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b Department for Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
c Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
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A B S T R A C T

In the past decades, microarray technology has definitely put an edge to the field of genetic research. Our

aim was to determine whether single nucleotide polymorphism (SNP) microarrays could be used as a tool

in establishing genetic relationships where current molecular genetic methods are not sufficient. We used

the Genechip, Affymetrix GenomeWide SNP Array 6.0, which detects more than 900,000 SNP markers

dispersed throughout the human genome. The intention was to find a good selection of SNP markers that

could be used for statistical evaluation of relatedness in a forensic setting. We conducted pairwise

comparisons in the R-package FEST as well as pedigree comparisons in Merlin. Our methods were applied

on two separate families, where relationships as distant as 3rd cousins were known. In addition, a question

about a possible common ancestry between the two families was tested. Relationships as distant as 2nd

cousins could be readily distinguished both from unrelated and other, genetically, closer relationships. This

was achieved with a selection of 5774 markers, where each pair of markers was separated by a genetic

distance of at least 0.5 cM (centiMorgan). When considering 3rd cousins, and more distant relationships,

the number of markers needs to be extended, consequently decreasing the genetic distance between the

markers. However, inclusion of a too large number of markers presents new challenges and our results

imply that the use of too dense sets of markers always yields the highest probability for the genetically

closest relationship hypothesis. Simulations confirm that this is most probably caused by the fact that the

computational model assumes linkage equilibrium between markers, a problem that will be further

evaluated. Our results do however suggest that SNP-data derived from microarrays are well suited for

kinship determination provided linkage disequilibrium is properly accounted for.

� 2011 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

In the past decades, the use of DNA has revolutionized many
fields of research. It still remains the most important tool to trace
genetic relationships, both in forensic casework and in clinical
research. In medical research it is often crucial to accurately
establish the relationships between the individuals participating in
a study. In genetic association studies, unknown kinship between
cases and also between controls, or even between these two
groups, may give rise to false associations [1,2]. Also in linkage
analysis the results can be seriously biased as a consequence of
unknown relationships between pedigree founders [3].
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In forensic casework, DNA can be used in crime scene
investigations to find or exonerate a perpetrator. In paternity
testing, the conventional problem is to determine whether a man is
the biological father of a child. DNA analyses can also provide
evidence todetermine a disputedrelationship more distant than first
generation relatives. In particular, immigration cases often present
genetic relationships where current forensic genetic methods do not
produce sufficient evidence [4]. In forensic genetics, the choice of
markers is at present mostly limited to short tandem repeats (STRs);
genetically due to their high variability and their ability to provide a
high power of discrimination; technically due to their suitability for
multiplex PCR analyses. However, one of the disadvantages when
using STR-markers is their high mutation rate. In addition the
multiplex assays are often limited to 16–20 markers [5,6]. The use of
single nucleotide polymorphisms (SNPs) has recently received some
attention in the establishing of genetic relatedness. In the forensic
field, the SNPforID Consortium has established a set of SNPs which
ool in establishing genetic relatedness—Current status and future
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Fig. 1. Large Family. The pedigree describes a large family where relationships as distant as 3rd cousins were known. The question mark denotes an unknown paternal

ancestor. Samples were drawn from the individuals marked with green.

Fig. 2. Small Family. The pedigree describes a small family where relationships as

distant as 1st cousins were known. Samples were drawn from the individuals

marked with green.
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performs sufficiently well to be used in court cases and can be
multiplexed in one PCR reaction [7–10]. SNPs possess several
advantages, which make them favourable when establishing
complex or distant relationships. For one, they have a very low
mutation rate, approximately 10�8 [11]. In addition, they can be
analyzed in short amplicons and are generally easy to multiplex.
Furthermore, there is an abundance ofSNP markers to choose from in
the human genome; The most recent paper from the HapMap project
shows a map of 3.1 million of SNPs in the genome and the expected
total number are 9–10 millions [12]. However, single SNPs provide
very little genetic information, since they mostly are biallelic. The
shortage of information can, however, be counteracted by analysing
a larger number of markers. SNPs can be massively typed on high-
density microarrays, such as the Genechips produced by Affymetrix
or the HumanMap chips provided by Illumina, and have been
extensively used in medical genetics [13]. A great number of markers
is crucial in cases of distant relationships. The use of the standard STR
markers, as well as a small set of SNP markers and a set of VNTR
(Variable Number of Tandem Repeat) markers will not be enough
[14]. Although easy to accomplish, the use of a larger number of
markers presents challenges for the computational model used to
distinguish between alternative pedigree hypotheses.

Different algorithms can be used for the purpose of calculating
likelihood for a given pedigree and genotype data. They all share
certain characteristics and the choice of which one to use is mainly
depending on the number of markers and the number of individuals,
see Gao et al. for a review [15]. One such algorithm is the Elston–
Stewart algorithm [16,17], which can be described as a peeling
algorithm and peels in the direction of individuals. This means that the
calculation is only linear in the number of individuals. In contrast, the
Lander–Green algorithm allows for a linear increase in the number of
calculations to the number of markers [18]. The algorithm is
implemented in the software Merlin, the main software used in this
study [19]. The drawback is that both algorithms grow exponentially
in one direction. In other words, the Elston–Stewart algorithm is
capable of handling large pedigrees, but little genotype data, perhaps
100 markers, while the Lander–Green algorithm can handle hundreds
and thousands of markers but only approximately 25 individuals in
each pedigree. Besides this, the most prominent challenge, for any
model, is to take genetic linkage and linkage disequilibrium (LD)
properly into account. Genetic linkage has been shown, in simulation
studies, to provide conclusive information in cases of relatedness
[20,21]. The Lander–Green algorithm is able to take linkage into
account, but assumes linkage equilibrium (LE). Therefore measures
were taken to avoid the influence of LD, mainly by setting a minimum
distance between the chosen markers, but also by using different sets
of markers; see Supplemental Fig. S2 for a more thorough description
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
of the selection procedure [15,19]. In addition an evaluation of
possible LD for each selection of markers was carried out in PLINK [22].

