

SWBT 1.0: Software Write Block Testing Tools
Requirements, Design Notes and User Manual

Version 1.0
October 2003

SWBT-1_0.doc 3/22/04 10:08 AM ii

SWBT-1_0.doc 3/22/04 10:08 AM iii

Abstract†

This document describes Release 1.0 of SWBT a software package developed to aid the
testing of software write block tools typically used in forensic investigations. The
software can be used in the DOS environment to test an interrupt 0x13 based write block
tool, measure the results and aid in documenting test runs. The package includes
programs that monitor the interrupt 0x13 BIOS disk interface and send selected
commands to a software write block tool under test. The software is written in either
Borland C++ 4.5 or Borland Assembler.

The intended audience for this document should be familiar with the DOS operating
system, computer operation, computer hardware components such as hard drives, hard
drive interfaces (e.g., IDE or SCSI) and computer forensics. A working knowledge of C
and Assembly programming is not necessary for understanding but would be helpful.

Turbo Assembler™ is a trademark of Borland International, Inc.
Borland® is a registered trademark of Borland International, Inc.
MS-DOS® is a registered trademark of Microsoft Corporation, Inc.
Pentium® is a registered trademark of Intel, Inc.
All other products mentioned herein may be trademarks of their respective companies.

† Certain trade names and company products are mentioned in the text or identified. In no case does
such identification imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the products are necessarily the best available for the
purpose.

SWBT-1_0.doc 3/22/04 10:08 AM v

Contents

Table of Figures.. vii

List of Tables .. vii

1 Introduction..1
1.1 How to read this document ... 1
1.2 Capabilities Required to Support Testing Software Write Block Tools................. 2

1.2.1 Hard Drive Attachment and Access.. 2
1.2.2 Technical Terminology... 4

1.3 Test Case Structure ... 8
1.4 Software Overview ... 9

2 Requirements ..9
2.1 Tally13 .. 9
2.2 Test-hdl ... 10
2.3 T-off .. 11
2.4 Sig-log... 12

3 Design Notes ...12
3.1 Tally13 .. 12
3.2 Test-hdl ... 14
3.3 T-off .. 14
3.4 Sig-log... 15

4 User Manual ..15
4.1 System Environment... 15
4.2 Tally13 .. 15
4.3 Test-hdl ... 15
4.4 T-off .. 17
4.5 Sig-log... 18

Table of Figures
Figure 1-1 Drive Access Through the 0x13 BIOS Interface .. 4
Figure 1-2 SWB Tool Operation... 6
Figure 1-3 Test Harness and Interrupt Monitor Operation ... 8
Figure 1-4 List of Support Programs .. 9
Figure 4-1 Example Test-hdl Log File.. 17
Figure 4-2 Example T-OFF Log File.. 18

List of Tables
Table 1-1 Reader's Guide.. 2
Table 1-2 Software Required for Testing ... 8
Table 4-1 Test-hdl Command Line Parameters .. 15
Table 4-2 T-off Command Line Parameters... 18
Table 4-3 Sig-log Command Line Parameters.. 18

SWBT-1_0.doc 3/22/04 10:08 AM viii

SWBT-1_0.doc 3/22/04 10:08 AM 1

1 Introduction
The Computer Forensics Tool Testing (CFTT) program is a joint project of the National
Institute of Justice (NIJ), the research and development organization of the U.S.
Department of Justice; NIST’s Office of Law Enforcement Standards (OLES) and
Information Technology Laboratory (ITL); and is supported by other organizations,
including the Federal Bureau of Investigation, the Department of Defense Cyber Crime
Center, and the Department of Homeland Security’s Bureau of Immigration and Customs
Enforcement and U.S. Secret Service. The objective of the CFTT project is to provide
measurable assurance to practitioners, researchers, and other applicable users that the
tools used in computer forensics investigations provide accurate results. Accomplishing
this requires the development of specifications and test methods for computer forensics
tools and subsequent testing of specific tools against those specifications.

This document describes Release 1.0 of the SWBT tools package (Software Write Block
Testing), a test harness for testing interrupt 0x13 based software write block (SWB) tools.
A SWB tool is a software tool that is used to protect a hard drive from modification,
usually during a forensic examination of the content of the hard drive. The user of the
SWB tool may wish to examine the hard drive content or the user may wish to use the
SWB tool in conjunction with a hard drive imaging tool to create a forensic image of the
hard drive for later analysis. The SWBT package includes a program (tally13.com) that
monitors interrupt 0x13 to report commands allowed or blocked, a program to deactivate
tally13.com (t-off.exe), a program to record operator observations of audio or visual
signals from the tool under test (sig-log.exe) and a program (test-hdl.exe) to send specific
groups of commands to the software write block tool under test. The test-hdl.exe, sig-
log.exe and t-off.exe programs are written in Borland C++ 4.5 and tally13.com is written
in Borland Assembler. The software can be used in the DOS environment to test
programs such as RCMP HDL. A set of test cases for software write block tools is
described in Software Write Block Tool Specification & Test Plan Version 3.0 (see
http://www.cftt.nist.gov/).

