Automated Material Characterization for Fire Modeling

October 29, 2019

Morgan C. Bruns Virginia Military Institute (USA)

Isaac T. Leventon National Institute of Standards and Technology (USA)

Predicting Fire Growth

- To engineer safer:
 - Buildings
 - Products
 - Materials
- Accurate predictions require condensed phase pyrolysis models

Condensed Phase Challenges

- Physics
 - Multiphase
 - Mechanical deformation
- Numerics
 - Gas phase coupling
 - Multiscale
 - Moving boundary
- Materials
 - Many parameters
 - Many materials

Condensed Phase Challenges

- Physics
 - Multiphase
 - Mechanical deformation
- Numerics
 - Gas phase coupling
 - Multiscale
 - Moving boundary
- Materials
 - Many parameters
 - Many materials

How Many Parameters?

$$\begin{aligned} \frac{\partial \rho_i}{\partial t} &= \dot{m}_i^{\prime\prime\prime}, \quad i = 1, \dots, N\\ \rho c \frac{\partial T}{\partial T} &= \nabla \cdot (k \nabla T) + \dot{q}^{\prime\prime\prime}\\ \dot{m}_i^{\prime\prime\prime} &= -A_i \rho_i \exp\left(-\frac{E_i}{RT}\right), \quad i = 1, \dots, N\\ \rho c &= \sum_{i=1}^N \rho_i c_i\\ k &= f\left(\rho_1, \dots, \rho_N, k_1, \dots, k_N\right)\\ \dot{q}^{\prime\prime\prime} &= -\sum_{i=1}^N \Delta h_i \dot{m}_i^{\prime\prime\prime}\\ \rho_i \left(t = 0\right) &= \rho_{0,i}, \quad i = 1, \dots, N \end{aligned}$$

Neglecting

- Radiation
- Mass transport
- Charring
- Temperature dependence

At least ~6N material property parameters need to be quantified

How many materials?

- NFIRS categorizes 38 distinct "types" of solid materials "First Ignited"
- These "types" are extremely broad categories such as "Plastic", "Rubber", and "Plywood"
- For example, Lyon and Janssens (2005) contains data on 50 common plastics
- Additional diversity due to processing variability, additives, blends, ageing, etc.

On the order of 10³ distinct materials relevant to fire growth predictions

Material Property Database

- Being developed at NIST
- Adopting "Hierarchical" approach
- Critical components
 - 1. Standard formatting
 - 2. Standard metadata
 - 3. Analysis tools

Global Approach

Model Parameterization: Framework

10 Measurement and Prediction of Material Flammability Performance

Model Parameterization

- Experimental approach
 - Conduct as few physical tests as possible
 - Isolate parameters through each test
 - Validate model across a range of scales, outside of calibration conditions
- Focus of this presentation: Analysis of TGA and MCC data for
 - Reaction mechanism
 - Kinetics
 - Heats of combustion

Analysis of TGA Data

How should we estimate pyrolysis kinetic parameters from raw TGA data?

Method Requirements

- 1. Parameters predict data \rightarrow Accurate
- 2. Many different materials \rightarrow Efficient
- 3. Many different behaviors → Robust
- 4. Parameters do not vary \rightarrow Consistent

How to be Consistent

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

~John von Neumann

1. No free parameters

2. No random numbers

For given data, the method should always produce the same parameters

The quality of any **parameter estimation** algorithm is ultimately determined in **model validation**

Pyrolysis Model: Independent Unimolecular Reactions

Reactant
$$\xrightarrow{k} \nu$$
Char + $(1 - \nu)$ Gas
 $k = \left(\frac{A}{\beta}\right) \exp\left(-\frac{E}{RT}\right)$
 $m' \equiv \frac{\mathrm{d}m}{\mathrm{d}T} = -(1 - \nu) \, km, \quad m(T_0) = m_0$

Appropriateness to be determined by ability to predict fire growth.

Characteristic temperature and mass changes:

$$\Delta T \equiv \frac{m_{\rm p}}{-m_{\rm p}'}$$
$$\Delta m \equiv m_0 \left(1 - \nu\right)$$

Analysis of peak condition yields:

Some Details

- Smoothed data derivatives are found using Savitzky-Golay filter
- 2. "Small" mass loss rate peaks are neglected
- 3. Complete algorithm corrects preceding equations for overlapping reactions
- 4. Reaction mass changes corrected to conserve mass

Verification

- 1. Assume kinetic parameters
- 2. Generate TGA data
- 3. Use algorithm to find parameters

Purpose:

- 1. Check implementation
- 2. Test validity of approximate solution

Single Reaction Verification

Single Reaction Verification

ΔT = 10 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _p (K)	650	649.4
ΔT (K)	10	9.99
ξ	0.01538	0.01539
$\ln[A(s^{-1})]$	60.91	60.90
E (kJ/kmol)	351.3×10 ³	350×10^{3}

ΔT = 20 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _р (К)	650	649.4
ΔT (K)	20	19.07
ξ	0.03077	0.02935
$\ln[A(s^{-1})]$	27.71	29.34
E (kJ/kmol)	175.6×10^{3}	184.1×10^{3}