In this study, we wanted to investigate if data from thousands of
SNP markers could be used to resolve distant relatedness issues.
For this purpose we used DNA from individuals representing
different relationships known a priori and selected SNP-data
derived from microarrays. We also applied our findings on a case of
genealogy with a presumable half 1st cousin relationship.

2. Materials and methods

2.1. Sample data

Nineteen blood samples were collected from two families, Figs. 1
and 2, each presenting a wide selection of a priori known
relationships, e.g. parent–child, grandparent–grandchild relations,
full siblings, 1st cousins, 2nd cousins and 3rd cousins and uncle–
niece. These known relationships were used to ascertain the validity
of the statistical calculations as well as to establish which relation-
ships could actually be determined. Finally, data from all tested
individuals were used to establish whether or not the two families
were related two generations back. Allele frequencies from 60
unrelated Swedish individuals were used as a reference population.

2.2. Simulations

Data were also simulated to further investigate the impact of
linkage disequilibrium for different marker densities. The simula-
ool in establishing genetic relatedness—Current status and future
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tions were performed using FEST [20] where founder haplotypes
with markers in linkage disequilibrium were drawn using the R
package hapsim [23]. We used allele frequency information and
LD data for chromosome 22 derived from HapMap for the CEPH
(Utah residents with ancestry from northern and western
Europe) population. To convert physical map distances (bp) to
genetic map distances (cM), we used the Rutgers Combined
Linkage-Physical Map of The Human Genome [24]. The following
Bayesian approach was adopted; first, a true relation was drawn
using a flat prior. Second, genotypes were simulated given the
true relation: first the founder haplotypes assuming LD, then the
genotypes of the descendants. Third, posterior probabilities were
computed for each hypothesized family relation using Merlin.
For each given marker density, these steps were repeated 5000
times, and then the posterior probabilities were averaged. Note
that, if the likelihood computations were correct, the expected
value of the posterior should equal the prior. This fact follows
from E[P[M = k|G]] = E[E[1k(M)|G]] = E[1k(M)] = P[M = k], where M

is the family relation and G the genotype data. A bias in the
averaged posterior probabilities, by not taking LD into account,
would then be apparent as a deviation from the prior
probabilities.

2.3. Microarray analysis

DNA was extracted as described by Lindblom and Holmlund
[25]. The DNA concentration was quantified with Nanodrop
(Thermo Scientific, Wilmington, DE, USA) and adjusted to 50 ng/
ml prior to the microarray assay. Samples were analyzed on the
Affymetrix GenomeWide SNP Array 6.0 (Affymetrix, Santa Clara,
CA, USA) according to the manufacturer’s protocol.

2.4. Selection of markers

The raw data was analyzed in the software Genotyping Console
version 4.0 (GTC), supplied by Affymetrix. From the original
900,000 markers, different selections of autosomal SNP markers
were made. The selection criteria included minor allele frequencies
(MAF), minimum distances between two neighbouring markers as
well as Hardy Weinberg p-value for each marker (see Supplemen-
tal Fig. S2 for a graphical explanation of the selection procedure). In
addition to the previously mentioned criteria, a subsequent
evaluation of the LD between selected markers was carried out
in PLINK. Two different approaches to evaluate the presence of LD
were used. First computation of pairwise r2 values between each
SNP and the 100 most proximally located SNPs. For each selection
of markers, the fractions of pairwise r2 values above a ‘‘limit’’
(limit = 0.1; 0.2; 0.3; 0.5; 0.8) were calculated. Second, we searched
for the presence of haploblocks that can be defined as a cluster of
closely located SNPs in strong LD [26]. The number of haploblocks
was estimated from the ‘‘haplotype block estimation’’ option in
PLINK [22]. This estimation uses the algorithm published by
Gabriel et al. [27].

A more complex selection procedure could possibly account for
information content, as described by Krawczak et al. [28]. This
paper describes a formula which can be used to address the issue in
paternity cases. However, we consider more general pedigrees
using linked markers and therefore these measures of informa-
tivity cannot be used.

2.5. Statistical calculations

Likelihoods for the hypothetical pedigree structures were
obtained from the software Merlin [19]. In addition the R-package
FEST, which provides a front-end user interface to Merlin, was used
to perform simple pairwise comparisons between individuals [20].
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
FEST lets the user include certain predefined hypotheses in the
analysis. There are three different simple types of pairwise
relationships: (1) S–n–m – the sharing of two common ancestors
n and m generations back, (2) HS–n–m, the sharing of one common
ancestor n and m generations back. When n = m, we abbreviate to
S–n and HS–n. Finally (3) PC–n denotes a parent–child relationship
spaced by n generations. FEST was used due to its relative ease with
which it allows the user to calculate the likelihoods for a large
number of alternative hypotheses. In addition FEST provides an in-
built thinning procedure for genotype data. However, FEST has
some constraints. Firstly, pedigree structures with inbreed loops
and marriage loops are impossible to specify in terms of simple
pairwise relationships. Secondly, inclusion of genotypes from more
than two individuals in each analysis is impossible, which might be
necessary in distant relatedness cases.

