

Determining the Effect of Fire Barriers on the Combustion Behavior of Cored Composite Products using a Cone Calorimeter

Mauro Zammarano Fire Research Division, NIST, USA

Some of the data in this presentation hasn't been through the NIST review process and should be considered experimental / draft results.

Cored Composites Product?

Product including two main components:

- CORE (acts as main fuel load of the item)
- SKIN (acts as Fire Barrier, FB)

Examples

Cored Laminate: honeycomb (core), glass reinforced epoxy (skin)

Upholstered Furniture: padding material (core), upholstery fabrics (skin)

Case Study: Chair Mock-ups

 FRONT VIEW
 Back cushion (polyester fibers)

 Seat cushion (TB117-2013 foam)

 Armrest padding (TB117-2013 foam)

 Armrest support (5 mm plywood)

 Dimensions in mm

All chair components protected by FB

SIDE VIEW

Seams (Metal Staples)

150

25

1000

7 chair types (C0 to C6): C0: cover fabric (B0) only C1 to C6: cover (B0) +1 fire barrier (B1 to B6)

7 chair types in triplicate tests: tot. of 21 chairs

B0 to B6 are expected to be compliant with California Bill AB 2998

150

• Square Burner (18 kW for 80s)

Effect of Fire Barriers

Fire barriers allows to:

- increase time to peak from 3 min (C0) to 22 min (C1 and C6)
- decrease PHRR from about 3 MW to about 1 MW

Barrier Failure

Bottom Ignition (BI): persistent burning under the seat cushion due to the ignition of liquid product of pyrolysis

Bottom Ignition (BI) and PHRR

Bottom Ignition leads to PHRR within (2 ± 1) min

Burning of Upholstered Furniture

TTBI and HRR_{BI} used to characterize Stage I burning

Idealized cross-section of a Cored Product

Two-fold mechanisms of action of Fire Barriers:

(1) Limiting generation rate of flammable pyrolyzate (Heat Transfer)

(2) Limiting or controlling the rate and location at which pyrolyzates are released and able to burn (**Mass Transfer**)

NIST Cube Test (ASTM WK65005)

What is it? Tool for the Cone Calorimeter to capture Mass Transfer and Heat Transfer phenomena through the top and <u>bottom</u> of the sample.

What is used for? Characterize the combustion behavior of a flammable core material in presence of fire barriers.

The sample is intended to be a representative cross-section of an item

Sample dimensions: 100 mm × 100 mm × product thickness

engineering

engineering

Example of a Typical Cube Test

"Wetting": appearance of visible liquid pyrolyzates on the bottom barrier

Example of HRR Curve in Cube Test

engineering

Heat transfer through Barriers

Calculate effectiveness of barrier by calculating normalized heat transfer

 $\frac{q_{BF}^{"}}{q_{No BF}^{"}} = \frac{heat \ transfer \ through \ barrier}{heat \ transfer \ without \ barrier}$

Can calculate during different time intervals, $t_0 < t < t_f$, as BF degrades

$$\frac{q_{BF}^{"}}{q_{NoBF}^{"}} = \frac{\int_{t_0}^{t_f} (q_{BF}^{"}) dt}{\int_{t_0}^{t_f} (q_{NoBF}^{"}) dt}$$

Heat transfer through Barriers

Case Study: Upholstered Furniture (UF)

Cube to Full-Scale Correlation?

Correlation: -TTBI to TTW? -HRR_{BI} to HRR_w?

Prediction of TTBI (and TTP) by Cube

engineering

Prediction of Plateau Value

Conclusions

- The Cube Test is a tool developed to capture mass/heat transfer mechanisms through fire barriers
- The Cube test has been successfully used to predict Stage I burning (within the limited data set available) in Upholstered Furniture and properly rank the effectiveness of Fire Barriers
- Other cored systems (honeycombs+ fiber reinforced epoxy, insulation foam + aluminum foil, etc.) are currently under investigation

THANK YOU!

Acknowledgements:

Fire Research Division, NIST: J. Randy Shields, Ickchan Kim, Isaac Leventon, Andre Thompson, Ronald Lankone, Anthony Hamins, Matt Bundy, Arthur Chernovsky

Contact Information: Mauro Zammarano Phone: 301-975-5244 e-mail: mauro.zammarano@nist.gov