ΔT = 40 K:

Kinetic Parameter	Specified Value	Calibrated Value
<i>T</i> _р (К)	650	649.4
ΔT (K)	40	36.
ξ	0.06154	0.05563
$\ln[A(s^{-1})]$	10.77	12.59
E (kJ/kmol)	87.8×10^{3}	97.1×10 ³

Decreasing ξ Increasing accuracy

Two Reactions Verification

Closer fit for more separated reactions

Validation

Purpose:

1. Test algorithm with real TGA data

Materials:

- 1. Nylon 6,6
- Flexible polyurethane (PU) foam
- Polyvinyl Chloride (PVC)

Procedure:

- In nitrogen
- Samples: 3-5.5 mg
- Isothermal heating for 20-30 min
- Dynamic heating at 10 K/min

Validation: Nylon 6,6

Kinetic Parameter	Reaction 1
<i>T</i> _p (K)	716.3
ΔT (K)	22.11
Δm	0.9754
ξ	0.03087
$\ln[A(s^{-1})]$	27.50
E (kJ/kmol)	192.9×10 ³

Validation: Polyurethane Foam

Kinetic Parameter	Reaction 1	Reaction 2	
<i>Т</i> р (К)	562.7	648.5	
ΔT (K)	14.50	13.69	
${\it \Delta}m$	0.2511	0.7280	
ξ	0.02577	0.02112	
$\ln[A(s^{-1})]$	34.34	42.95	
E (kJ/kmol)	181.5×10^{3}	255.3×10^{3}	

Validation: PVC

Kinetic Parameter	Reaction 1	Reaction 2	Reaction 3
<i>Т</i> р (К)	568.5	731.7	588.1
ΔT (K)	12.15	22.39	9.62
Δm	0.4200	0.2238	0.1999
ξ	0.02138	0.03060	0.01636
$\ln[A(s^{-1})]$	42.49	27.78	57.06
E (kJ/kmol)	221.1×10 ³	198.8×10 ³	298.8×10 ³

Validation: Lodgepole Pine Leaves

Validation: Douglas Fir Leaves

Analysis of MCC Data

How should we estimate individual reaction heats of combustion $(\Delta h_{c,i})$ from raw MCC data?

$$\begin{split} \textbf{Multiple Reactions} \\ \dot{Q}\left(T\right) &= \sum_{i=1}^{N_{\rm r}} \dot{m}_i\left(T\right) \Delta h_i \\ \textbf{1) Linear System: } N_{\rm r} \text{ equations, } N_{\rm r} \text{ unknowns} \\ \sum_{i=1}^{N_{\rm r}} \dot{m}_i\left(T_{{\rm p},j}\right) \Delta h_i &= \dot{Q}\left(T_{{\rm p},j}\right), \ j = 1, \dots, N_{\rm r} \\ \textbf{2) Multiple Linear Regression: } N_{\rm d} \text{ data points} \\ \sum_{i=1}^{N_{\rm r}} \dot{m}_i\left(T_k\right) \Delta h_i &= \dot{Q}\left(T_k\right), \ k = 1, \dots, N_{\rm d} > N_{\rm r} \end{split}$$

Verification

- 1. Assume kinetic parameters and heats of combustion
- 2. Generate TGA data
- 3. Use TGA fit algorithm to find kinetic parameters
- 4. Use TGA predictions and MCC data to find heats of combustion

Purpose:

- 1. Check implementation
- 2. Test validity of approximate solution

MCC: Single Reaction Verification

Solid: Simulated Data Dash: Total HRR/mass Dash-Dot: Peak Match Dot: Simple Average TGA Data
 – 10 K/min

–
$$T_{\rm p}$$
 = 650 K

MCC Data
 – 60 K/min

$$-\Delta h = 30 \text{ kJ/g}$$

MCC: Single Reaction Verification

Scenario	Δh (kJ/g) (Total HR/mass)	Method 1: Peak Ratio Δh (kJ/g)	Method 2: Simple Average Δh (kJ/g)
ΔT = 10 K/min	30.026	30.792	30.849
ΔT = 20 K/min	29.997	28.731	29.556
$\Delta T = 40 \text{ K/min}$	29.997	26.949	28.291

- Total HR/mass not applicable to multiple reaction
- Method 2 performs better than Method 1

MCC: Two Reactions Verification

MCC: Two Reactions Verification

		-∆h ₁ (kJ/g)	-Δh ₂ (kJ/g)	-Δh _{total} (kJ/g)
Specified Value		15	45	21
$\Delta T = 10 \text{ K/min}$	Simple Integration			20.998
	Linear Regression	14.854	44.085	21.021
$\Delta T = 20 \text{ K/min}$	Simple Integration			20.998
	Linear Regression	14.953	43.973	21.061
$\Delta T = 40 \text{ K/min}$	Simple Integration			20.998
	Linear Regression	15.415	42.304	21.501

- Accuracy decreases with longer reactions
- Future work: correct individual reaction values to force match of total value