The likelihoods, obtained from Merlin and FEST, were converted
to posterior probabilities according to a Bayesian approach using
flat priors. An in-house software (freely available from the
corresponding author), was used to perform extensive tests in
Merlin. In this study three different minor allele frequencies were
tested; 0.2, 0.3 and 0.4. For each minor allele frequency, 10
separate analyses were performed based on different minimum
distances between selected markers. The minimum distance was
evenly spaced between 0.05 and 2 cM, yielding approximately
49,000 and 1800 markers respectively. The numbers vary slightly
depending on which minor allele frequency was chosen. In
addition, for each minimum distance and MAF, three separate
selections, not including the same SNPs, were made in order to
minimize the possible influence of linkage disequilibrium.

2.6. Genotyping errors

Genotyping errors may have an impact on the calculations
[29,30]. A study was undertaken to establish the degree of
genotyping errors. One control sample was typed eleven
consecutive times and approximately 4000 markers, approxi-
mately 0.4% of the original 900,000, were excluded from all
analyses due to overrepresentation of inconclusive results. This is
an ad-hoc solution that requires further development for future
applications, possibly by inferring an error frequency and
implementing this into the statistical model. One example of a
model accounting for genotyping errors is provided by Epstein
et al. [31].

3. Results

3.1. Pairwise comparisons with known relationships using FEST

Using different sets of markers, pairwise relationships were
shown to yield high posterior probabilities for relationships as
distant as 2nd cousins (Tables 1 and 2). In Table 1, the calculated
posterior probabilities are shown based on a selection of 5774
markers for six known relationships. The first row contains the
true relationships; S-1 denotes full siblings, S-2 full cousins, S-3
full 2nd cousins, S-4 full 3rd cousins, while HS-1 denotes half
siblings, HS-2 half cousins and PC-2 a grandfather–grandchild
relationship. Table 2 shows the results where instead a selection
of 12,453 markers was used to calculate likelihoods (the number
of comparisons included to calculate the averaged posterior for
each true relationship depends on the available data, see
Supplemental Table S1). When calculating the posterior proba-
bility for a 3rd cousin relationship, see S-4 Tables 1 and 2, the
highest probability achieved was 0.9991 in favour of the true
hypothesis, with a selection of 12,453 markers. Although
sufficient to establish the 3rd cousin relationship, comparing
two unrelated individuals only yielded 0.64 in favour of the
ool in establishing genetic relatedness—Current status and future
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Table 1
Posterior probabilities for each tested relationship, based on a selection of 5774 SNP markers (markers separated by at least 0.5 cM). A Bayesian approach with flat priors has

been used to calculate posterior probabilities.

True relationship S-1 S-2 S-3 S-4 PC-2 Unrelated 1 Unrelated 2

S-1 >0.99999 <0.00001 – – <0.00001 – –

HS-1 <0.00001 <0.00001 – – – <0.00001 –

S-2 <0.00001 0.993 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 – 0.007 – – – <0.00001 –

S-3 – <0.00001 0.9999 – – 0.0035 –

PC-2 – – – – 0.9999 – –

S-4 – – – 0.81 – – 0.19

Unrelated <0.00001 <0.00001 <0.00001 0.19 <0.00001 0.997 0.81

The true relationships in the first row and corresponding probability in bold. A hyphen in a specific row means exclusion of the relationship as an alternative hypothesis. S-1

means full siblings, HS-1 half-siblings, S-2 full 1st cousins, HS-2 half 1st cousins, S-3 full 2nd cousins, PC-2 grandparent–grandchild relation and S-4 means full 3rd cousins.

The same 5774 markers have been used in all comparisons. Due to the varying availability of pairwise true relationships (Supplemental Table S1), the number of examples

included for each relationship varies; For S-1 five comparisons, S-2 ten comparisons, S-3 four comparisons, S-4 ten comparisons, PC-2 nine comparisons, Unrelated ten

comparisons.
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unrelated relationship, see Table 2 and the comparison denoted
Unrelated 2. Inclusion of a large number of markers revealed to
always favour the genetically closest relationship, also when
unrelated was the true relationship. The threshold value, when
this phenomenon starts to occur depends on which relationship is
tested. As a rule of thumb, when testing relationships closer than
2nd cousins, more than 20,000 SNP markers should not be
included to obtain reliable results. See Fig. 3(a)–(c) which describe
an approximate threshold for three different relationships, S-2, S-
3 and unrelated.

3.2. Pairwise comparisons with ‘‘unknown’’ relationships using FEST

The question whether the two families in Figs. 1 and 2 were
related to each other was first examined with FEST. Pairwise
comparisons between the individuals in the third generation, i.e.
3a/3b/3c/3d/3e/3f and 3h/3j/3l/3n, Figs. 1 and 2, were performed.
The following hypotheses were included, unrelated, half 1st cousins

(HS-2) and full 1st cousins (S-2). Table 3 shows an extraction of the
results with various selections of markers. All comparisons yielded
high probabilities for the two families to be unrelated.