1.1 How to read this document
The intended audience for this document should be familiar with the DOS operating
system, computer operation, computer hardware components such as hard drives, hard
drive interfaces (e.g., IDE or SCSI) and computer forensics. A working knowledge of C
and Assembly programming is not necessary for understanding but would be helpful. We
expect the primary objectives of the reader to be some combination of the following:

1. The reader wants a general overview of the SWBT software.
2. The reader wants to use the SWBT software as is.
3. The reader wants to use SWBT after enhancement or modification.
4. The reader wants to test the suitability of SWBT as a test harness.

The remainder of this section describes the capabilities required to test software write
block tools and lists the components of SWBT. The goal is to identify capabilities

SWBT-1_0.doc 3/22/04 10:08 AM 2

required for testing software write block tools and allocate the required capabilities to the
programs of the SWBT package.

Section 2 documents the requirements of each program and gives a concise description of
what each program is supposed to do.

The program designs are discussed in Section 3. This section should be read in
conjunction with the program listings. The objective of this section is to give the reader a
high level view of the program design to help understand the source code.

Section 4 is the user manual describing command line parameters and program outputs.

Not all the document is of interest to every reader. The goals of the reader determine the
relevant sections of the document. A bullet (●) in Table 1-1 indicates the relevant
sections given the goals of the reader.
Table 1-1 Reader's Guide

Section Reader’s Goal
1 2 3 4

General overview of SWBT ●
Use SWBT to test a software write block tool ● ●
Enhance or modify SWBT ● ● ● ●
Verify or test the operation of SWBT as a test harness ● ● ● ●

1.2 Capabilities Required to Support Testing Software Write Block Tools
This section establishes the capabilities required to setup and measure each test. This is
accomplished by first determining what must be measured to confirm compliance with
the tool requirements and second what conditions must be created to allow an accurate
measurement of compliance.

The basic function of a software write block tool is to not allow a protected drive to be
modified while still allowing any access that does not modify the drive. The critical
requirements are the following:

• The tool shall not allow a protected drive to be changed.
• The tool shall not prevent obtaining any information from or about any drive.
• The tool shall not prevent any operations to a drive that is not protected.

The next subsection presents an overview of how hard drives are physically attached to a
computer and then accessed by programs running on the computer. The following
subsection defines terminology related to software write block tools.

1.2.1 Hard Drive Attachment and Access
Before a hard drive can be used it must be physically attached to a computer. A hard
drive is attached to a computer by one of several available physical interfaces. A drive is

SWBT-1_0.doc 3/22/04 10:08 AM 3

usually connected by a cable to a drive controller located either on the mother board or on
a separate adapter card. The most common physical interface for communicating with the
hard drive through the drive controller is the ATA (AT Attachment) or IDE (Integrated
Drive Electronics) interface. This includes variants such as EIDE (Enhanced IDE) or
ATA-2, ATA-3, etc. Some other physical interfaces include, but are not limited to SCSI
(Small Computer System Interface), IEEE 1394 (also known as FireWire or i-Link), and
USB (Universal Serial Bus).

All access to a drive is accomplished by commands sent from a computer to a drive
through the drive controller. However, since the low level programming required for
direct access through the drive controller is difficult and tedious, each operating system
usually provides other access interfaces. For example, programs running in the DOS
environment can, in addition to direct access via the drive controller, use two other
interfaces: DOS service interface (interrupt 0x21) or BIOS service interface (interrupt
0x13). The DOS service operates at the logical level of files and records while the BIOS
service operates at the physical drive sector level. More complex operating systems, for
example Windows XP or a UNIX variant (e.g., Linux), may disallow any low level
interface (through the BIOS or the controller) and only allow user programs access to a
hard drive through a device driver, a component of the operating system that manages all
access to a device.

Using the interrupt 0x13 interface for hard drive access is illustrated in Figure 1-1. An
application program issues an interrupt 0x13 command. The interrupt transfers control to
the interrupt 0x13 routine in the BIOS. The BIOS routine issues commands, ATA or
SCSI as appropriate, directly to the hard drive controller. The device does the requested
operation and returns the result to the BIOS and then to the application program.

