) methods4 have been useful to measure such properties locally, but standard measurements are not well suited to detect the small changes in lattice parameters that accompany strain and disorder, and large scale imaging of the associated electronic states are prohibitive. Here we show that local thermopower measurements can yield high sensitivity large scale imaging of structural disorder in epitaxial graphene, which is not observable in the standard SPM topographic images. The thermopower measurement acts to amplify the variations in the local density of states at the Fermi-level, giving high differential contrast in thermoelectric signals. Using this new imaging technique, we discovered a defect-mediated dimensional evolution of strain-response patterns in epitaxial graphene with increasing thickness. Our findings suggest that local-thermopower is a new means for exploring Fermi-energy phenomena resulting from structural features or quantum confinement.
Citation
Nature Materials
Volume
12
Issue
10

Keywords

thermoelectric, scanning probe microscopy

Citation

Cho, S. , Kang, S. , Kim, W. , Lee, E. , Woo, S. , Kong, K. , Kim, I. , Kim, H. , Zhang, T. , Stroscio, J. , Kim, Y. and Lyeo, H. (2013), Thermoelectric imaging of structural disorder in epitaxial graphene, Nature Materials, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912752 (Accessed March 29, 2024)
Created July 13, 2013, Updated October 12, 2021