3.3. Comparisons with ‘‘unknown’’ relationships using Merlin

We tested alternative hypotheses for the unknown relationship
between the two families in Figs. 1 and 2, including data from all
typed individuals in the third generation. All tests, independent of
marker selections, revealed high posterior probability for the
unrelated hypothesis (Table 4). The hypotheses tested assumed,
however, that the individuals in the family in Fig. 1 were full-
cousins. Separate tests also confirmed this relationship (see
Supplemental Table S2 and Fig. S1).
Table 2
Posterior probabilities for each tested relationships, based on 12,453 SNP markers (marke

to calculate posterior probabilities.

True relationship S-1 S-2 S-3 

S-1 >0.99999 <0.00001 – 

HS-1 <0.00001 0.0002 – 

S-2 <0.00001 0.9998 <0.00001 

HS-2 – <0.00001 – 

S-3 – <0.00001 >0.99999 

PC-2 – – – 

S-4 – – – 

Unrelated <0.00001 <0.00001 <0.00001 

The true relationships in the first row and corresponding probability in bold. A hyphen in

means full siblings, HS-1 half-siblings, S-2 full 1st cousins, HS-2 half 1st cousins, S-3 full

The same 5774 markers have been used in all comparisons. Due to the varying availabil

included for each relationship varies; For S-1 five comparisons, S-2 ten comparisons, S

comparisons.
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3.4. Evaluation of linkage disequilibrium using PLINK

For each selection of markers we performed pairwise LD
evaluations in PLINK. We tested for LD between markers
separated by less than 100 SNPs, which roughly means comparing
markers located less than 50 Mb apart, in a selection of 5774
markers. Of course this distance depends not on the number of
markers but on the minimum distance chosen between two
selected markers, e.g. choosing markers separated by 0.1 cM
yields a distance of roughly 10 Mb. Table 5 describes the results for
a selection of marker sets. Evidently, selecting markers located
0.05 cM apart, roughly 29,200 markers, yields a higher percentage
of r2 values above 0.5, while in a selection of 5800 markers, the
number is considerably lower. Also, r2 values above 0.3 are
comparatively rare in the latter selection. Furthermore, Fig. 4
describes the relation between number of markers and the
number of haploblocks. According to the estimation the depen-
dence is approximately exponential, meaning that choosing more
markers will yield an exponential increase in the number of
haploblocks, i.e. markers in tight LD.

3.5. Simulations using FEST

Table 6 summarizes the simulation results, based on genotype
data from chromosome 22, where we consider the hypotheses full
cousins (S-2), half cousins (HS-2) and unrelated. We see that by
reducing the distance between markers, the averaged posterior
probability is shifted progressively towards full cousins, the
genetically closest relationship. These results are in concordance
with our experience for real data (see also Supplemental Table S3
where the same simulations have been conducted without
accounting for LD).
rs separated by at least 0.25 cM). A Bayesian approach with flat priors has been used

S-4 PC-2 Unrelated 1 Unrelated 2

– <0.00001 – –

– – <0.00001 –

<0.00001 <0.00001 <0.00001 <0.00001

– – <0.00001 –

– – 0.0017 –

– 0.99998 – –

0.9991 – – 0.36

0.0009 <0.00001 0.9983 0.64

 a specific row means exclusion of the relationship as an alternative hypothesis. S-1

 2nd cousins, PC-2 grandparent–grandchild relation and S-4 means full 3rd cousins.

ity of pairwise true relationships (Supplemental Table S1), the number of examples

-3 four comparisons, S-4 ten comparisons, PC-2 nine comparisons, Unrelated ten

ool in establishing genetic relatedness—Current status and future
.07.007

http://dx.doi.org/10.1016/j.fsigen.2011.07.007


Fig. 3. (a)-(c). Graphs displaying the posterior probability for each hypothesis

against the number of markers. (a) True relationship full 1st cousins (blue line)

versus alternative hypotheses of full siblings (red line) and unrelated (green line).

(b) True relationship full 2nd cousins (blue line) versus alternative hypotheses of

full 1st cousins (red line) and unrelated (green line). (c) True relationship Unrelated

(blue line) versus alternative hypotheses of full 2nd cousins (green line) and full 1st

cousins (red line). The upper threshold value, when the true relationship no longer

receives the highest posterior probabilities seems to be, for full 1st cousins:

�35,000 markers (markers separated by 0.05 cM), for full 2nd cousins: �20,000

markers (markers separated by 0.1 cM), and for unrelated �20,000 markers

(markers separated by 0.1 cM).
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4. Discussion

DNA has proven to be the most important tool to evaluate genetic
relationships, both in forensic casework [32–34] and in medical
research [1–3]. During the last decade mtDNA and gonosomal (X, Y)
markers have been used to establish relatedness when lineages of
maternal or paternal inheritance can be followed [35,36]. However,
as soon as a line of inheritance is broken the genetic analyst loses
track. Using thousands of autosomal SNP markers we showed that
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
distant relationships could be established where the above-
mentioned methods did not prevail. Although too early to draw
any definite guidelines or conclusions, we believe the methods
proposed in this study can be applied whenever complex family
relations need to be resolved, as in for example genealogy studies.