SWBT-1_0.doc 3/22/04 10:08 AM 4

Figure 1-1 Drive Access Through the 0x13 BIOS Interface

Application program

issue int 0x13 cmd

BIOS interrupt 0x13

issue cmd to drive

Disk drive
& controller

return

1.2.2 Technical Terminology
A hard drive software write block tool replaces or monitors a hard drive access interface
on a general purpose host computer with hard drives attached by a physical interface. A
hard drive access interface is defined as a method used by a program to access a hard
drive. For a program to access a drive, the program issues a high level command to the
access interface that is translated by the access interface into the corresponding low level
command that is sent to the drive through the drive controller. For each command issued,
the access interface indicates command results (e.g., command completion, error status)
by a return value. A hard drive software write block tool operates by monitoring drive
I/O commands sent from the PC through a given access interface. Any commands that
could modify a hard drive are intercepted (i.e., blocked) and not passed on to the hard
drive controller. The most common access interfaces currently found are as follows: hard
drive device driver, interrupt 0x13 BIOS (Basic Input Output Services), ATA (AT
Attachment) direct controller, ASPI (Advanced SCSI Programming Interface), USB
(Universal Serial Bus) and IEEE 1394 (also known as Firewire). Each interface has its
own command set and access protocol. The command set for a given interface can be
partitioned into the following categories:

• Write: commands that transfer data from the computer memory to the drive.
• Configuration: commands that change how the drive is presented to the host

computer. These commands often destroy data on the drive or make data inaccessible.

SWBT-1_0.doc 3/22/04 10:08 AM 5

• Read: commands that transfer data from the drive to the computer memory.
• Control: commands that request the drive to do a nondestructive operation, for

example: reset or seek.
• Information: commands that return information about the drive.
• Miscellaneous: commands that do not fit into the other categories.

The following terms are defined for convenience in specifying the tool requirements.

• Covered interface: a drive access interface that is controlled by the SWB tool under

test.
• Covered drive: a drive attached to a covered interface.
• Protected drive: a drive designated for protection from modification when accessed

by a covered interface.
• Unprotected drive: a drive that is not protected from modification through a specified

access interface.
• Blocked command to a drive: a command issued by an application program that is

intercepted by a SWB tool such that neither the issued command nor some other
command is sent to the drive. A command that is not blocked is not altered in any
way.

Use of a SWB tool changes the normal operation of the interrupt 0x13 interface. Figure
1-2 illustrates SWB tool operation.

1. The SWB tool is executed. The SWB tool saves the current interrupt 0x13 routine

entry address and installs a new interrupt 0x13 routine.
2. The application program initiates a drive I/O operation by invoking interrupt 0x13.

The replacement routine installed by the SWB tool intercepts the command.
3. The SWB tool determines if the requested command should be blocked or if the

command should be allowed.
4. If a command is blocked, the SWB tool returns to the application program without

passing any command to the BIOS I/O routines. Depending on SWB tool
configuration either success or error is returned for the command status.

5. If the command is allowed (not blocked), the command is passed to the BIOS and the
BIOS I/O routine issues required I/O commands (ATA, SCSI or other) to the drive
controller so that the desired I/O operation occurs on the hard drive.

6. Results are returned to the application program.

SWBT-1_0.doc 3/22/04 10:08 AM 6

Figure 1-2 SWB Tool Operation

BIOS interrupt 0x13

Application program

issue int 0x13 cmd

issue cmd to drive

SWB tool

return

allow

block

Disk drive
& controller

return

1.2.3 SWB Test Methodology
This section describes the methodology that has been developed to test interrupt 0x13
based SWB tools. First several issues are identified and then an approach is described
that addresses the issues.

One simple strategy to determine the effectiveness of a SWB tool would be to install the
tool, attempt an operation that should change the hard drive contents, and then examine
the drive for any changes. This has the limitation that only effects of the selected
command parameters are measured, not whether the actual commands are blocked. If
there is no change to the hard drive then one cannot determine if the command is actually
blocked or if the selected command parameters did not cause a change to the hard drive.
A second limitation is that some commands, should only be executed in a factory setting.
These are commands such as low level formatting or diagnostic commands that may have
subtle and unexpected results. The proper parameter values for some commands are
propriety and not easily determined. The user is cautioned that improper parameters may

SWBT-1_0.doc 3/22/04 10:08 AM 7

render a drive unusable. The problem is how to safely test if a SWB tool blocks such
potentially destructive commands.