MCC: Vegetative Fuels Validation

MCC: Vegetative Fuel Heats of Combustion

	$\Delta H_{c,1}$	$\Delta H_{c,2}$	$\Delta H_{c,3}$	$\Delta H_{c,total}$	μ_{char}
Sample Name	(kJ g ⁻¹)	(kJ g ⁻¹)	$(kJ g^{-1})$	$(kJ g^{-1})$	(-)
		Leaves			
Chamise	17.3±2.6	12.9±1.9	22.9±3.4	11.7 ± 1.2	0.25 ± 0.04
Bigberry Manzanita	15.4 ± 2.3	14.9 ± 2.2	21.8±3.3	12.4±0.9	0.22 ± 0.06
Desert Ceanothus	17.1±2.6	30.7±4.6	47.4 ± 7.1	12.3±1.1	0.32 ± 0.03
Chaparral Whitethorn	$7.9{\pm}1.2$	20.7±3.1	$19.0{\pm}2.8$	$10.4{\pm}1.8$	0.33 ± 0.04
Lodgepole Pine	10.8 ± 1.6	16.1 ± 2.4	23.6±3.5	12.6±0.6	0.24 ± 0.04
Douglas-Fir	18.3±2.7	8.7±1.3	21.1±3.2	12.2±0.6	0.25 ± 0.04
Average Leaf *	-	-	-	11.9 ± 0.8	0.27 ± 0.05
		Stems			
Chamise	17.5 ± 2.6	7.3±1.1	5.5 ± 0.8	8.9±0.6	0.27 ± 0.04
Bigberry Manzanita	$9.0{\pm}1.4$	12.9±1.9	21.9±3.3	8.9 ± 0.9	0.37 ± 0.06
Desert Ceanothus	13.2 ± 2.0	11.7 ± 1.8		9.1±0.5	0.25 ± 0.06
Chaparral Whitethorn	6.1±0.9	16.1 ± 2.4		11.5±2.6	0.23 ± 0.05
Lodgepole Pine	20.8 ± 3.1	15.4 ± 2.3	18.6 ± 2.8	14.4 ± 2.0	0.22 ± 0.04
Average Stem*	-	-	-	10.9 ± 2.3	0.27 ± 0.05

Summary

- Fire models need material property parameters to predict fire growth
- Obtaining material properties requires
 - Small-scale tests
 - Parameter estimation algorithms
- Parameter estimation algorithms are presented for obtaining
 - pyrolysis kinetic models from TGA data
 - individual reaction heats of combustions from MCC data
- The algorithms performs well for
 - Manufactured solution verification cases
 - Multiple reaction materials with well-separated reaction peaks
- More work is needed for
 - Multiple reaction materials with overlapping reaction peaks

Model Parameterization: Framework

41 Measurement and Prediction of Material Flammability Performance

Extras...

Nondimensional Form

Approximate Solution

Also applies for multiple, independent reactions.

The quality of any **parameter estimation** algorithm is ultimately determined in **model validation**

Gasification Apparatus

Introduction

The Fire Problem Controlling Mechanisms of Fire Growth Methodology

Experimental Apparatus

Milligram scale **Bench scale** Full Scale

Modelling

Analytical Tools Model Validation

Applications and Future Work

- Carefully characterized boundary conditions
 - 1D heating environment $0 \le q_{ext}^{"} \le 75 \ kW \ m^{-2}$
 - O_2 concentration: $0.01 \le X_{O_2} \le 0.21$
- Measurement capabilities
 - Mass loss rate
 - Temperatures
 - Structural deformation

Flame Spread Apparatus

(intermediate scale)

Introduction

The Fire Problem Controlling Mechanisms of Fire Growth Methodology

Experimental Apparatus

Milligram scale **Bench scale** Full Scale

Modelling

Analytical Tools Model Validation

Applications and Future Work

- Steady burning, flame spread
 - Sample size: up to 0.5 m tall, 0.2 m wide
 - Variable configuration (orientation, aspect ratio)
- Measurement capabilities
 - Mass loss rate
 - Flame heat flux
 - Temperatures
 - Heat Release Rate*
 - Temperature & species profiles across flame sheet*
- Applications
 - Model validation
 - Flammability behavior

Parallel Panel Apparatus

(full scale)

Introduction

The Fire Problem Controlling Mechanisms of Fire Growth Methodology

Experimental Apparatus

Milligram scale Bench scale **Full Scale**

Modelling

Analytical Tools Model Validation

Applications and Future Work

Ignitability and flame spread – Sample size: <u>2.45 m tall, 0.6 m wide</u>

- Measurement capabilities
 - Heat release rate
 - Flame heat flux
 - CO₂, CO, soot production

Full Scale Fire Behavior Parallel Panel Apparatus

IAFSS Measurement and Computation of Fire Phenomenona (MaCFP)—Condensed Phase Workshop

April 26, 2020 Waterloo, Canada https://iafss.org/macfp/

Automated Characterization

The quality of any **parameter estimation** algorithm is ultimately determined in **model validation**