The robustness of the tests was shown by using different sets of
markers. The marker selection was based on a set of criteria that
each chosen SNP-marker had to fulfil. Different minor allele
frequencies did not appear to influence the results notably, though
the issue was not extensively investigated. The distance between
the markers did, however, show more impact on the results;
especially when the number of markers exceeded 20,000, which is
approximately equal to a distance of 0.1 cM between each pair of
markers. It was apparent that a too dense selection of markers
rendered the genetically closest relationship as the most probable,
see Fig. 3(a)–(c). This phenomenon is, most likely, a consequence of
linkage disequilibrium, which is also evident in Table 5 where
more dense selections of markers yield a greater percentage of high
r2 values, but also, interestingly, an exponential increase in the
number of haploblocks, see Fig. 4. Our simulations also further
corroborates these results, see Table 6, where there obviously is a
shift towards the closest relationship as more markers are included
in the simulations. One of the reasons to why the results favour the
closest relationship can possibly be explained by the ‘‘random’’
sharing of uncommon alleles. According to this admittedly
speculative conjecture, a dense selection of markers amplifies
the effect, as the uncommon alleles can possibly be in LD with
other closely located uncommon alleles.

The Lander–Green algorithm, used to calculate the likelihoods,
assumes the markers to be in LE and the likelihood computation
collapses using many markers that are in LD. One reason to why the
calculations fail is the large difference between the observed and
the expected haplotype frequencies when dense sets of markers
are used. Moreover, unrelated individuals will share certain
haplotypes, as mentioned previously, due to a common ancestry,
although further back, and they will appear related, i.e. false
positives will arise [37,38]. In 2008 Kurbasic and Hossjer presented
an extension to the Lander–Green algorithm in order to account for
linkage disequilibrium [39]. They combined the Markov chain for
inheritance vectors (i.e. Lander–Green) with another Lth order
Markov chain that models LD structure. In this extension, the
Markov chain contains information about the genotypes of the
pedigree founders of L consecutive located loci. Kurbasic and
Hossjer applied their method on a smaller simulation study (L = 1)
and pointed out that the method is very computationally intensive
unless the pedigrees are small and L is small. This limitation was
also shown when the algorithm was implemented with a small
number of forensically relevant STR markers [40]. Using a
combination of kinship coefficient and IBS statistics, Manichaikul
et al. recently presented a software, KING, which allows pairwise
comparisons to be conducted on large sample material [41]. The
authors claim the problem with LD is circumvented based on large

sample theory. The KING software calculates a kinship coefficient,
i.e. a rough estimate of an abstract family relationship, and not a
forensically relevant probability value for a given pedigree
hypothesis. We used the software on our material and the
performance is comparable with our methods, for relationships
closer than 3rd cousin. Using KING, 3rd cousin relationships could
not be readily resolved. In addition, KING does not provide an
answer to our main problem, determining the most likely pedigree.

As for Merlin/FEST, true relationships as distant as 3rd cousins
could be distinguished with satisfactory posterior probabilities,
using 12,453 markers. Unfortunately, inclusion of more distant
relationships, e.g. 3rd cousins, as an alternative hypothesis when
comparing two truly unrelated individuals, yields unsatisfactory
probabilities, such as only a 64% posterior probability in favour of
ool in establishing genetic relatedness—Current status and future
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Table 3
Posterior probabilities for the hypothesis of relationship between the two families, see Figs. 1 and 2, based on analyses using FEST.

Number of markers 19,518 12,453 10,144 5774 4074 3151

Comparison 1

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.024 8.5e�6 0.0002 0.0001 7e�5 0.00086

Unrelated 0.975 0.99999 0.9998 0.9999 0.9999 0.999

Comparison 2

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.0007 6e�6 5.1e�5 0.003 0.00085 0.006

Unrelated 0.999 0.9999 0.9999 0.997 0.999 0.994

Posterior probabilities for the included hypotheses. S-2 means full 1st cousins, HS-2 means half 1st cousins, see text for further details. Each value represents a posterior

probability for a given selection of markers, see column header. Comparison 1 and 2, represents two separate tests to whether the two families in Figs. 1 and 2 are related.

Table 5
Evaluation of linkage disequilibrium. The table describes the proportion of pairwise comparisons with a r2-value above each limit. In addition the number of haploblocks in

each selection has been calculated using PLINK. Limitcm stands for the minimum genetic distance between two markers in the selection.

Proportion of pairwise-SNP with r2 higher than r2 limit

limitcm0.5 limitcm0.25 limitcm0.15 limitcm0.1 limitcm0.075 limitcm0.05

Number of markers 5865 10,227 14,869 19,420 23,263 29,277

Number of pair-wise comparisons 471,704 903,536 1,363,046 1,813,620 2,194,050 2,789,420

r2 limit

0.1 0.0168 0.0176 0.0568 0.0418 0.0225 0.0615

0.2 0.0020 0.0022 0.0102 0.0085 0.0053 0.0178

0.3 0.0015 0.0014 0.0073 0.0060 0.0038 0.0132

0.5 0.0014 0.0012 0.0057 0.0042 0.0026 0.0090

0.8 0.0014 0.0010 0.0044 0.0026 0.0014 0.0047

Number of haploblocksa 4 80 355 824 1482 2896

a Estimated in PLINK.

Table 4
Posterior probabilities for the hypothesis of relationship between the two families, see Figs. 1 and 2, based on analyses using Merlin. A Bayesian approach with flat priors has

been used.

Number of markers 19,518 12,453 10,144 5774 4074 3151

Comparison 1

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.024 8.5e�6 0.0002 0.0001 7e�5 0.00086

Unrelated 0.975 0.99999 0.9998 0.9999 0.9999 0.999

Comparison 2

S-2 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001 <0.00001

HS-2 0.0007 6e�6 5.1e�5 0.003 0.00085 0.006

Unrelated 0.999 0.9999 0.9999 0.997 0.999 0.994

The question was whether the two families were sharing a common paternal ancestor two generations back. Data was included from all individuals in the third generations of

the two families. For each minor allele frequency, two different distances between two neighbouring markers has been tested, see column headings.