A more direct methodology that avoids these limitations has been developed. The normal
interrupt 0x13 BIOS routine is replaced with a software monitor that counts the number
of times each I/O function is called. The monitor blocks all commands so that any
command can be safely issued to a SWB tool. The monitor has a secondary interface to
allow a test harness to query the monitor to determine the command functions blocked or
allowed by the SWB tool.

Every possible command can be tried and the results observed. First, the monitor is
installed to replace the usual interrupt 0x13 processing. The monitor operates in two
states: allow command or block/tally. In the allow command state all commands are
passed to the hard drive. The allow command state permits the SWB tool to interact with
the BIOS during installation. After the SWB tool is installed the monitor state is switched
to block/tally. In this state, all commands passed by the SWB tool are blocked by the
monitor and a tally is kept of all commands seen by the monitor. The monitor query
interface allows the test harness to determine which commands are passed by the SWB
tool.

Figure 1-3 illustrates the command flow during a test case. After the interrupt 0x13
monitor (tally13) and the SWB tool are installed, the test harness (test-hdl) is executed.
The test harness issues every command for a given category. For example, a test of the
interrupt 0x13 read command category would issue each command defined for the read
command category: 0x02 (read), 0x10 (read long) and 0x42 (extended read). As each
command is issued, the SWB tool intercepts the command and either blocks (return with
no action) or allows the command (passes on to the interrupt 0x13 monitor). If the
command gets to the interrupt 0x13 monitor a separate tally for each received command
is incremented and the monitor returns to the caller (the test harness). After control
returns to the test harness, the test harness queries the interrupt 0x13 monitor to get a
count of the number of times the issued command has been intercepted by the monitor. If
the count is zero, then the SWB tool has blocked the command. Otherwise, a non-zero
count indicates that the command was not blocked.

SWBT-1_0.doc 3/22/04 10:08 AM 8

Figure 1-3 Test Harness and Interrupt Monitor Operation

BIOS interrupt 0x13

interrupt 13 monitor

tally

allow

block

SWB tool

return

Test harness

issue int 0x13 cmd query result

query

issue cmd to drive

allow

block

Disk drive
& controller

return

1.3 Test Case Structure
Each software write block test case is designed to follow a sequence of steps that setup
the test, execute the software write block tool under test and measure the results. Most
test cases follow the same test procedures. However, some test cases require a special
procedure. The programs listed in Table 1-2 are required for testing.

Table 1-2 Software Required for Testing

Program Description
SWB Tool The software write block tool to be tested (e.g., HDL or PDBLOCK)
Monitor The interrupt 0x13 monitor program. The monitor program blocks all

interrupt 0x13 command functions, counts the number of times each
function is requested for each drive, and provides an interface for
retrieving those counts for each drive.

SWBT-1_0.doc 3/22/04 10:08 AM 9

Program Description
Test Harness The test harness issues (requests) all interrupt 0x13 command

functions for a specified command category and then queries the
monitor program to determine if the function was blocked or
allowed.

1.4 Software Overview
To support the capabilities necessary for testing software write block tools the programs
listed in Figure 1-4 were developed.

Figure 1-4 List of Support Programs

Program Function
Tally13 Monitor interrupt 0x13.
Test-hdl Sent selected interrupt 0x13 commands to the SWB tool.
T-off Turn off interrupt 0x13 monitoring.
Sig-log Log operator observations of A/V signals

2 Requirements
This section gives a concise description of what each program is supposed to do. The
section is intended to serve as a reference documenting the functionality of each program
in the test harness.

2.1 Tally13
The tally13 program is used to monitor the interrupt 0x13 interface, block all commands
from reaching the BIOS and count the number of times each command is received. If a
SWB tool is active and a command is received by tally13 then the SWB tool does not
block the given command. The tally13 program operates in either active or in passive
mode. Tally13 runs in active mode to collect information on the interrupt 0x13
commands being issued by an application program. When the program is passive, all
commands received are passed on to the BIOS and no commands are tallied.

Tally13 is required to log the following to stdout:

1. The program name, version number, source file creation-date, creation-time, compile-

date, and compile-time.
2. The date and time program execution begins.

The specific program requirements are as follows:

3. Tally13 shall start running in passive mode.
4. There shall be a capability to switch between passive mode and active mode.
5. While in active mode all interrupt 0x13 commands shall be blocked.
6. While in active mode a count of all 0x13 commands received shall be kept.

SWBT-1_0.doc 3/22/04 10:08 AM 10

7. There shall be a capability to query the counts of each interrupt 0x13 command
received.

8. No commands shall be blocked while in passive mode.
9. No commands shall be tallied while in passive mode.
10. A unique value shall be returned via the query interface to indicate that the tool is

installed.