Table 6
Averaged posterior probabilities for simulated relationships. The table describes averaged posterior probabilities (with standard deviations in parentheses) from 5000

simulations of genotype data on chromosome 22. Markers are assumed to be in LD and are evenly spaced over the chromosome. Prior probabilities are equal to 1/3.

Number of markers

on chr 22

Distance (cM)

between markers

Number of markers

if extended to all

chromosomes

HS-2 S-2 Unrelated

1 45a 0.3333 (0.0000) 0.3335 (0.0002) 0.3332 (0.0002)

10 8.778 453 0.3333 (0.0000) 0.3339 (0.0005) 0.3327 (0.0005)

100 0.798 4535 0.3334 (0.0001) 0.3345 (0.0012) 0.3321 (0.0012)

200 0.397 9070 0.3332 (0.0001) 0.3355 (0.0013) 0.3312 (0.0013)

500 0.158 22,675 0.3337 (0.0002) 0.3445 (0.0015) 0.3218 (0.0015)

1000 0.079 45,349 0.3335 (0.0002) 0.3592 (0.0015) 0.3073 (0.0016)

1500 0.053 68,024 0.3338 (0.0003) 0.3927 (0.0015) 0.2735 (0.0016)

a Due to the variation in genetic length of different chromosomes, the number is not 22.
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the true hypothesis, i.e. unrelated, see Table 2. This value is
certainly not convincing in forensic genetics, nor should it be in
medical genetic research. We applied our findings, based on tests
using data from known relationships, on two families concerning a
common paternal ancestor two generations back. The results from
Merlin and FEST were unambiguous and showed that the two
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
families did not share a common ancestor and thus, according to
our findings, are unrelated.

A 2nd cousin relationship appears to be the limitation to what
can be determined with current methods, or by any means
presently available. It is debatable what the term unrelated really
stands for [42]. The genetic material is quickly diluted as each
ool in establishing genetic relatedness—Current status and future
.07.007
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Fig. 4. Graph displaying the number of haploblocks (y-axis) versus the number of

markers (x-axis). The number of haploblocks for each selection of markers has been

calculated using PLINK. The graph displays an approximate exponential

relationship between the number of haploblocks and the number of markers.

The dot at 5865 markers corresponds to a distance of at least 0.5 cM between two

markers, while the dot at 29,277 markers corresponds to a distance of at least

0.05 cM, see also Table 5.
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generation passes. Perhaps the average background relatedness,
shared by all individuals of the same ethnicity, lies not very far
from the 3rd cousin relationship. Indeed the latest release from the
HapMap project demonstrates that two unrelated individuals in
the CEU population share in average 0.34% of their alleles through
identity by descent (IBD) [12]. This is in fact approximately equal to
the expected sharing of alleles (IBD) between two 3rd cousins. To
investigate this further, more families need to be analyzed, where
relationships such as half siblings, half cousins and half 2nd
cousins are known. Simulation studies can be performed but they
are more complicated since they raise the issue of how to model
and account for linkage disequilibrium. For example, relationships
can be simulated based on true haplotypes, where the issue of how
to model LD in simulations is irrelevant, but haplotypes are
complicated and computer demanding to infer. PHASE and
IMPUTE, as well as similar available software, offer the advantage
of inferring haplotypes from genotyping data, without any family
or pedigree information [43,44]. We simulated relationships
where instead the founder haplotypes were created using an
approximate LD map from the HapMap project and the results
agreed with our previous findings.

Regarding the statistical calculation, we suggest creating a new
model, or modifying an existing one, which accounts for linkage
disequilibrium. LD might be turned into an advantage if a proper
model is developed. Moreover, other algorithms should be
considered, i.e. other than Lander–Green, which is used in Merlin.
Indeed, algorithms that can handle large and complex pedigrees
with a large number of markers should be evaluated. For large and
complex pedigrees, with thousands of markers, approximate
approaches, such as Monte-Carlo Markov chain (MCMC), utilized
in the software MORGAN for example, might be a good candidate.
[15,45]. The existence of block-like structures, with clusters of
tightly linked SNPs may also prove useful [26,46]. Merlin provides
the possibility to calculate likelihoods based on specified cluster
information [47]. Although theoretically promising the current
implementation of the method in Merlin was, in our study, unable
to handle more extended pedigrees with an average amount of
clusters, i.e. 3rd cousins and 5000 clusters.

There are in addition alternative methods for the determination
of the most probable relationship between individuals. One such
approach is utilizing identity by state (IBS). This approach may not
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
be optimal from a statistical point of view, but can nevertheless be
useful to illustrate distant relationships [48,49].

In conclusion, genotype data from high-density SNP arrays have
proved to be useful in the investigation of distant genetic
relationships. In this study we solved a real case of half 1st
cousinship using different selections of SNP markers. Relationships
as distant as 2nd cousins could also be unambiguously resolved.
However, 3rd cousins and more distant relationships revealed hard
to distinguish from unrelated. Nevertheless, this task should not be
insurmountable using a good computer algorithm and enough
reference material to work with. Parameters such as genotyping
errors and LD should be more thoroughly investigated as well as
IBS approaches. Our conclusions regarding the relation between
the two families (Figs. 1 and 2) are primarily based on a small
number of established relationships (Tables 1 and 2) and thus
further simulations and families are needed to verify our results.
Even so, we are confident that our methods can be used to solve
other cases of disputed distant family relationships.
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Science, Linköping University.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.fsigen.2011.07.007.

References

[1] D.L. Newman, M. Abney, M.S. McPeek, et al., The importance of genealogy in
determining genetic associations with complex traits, Am. J. Hum. Genet. 69
(2001) 1146–1148.

[2] B.F. Voight, J.K. Pritchard, Confounding from cryptic relatedness in case-control
association studies, PLoS Genet. 1 (2005) e32.

[3] A.L. Leutenegger, E. Genin, E.A. Thompson, et al., Impact of parental relationships
in maximum lod score affected sib-pair method, Genet. Epidemiol. 23 (2002) 413–
425.

[4] A.O. Karlsson, G. Holmlund, T. Egeland, et al., DNA-testing for immigration cases:
the risk of erroneous conclusions, Forensic Sci. Int. Genet. 172 (2007) 144–149.

[5] H. Ellegren, Microsatellites: simple sequences with complex evolution, Nat. Rev.
Genet. 5 (2004) 435–445.

[6] J.M. Butler, Genetics and genomics of core short tandem repeat loci used in human
identity testing, J. Forensic Sci. 51 (2006) 253–265.

[7] B. Budowle, A. van Daal, Forensically relevant SNP classes, Biotechniques 44 (603–
608) (2008) 610.

[8] J.C. Glaubitz, O.E. Rhodes, J.A. Dewoody, Prospects for inferring pairwise relation-
ships with single nucleotide polymorphisms, Mol. Ecol. 12 (2003) 1039–1047.

[9] J.J. Sanchez, C. Phillips, C. Borsting, et al., A multiplex assay with 52 single
nucleotide polymorphisms for human identification, Electrophoresis 27 (2006)
1713–1724.

[10] C. Borsting, J.J. Sanchez, H.E. Hansen, et al., Performance of the SNPforID 52 SNP-
plex assay in paternity testing, Forensic Sci. Int. Genet. 2 (2008) 292–300.

[11] D.E. Reich, S.F. Schaffner, M.J. Daly, et al., Human genome sequence variation and
the influence of gene history, mutation and recombination, Nat. Genet. 32 (2002)
135–142.

[12] K.A. Frazer, D.G. Ballinger, D.R. Cox, et al., A second generation human haplotype
map of over 3.1 million SNPs, Nature 449 (2007) 851–861.

[13] S.F. Grant, H. Hakonarson, Microarray technology and applications in the arena of
genome-wide association, Clin. Chem. 54 (2008) 1116–1124.

[14] M. Nothnagel, J. Schmidtke, M. Krawczak, Potentials and limits of pairwise kinship
analysis using autosomal short tandem repeat loci, Int. J. Legal Med. 124 (2010)
205–215.
ool in establishing genetic relatedness—Current status and future
.07.007

http://dx.doi.org/10.1016/j.fsigen.2011.07.007
http://dx.doi.org/10.1016/j.fsigen.2011.07.007


D. Kling et al. / Forensic Science International: Genetics xxx (2011) xxx–xxx8

G Model

FSIGEN-773; No. of Pages 8
[15] G. Gao, D.B. Allison, I. Hoeschele, Haplotyping methods for pedigrees, Hum. Hered.
67 (2009) 248–266.

[16] R.C. Elston, J. Stewart, A general model for the genetic analysis of pedigree data,
Hum. Hered. 21 (1971) 523–542.

[17] T. Egeland, P.F. Mostad, B. Mevag, et al., Beyond traditional paternity and
identification cases. Selecting the most probable pedigree, Forensic Sci. Int. Genet.
110 (2000) 47–59.

[18] E.S. Lander, P. Green, Construction of multilocus genetic linkage maps in humans,
Proc. Natl. Acad. Sci. U. S. A. 84 (1987) 2363–2367.

[19] G.R. Abecasis, S.S. Cherny, W.O. Cookson, et al., Merlin—rapid analysis of dense
genetic maps using sparse gene flow trees, Nat. Genet. 30 (2002) 97–101.

[20] O. Skare, N. Sheehan, T. Egeland, Identification of distant family relationships,
Bioinformatics 25 (2009) 2376–2382.

[21] T. Egeland, N. Sheehan, On identification problems requiring linked autosomal
markers, Forensic Sci. Int. Genet. 2 (2008) 219–225.

[22] S. Purcell, B. Neale, K. Todd-Brown, et al., PLINK: a tool set for whole-genome
association and population-based linkage analyses, Am. J. Hum. Genet. 81 (2007)
559–575.

[23] G. Montana, HapSim: a simulation tool for generating haplotype data with pre-
specified allele frequencies and LD coefficients, Bioinformatics 21 (2005) 4309–
4311.

[24] Rutgers Combined Linkage-Physical Map of The Human Genome, http://comp-
gen.rutgers.edu/RutgersMap/DownloadMap.aspx (accessed 18.05.11).

[25] B. Lindblom, G. Holmlund, Rapid DNA purification for restriction fragment length
polymorphism analysis, Gene Anal. Tech. 5 (1988) 97–101.

[26] J. Ge, B. Budowle, J.V. Planz, et al., Haplotype block: a new type of forensic DNA
markers, Int. J. Legal Med. 124 (2010) 353–361.

[27] S.B. Gabriel, S.F. Schaffner, H. Nguyen, et al., The structure of haplotype blocks in
the human genome, Science 296 (2002) 2225–2229.

[28] M. Krawczak, Informativity assessment for biallelic single nucleotide polymor-
phisms, Electrophoresis 20 (1999) 1676–1681.