2.2 Test-hdl
The test-hdl program is designed to operate in conjunction with the tally13 program to
identify the interrupt 0x13 commands blocked or allowed by an interrupt 0x13 based
software write block tool. The test-hdl program issues interrupt 0x13 commands that are
then either blocked or allowed by the tool under test. Any command sent by test-hdl but
not seen by tally13 has been blocked. Any command sent by test-hdl and then seen by
tally13 has been allowed. The program uses the six command categories described in
Table 2-1 to select the commands to issue. The command categories are described in
more detail in Section 8.2.1 of Software Write Block Tool Specification & Test Plan
Version 3.0. Any one of the six categories can be specified or all categories can be
specified for testing.

Every time the program is executed, the program shall record the following to a logfile:

1. The command line (including command line options).
2. The test case ID
3. The command category to be tested.
4. The date and time program execution begins.
5. For each program source file, log the source file name, version number, source file

creation date, and source file creation time.
6. The compile date & time.
7. The ID (initials or name) of the operator.
8. The name of the computer where the program is executed.
9. The number of installed drives, and the external label of each drive.

The specific program requirements are as follows (test-hdl shall …):

10. Determine if tally13 is present.
11. If tally13 is not present, issue a message and exit.
12. If tally13 is present, request tally13 to switch to active mode.
13. Before sending any commands, verify that the count value for each command to each

drive is zero.
14. If any counts are non-zero before sending any commands, log the drive and

command.
15. Issue each interrupt 0x13 command in the specified category.
16. For each command issued, log the command code, drive issued to, return count, status

register value, carry flag setting.

SWBT-1_0.doc 3/22/04 10:08 AM 11

17. For each drive, log the number of commands sent and the number of commands
blocked.

18. For each drive, log one of the following: {Not all | All | No} commands
blocked.

19. Verify that no commands were allowed that were not sent.

Table 2-1 Categorization of Interrupt 0x13 BIOS Commands

Categorization of Interrupt 0x13 BIOS Commands
Command Code Category Prime Sources

Format Track 05h Configuration [Gilluwe]
Format Track With Bad Sectors 06h Configuration [Gilluwe]
Format Cylinder 07h Configuration [Phoenix]
Initialize Drive Parameters 09h Configuration [Phoenix], [Gilluwe]
ESDI Diagnostic (PS/2) 0Eh Configuration [Gilluwe]
ESDI Diagnostic (PS/2) 0Fh Configuration [Gilluwe]
Controller RAM Diagnostic 12h Configuration [Gilluwe]
Drive Diagnostic 13h Configuration [Gilluwe]
Controller Diagnostic 14h Configuration [Phoenix], [Gilluwe]
Reset 00h Control [Phoenix], [Gilluwe]
Seek Drive 0Ch Control [Phoenix], [Gilluwe]
Alternate Drive Reset 0Dh Control [Phoenix], [Gilluwe]
Recalibrate Drive 11h Control [Phoenix], [Gilluwe]
Extended Seek 47h Control [Phoenix], [NCITS 347:2001], [Gilluwe]
Get Last Status 01h Information [Phoenix], [Gilluwe]
Verify Sectors 04h Information [Phoenix], [Gilluwe]
Read Drive Parameters 08h Information [Phoenix], [Gilluwe]
Test Drive Ready 10h Information [Phoenix], [Gilluwe]
Read Drive Type 15h Information [Phoenix], [Gilluwe]
Check Extensions Present 41h Information [Phoenix], [NCITS 347:2001], [Gilluwe]
Verify Sectors 44h Information [Phoenix], [NCITS 347:2001], [Gilluwe]
Get Drive Parameters 48h Information [Phoenix], [NCITS 347:2001], [Gilluwe]
Read Sectors 02h Read [Phoenix], [Gilluwe]
Read Long Sector 0Ah Read [Phoenix], [Gilluwe]
Extended Read 42h Read [Phoenix], [NCITS 347:2001], [Gilluwe]
Write Sectors 03h Write [Phoenix], [Gilluwe]
Write Long Sector 0Bh Write [Phoenix], [Gilluwe]
Extended Write 43h Write [Phoenix], [NCITS 347:2001], [Gilluwe]
Undefined & Unimplemented 16h-40h,

49h-FFh
Miscellaneous

2.3 T-off
The t-off program deactivates the tally13 monitoring function by requesting that the
tally13 program switch to the passive state.

Every time the program is executed, the program shall record the following to a logfile:

1. The command line (including command line options).
2. The test case ID
3. The date and time program execution begins.
4. For each program source file, log the source file name, version number, source file

creation date, and source file creation time.
5. The compile date & time.
6. The ID (initials or name) of the operator.

SWBT-1_0.doc 3/22/04 10:08 AM 12

7. The name of the computer where the program is executed.

The specific program requirements are as follows (t-off shall …):

8. Determine if tally13 is present.
9. If tally13 is not present, issue a message and exit.
10. If tally13 is present, request tally13 to switch to inactive mode.

2.4 Sig-log
The sig-log program records operator observations of audio or visual signals produced by
the SWB tool under test.

Every time the program is executed, the program shall record the following to a logfile:

1. The command line (including command line options).
2. The test case ID
3. The date and time program execution begins.
4. For each program source file, log the source file name, version number, source file

creation date, and source file creation time.
5. The compile date & time.
6. The ID (initials or name) of the operator.
7. The name of the computer where the program is executed.

The specific program requirements are as follows (sig-log shall …):

8. Request the user to indicate if an audio or visual signal was observed and log the

response.

3 Design Notes
This section describes the design of each test harness component.

3.1 Tally13
Tally13 is written as a terminate and stay resident (TSR) program to monitor the
interrupt 0x13 interface, block all commands from reaching the BIOS and count the
number of times each command is received. After termination, a TSR program leaves a
resident portion in memory to wait for a triggering event. In the case of tally13, the
triggering event is use of interrupt 0x13 by an application program. The tally13 program
may operate in either active or in passive mode. Usually tally13 runs in active mode to
collect information on the interrupt 0x13 commands being issued by an application
program. When the program is passive, all commands received are passed on to the BIOS
and no commands are either blocked or tallied. Tally13 also uses interrupt 0x17 as an
interface to access the counts of each interrupt 0x13 command.

SWBT-1_0.doc 3/22/04 10:08 AM 13

The program is divided into two parts, an installation part that is executed once and a
resident part that intercepts interrupts 0x13 and 0x17.

The installation part does the following:

1. Save the interrupt 0x13 vector address. This is the address of the original 0x13

routine in the BIOS. This address can be later used when tally13 is in passive mode to
pass commands to the BIOS.

2. Set the interrupt 0x13 vector address to an entry point (labeled tally_service) in the
resident part of tally13. Now any attempt to use the interrupt 0x13 disk access must
go through tally13.

3. Set the interrupt 0x17 vector address to an entry point (labeled query_service) in the
resident part of tally13. This interface is normally used to access a printer. This
disables the printer service on the test machine. Since a printer is not used in the test
protocol, the loss of print function has no adverse result.

4. Print a message indicating the run-date, run-time, and program version.
5. Activate the resident part by informing DOS that this is a TSR program and exit.

The resident part has two entry points, tally_service and query_service. The
tally_service is entered whenever an interrupt 0x13 is issued by an application and the
query_service is entered whenever an interrupt 0x17 is issued by an application. The
query_service is used to either switch tally13 between active and passive mode or to get
the count of the number of times a given command has been seen for a given drive.

The main data structure of the resident part is a two dimensional array, 256x5, of 16 bit
integers. The array represents the number of times each of the 256 possible commands
are seen by tally13 for each of five drives. Each integer is initially zero.

The tally_service interrupt (0x13) does the following:

1. The DL and AH registers are assumed to be setup as normal for interrupt 0x13

commands. In particular, DL identifies the drive and AH is the command code. The
other registers are ignored.

2. If the DL does not indicate a hard drive (e.g., a floppy), the command is passed to the
BIOS via the original interrupt 0x13 vector address. Hard drives are indicated by
values beginning at 0x80. Floppy drives are indicated by values less than 0x80,
beginning at 0x0.

3. If tally13 is in passive mode, the command is passed to the BIOS via the original
interrupt 0x13 vector address.

4. Otherwise, add one to the count for the command and corresponding drive.
5. Return to caller with a status value of success.

The query_service entry point (0x17) does the following:

SWBT-1_0.doc 3/22/04 10:08 AM 14

1. The AL and DH registers are assumed to be setup as normal for interrupt 0x13
commands. In particular, DL identifies the drive and AH is the command code. The
other registers are ignored.

2. If the DL register is 1 or 0 then set the tally13 mode of operation to either active (DL
equals one) or passive (DL equals zero) and return 0xCCFF in the AX register. The
return value indicates to the calling program that tally13 is present.

3. Otherwise, return (in the CX register) the count for the command indicated in the AH
register for the drive indicated in the DL register.