[29] F. Pompanon, A. Bonin, E. Bellemain, et al., Genotyping errors: causes, conse-
quences and solutions, Nat. Rev. Genet. 6 (2005) 847–859.

[30] E. Sobel, J.C. Papp, K. Lange, Detection and integration of genotyping errors in
statistical genetics, Am. J. Hum. Genet. 70 (2002) 496–508.

[31] M.P. Epstein, W.L. Duren, M. Boehnke, Improved inference of relationship for pairs
of individuals, Am. J. Hum. Genet. 67 (2000) 1219–1231.

[32] D.W. Gjertson, C.H. Brenner, M.P. Baur, et al., ISFG: recommendations on biosta-
tistics in paternity testing, Forensic Sci. Int. Genet. 1 (2007) 223–231.
Please cite this article in press as: D. Kling, et al., DNA microarray as a t
prospects, Forensic Sci. Int. Genet. (2011), doi:10.1016/j.fsigen.2011
[33] M. Tracey, Short tandem repeat-based identification of individuals and parents,
Croat. Med. J. 42 (2001) 233–238.

[34] M. Kayser, P. de Knijff, Improving human forensics through advances in genetics,
genomics and molecular biology, Nat. Rev. Genet. 12 (2011) 179–192.

[35] J. Ge, A. Eisenberg, J. Yan, et al., Pedigree likelihood ratio for lineage markers, Int. J.
Legal Med. 125 (2011) 519–525.

[36] R. Szibor, X-chromosomal markers: past, present and future, Forensic Sci. Int.
Genet. 1 (2007) 93–99.

[37] Q. Huang, S. Shete, C.I. Amos, Ignoring linkage disequilibrium among tightly
linked markers induces false-positive evidence of linkage for affected sib pair
analysis, Am. J. Hum. Genet. 75 (2004) 1106–1112.

[38] J.M. Keith, A. McRae, D. Duffy, et al., Calculation of IBD probabilities with dense
SNP or sequence data, Genet. Epidemiol. 32 (2008) 513–519.

[39] A. Kurbasic, O. Hossjer, A general method for linkage disequilibrium correction for
multipoint linkage and association, Genet. Epidemiol. 32 (2008) 647–657.

[40] A.O. Tillmar, T. Egeland, B. Lindblom, et al., Using X-chromosomal markers in
relationship testing: calculation of likelihood ratios taking both linkage and
linkage disequilibrium into account, Forensic Sci. Int. Genet. (2010),
doi:10.1016/j.fsigen.2010.11.004.

[41] A. Manichaikul, J.C. Mychaleckyj, S.S. Rich, et al., Robust relationship inference in
genome-wide association studies, Bioinformatics 26 (2010) 2867–2873.

[42] B.S. Weir, A.D. Anderson, A.B. Hepler, Genetic relatedness analysis: modern data
and new challenges, Nat. Rev. Genet. 7 (2006) 771–780.

[43] M. Stephens, N.J. Smith, P. Donnelly, A new statistical method for haplotype
reconstruction from population data, Am. J. Hum. Genet. 68 (2001) 978–989.

[44] J. Marchini, B. Howie, S. Myers, et al., A new multipoint method for genome-wide
association studies by imputation of genotypes, Nat. Genet. 39 (2007) 906–913.

[45] A.W. George, E.M. Wijsman, E.A. Thompson, MCMC multilocus lod scores: appli-
cation of a new approach, Hum. Hered. 59 (2005) 98–108.

[46] K. Zhang, P. Calabrese, M. Nordborg, et al., Haplotype block structure and its
applications to association studies: power and study designs, Am. J. Hum. Genet.
71 (2002) 1386–1394.

[47] G.R. Abecasis, J.E. Wigginton, Handling marker–marker linkage disequilibrium:
pedigree analysis with clustered markers, Am. J. Hum. Genet. 77 (2005) 754–767.

[48] H. Miyazawa, M. Kato, T. Awata, et al., Homozygosity haplotype allows a genome-
wide search for the autosomal segments shared among patients, Am. J. Hum.
Genet. 80 (2007) 1090–1102.

[49] E.D. Roberson, J. Pevsner, Visualization of shared genomic regions and meiotic
recombination in high-density SNP data, PLoS One 4 (2009) e6711.
ool in establishing genetic relatedness—Current status and future
.07.007

http://compgen.rutgers.edu/RutgersMap/DownloadMap.aspx
http://compgen.rutgers.edu/RutgersMap/DownloadMap.aspx
http://dx.doi.org/10.1016/j.fsigen.2010.11.004
http://dx.doi.org/10.1016/j.fsigen.2010.11.004
http://dx.doi.org/10.1016/j.fsigen.2011.07.007

	DNA microarray as a tool in establishing genetic relatedness—Current status and future prospects
	1 Introduction
	2 Materials and methods
	2.1 Sample data
	2.2 Simulations
	2.3 Microarray analysis
	2.4 Selection of markers
	2.5 Statistical calculations
	2.6 Genotyping errors

	3 Results
	3.1 Pairwise comparisons with known relationships using FEST
	3.2 Pairwise comparisons with “unknown” relationships using FEST
	3.3 Comparisons with “unknown” relationships using Merlin
	3.4 Evaluation of linkage disequilibrium using PLINK
	3.5 Simulations using FEST

	4 Discussion
	Acknowledgements
	Appendix A Supplementary data

	Appendix A Supplementary data