3.2 Test-hdl
The test-hdl program is designed to operate in conjunction with the tally13 program to
identify the interrupt 0x13 commands blocked or allowed by an interrupt 0x13 based
software write block tool. The test-hdl program issues interrupt 0x13 commands that are
then either blocked or allowed by the tool under test. Any command sent by test-hdl but
not seen by tally13 has been blocked. Any command sent by test-hdl and then seen by
tally13 has been allowed. The program uses the six command categories described in
Table 2-1 to select the commands to issue. Any one of the six categories can be specified
or all categories can be specified for testing.

Test-hdl does the following:

1. Examine the command line parameters. If any errors are detected, a message is issued

to indicate the error and the program exits.
2. Open the log file and output administrative information about the test case.
3. Use the interrupt 0x17 interface to verify that tally13 is running and switch tally13 to

active mode.
4. Use the interrupt 0x17 interface to verify that all command counts are zero. If any

counts are not zero issue a message identifying the command and drive involved.
5. For the specified command category and installed drives, issue each interrupt 0x13

command in the specified category, then issue the same command to the interrupt
0x17 interface and record the value returned by the interrupt 0x17 interface. If the
value is zero then the command was blocked, but if the return value is not zero then
the command was allowed. Log the results, including the interrupt 0x13 return code.

6. While issuing interrupt 0x13 commands keep a running total of the number of
commands sent and blocked. For each drive, log the number of commands sent and
the number of commands blocked.

7. Use the interrupt 0x17 interface to verify that all command counts total to an expected
value such that no unaccounted for commands were issued.

3.3 T-off
T-off gets the command line parameters, logs information about the test case and then
uses the interrupt 0x17 interface to deactivate tally13.

SWBT-1_0.doc 3/22/04 10:08 AM 15

3.4 Sig-log
Sig-log gets the command line parameters, logs information about the test case and then
logs the operator observations.

4 User Manual
This section describes in detail how to use each program. The organization of this section
is as follows. Section 4.1 describes the expected environment, each of the remaining
sections describes one component of the test harness.

4.1 System Environment
The expected operating environment is an Intel X86 (or Pentium) architecture PC running
DOS with a floppy disk and at least one hard disk drive. The hard drives may use either
an IDE or a SCSI interface. The system BIOS may be a legacy BIOS (does not support
the interrupt 0x13 extensions) or the BIOS may support the ATA interrupt 13 extensions
for large (more than 8GB) disk access.

4.2 Tally13
Tally13 is used to monitor the 0x13 interrupt commands sent by an application. Tally13
must be used in conjunction with an application such as test-hdl that sends 0x13 interrupt
commands and then uses the 0x17 interrupt interface to tally13 to obtain the results.

Tally13 has no command line parameters. Tally13 prints program version and
identification information that can be captured by redirecting the standard output to a log
file.

4.3 Test-hdl
The command line for test-hdl has the following parameters:

TEST-HDL Case Host User Category DriveList

Table 4-1 Test-hdl Command Line Parameters

Parameter Description
Case The test case ID. One to eight characters suitable for a DOS file

name.
Host The name of the computer. Arbitrary length.
User The name or initials of the test operator. Arbitrary string with no

embedded spaces.
Category A single character code indicating the category of commands to be

tested. Possible values are from Software Write Block Tool
Specification & Test Plan Version 3.0:

SWBT-1_0.doc 3/22/04 10:08 AM 16

Parameter Description
Code Selected Command Category
c Control commands
i Information commands
r Read commands
w Write commands
x Configuration commands
m Miscellaneous (and undefined)
a All commands from all categories

DriveList A list of up to 5 external drive labels for each of the hard drives
installed for the test. The label is on a sticker attached to the drive.

Figure 4-1 is an example test-hdl log file. The line numbers in the following refer to the
lines of Figure 4-1.

Line 1 is the command line used to execute test-hdl. The test case was SWB-26, the host
computer was named McMillian, the operator was identified as SN. The command set
was w, indicating write commands. The hard drives used were labeled 64, E3 and 1F.
The hard drives are listed in order starting with the drive at drive number 0x80. The hard
drive labeled 64 is referred to by the BIOS as drive 0x80, the drive labeled E3 is referred
to by the BIOS as drive 0x81 and the drive labeled 1F is referred to by the BIOS as drive
0x82. This information is repeated and labeled in lines 2-11.

Lines 6-8 document the version of the program source files along with the time and date
when the program was compiled. Version 1.1 of test-hdl.cpp and version 1.2 of the
include file wb-defs.h were compiled to create test-hdl.exe.

Line 12 is a heading for the following tabular information (lines 13-15, 17-19 and 21-23).
The first column is a sequence number (without a heading). The second column is the test
case number. The third column is the command code issued in hexadecimal. The next
column is the drive number (in hexadecimal) to which the command was issued. The fifth
column is the action taken by the tool under test. The possible values are either Allowed
(indicating the tool did not block the command) or Blocked (indicating that the tool
blocked the command from reaching the BIOS and hard drive). The Stat column gives
the status code returned to test-hdl for the issued command. The state of the carry flag is
indicated in the column labeled Cry. The status code and the carry flag are used to report
to the caller if the command executed resulted in any errors, e.g., invalid command or I/O
error. The next column reports the value returned by the 0x17 interface query indicating
if the command was seen by tally13. The last column contains the name of the issued
command.

Lines 16, 20 and 24 give a summary of results for each drive. The summary gives the
number of commands blocked and the number of commands sent. The tool under test was
set to protect drive 81 and not protect drives 80 and 82 by the command HDL 1, where 1
indicates protection of drive 0x81. The results in the log file show that no commands

SWBT-1_0.doc 3/22/04 10:08 AM 17

were blocked to the unprotected drives, but that for the protected drive only some of the
commands were blocked (0x03 and 0x0B).

Line 25 gives a summary for the entire test of the number of commands sent, the number
blocked and the number allowed.

Lines 28-32 give a summary of the commands allowed for each drive. If the total is
greater than the expected value then some command was seen by tally13 that is not
accounted for.

Figure 4-1 Example Test-hdl Log File
1. CMD: A:\TEST-HDL.EXE SWB-26 McMillian SN w 64 E3 1F
2. Case: SWB-26
3. Command set: Write
4. Date: Mon Sep 15 13:19:23 2003
5.
6. Version: @(#) test-hdl.cpp Version 1.1 Created 08/23/03 at 10:13:51
7. @(#) wb-defs.h Version 1.2 Created 08/31/03 at 08:18:19
8. Compiled on Aug 31 2003 at 08:10:54
9. Operator: SN
10. Host: McMillian
11. Number of drives 3, Drives: 64 E3 1F
12. Case Cmd Drv Action Stat Cry Count Cmd Name
13. 0 SWB-26 <03> 80 Allowed 0000 Off 1 WriteSectors
14. 1 SWB-26 <0B> 80 Allowed 0000 Off 1 WriteLong
15. 2 SWB-26 <43> 80 Allowed 0000 Off 1 ExtWrite
16. Results for SWB-26 category w on drive 80 No commands blocked (0 of 3)
17. 0 SWB-26 <03> 81 Blocked 0000 Off 0 WriteSectors
18. 1 SWB-26 <0B> 81 Blocked 0000 Off 0 WriteLong
19. 2 SWB-26 <43> 81 Allowed 0000 Off 1 ExtWrite
20. Results for SWB-26 category w on drive 81 Not all commands blocked (2 of 3)
21. 0 SWB-26 <03> 82 Allowed 0000 Off 1 WriteSectors
22. 1 SWB-26 <0B> 82 Allowed 0000 Off 1 WriteLong
23. 2 SWB-26 <43> 82 Allowed 0000 Off 1 ExtWrite
24. Results for SWB-26 category w on drive 82 No commands blocked (0 of 3)
25. Summary: 9 sent, 2 blocked, 7 not blocked
26.
27.
28. Number of Commands not blocked (should total to 7)
29. Drive Count
30. 80 3
31. 81 1
32. 82 3

4.4 T-off
T-off is used to switch tally13 from active mode to passive mode. The t-off command
line is:

T-OFF Case Host User

SWBT-1_0.doc 3/22/04 10:08 AM 18

Table 4-2 T-off Command Line Parameters

Parameter Description
Case The test case ID
Host The name of the computer
User The name or initials of the test operator

The log file for t-off is self explanatory.
Figure 4-2 Example T-OFF Log File

CMD: A:\T-OFF.EXE SWB-39 Cadfael JRL
Case: SWB-39
Date: Tue Sep 02 08:15:13 2003

Version: @(#) t-off.cpp Version 1.1 Created 08/02/03 at 16:24:48
 Compiled on Aug 2 2003 at 16:14:25
Operator: JRL
Host: Cadfael

4.5 Sig-log
Sig-log is used to record operator observations of audio visual signal by the SWB tool
under test. The sig-log command line is:

SIG-LOG Case Host User

Table 4-3 Sig-log Command Line Parameters

Parameter Description
Case The test case ID
Host The name of the computer
User The name or initials of the test operator

The command prints a message requesting the operator’s observations and then records
the operator’s response to the log file. The log file for sig-log is self explanatory.

