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General Measurement-Outcome Models

One Trial:
“Choose” measurement settings → measure → record outcomes.

Common configuration parameters: (NP ,NS ,NO), where

NP : Number of “parties”.
NS : Number of measurement settings at each party.
NO : Number of possible outcomes for each setting.

Universal pre-trial model.

S = (SA,SB , . . .): settings random variables,
O = (OA,OB , . . .): outcome random variables,

with probability distribution:

µ(o, s) = Prob(O = o,S = s|past).

Possible constraints:
Remote context independence/no-signaling/consistent marginals.
Remote outcome independence.
Definiteness given the “complete state”.
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µ(f )µ(s).
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...this can be considered as one trial.



Recommendations

Commit to deterministic trials. (W.o.l.g!)

Change settings for each trial. (Make trials last longer if needed.)

Any randomization helps avoid auxilliary assumptions.

Blind the trials: Automated settings choices, no tweaking when
settings are “visible”.

Plan for generation of training data and confirmatory experiments.

Compute certificates and gain rate per setting bit.

Report: Certificate values, gain rates and model assumptions.
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dne + dnn + den ≥ dee ⇒ 〈dne〉µ + 〈dnn〉µ + 〈den〉µ ≥ 〈dee〉µ
3
Settings independent of state ⇒ 〈dab〉 = 〈dab|s = (a, b)〉.

Example. O = {0, 1}:
{

d(a, b) = |b − a| → CHSH variant,
d(a, b) = max(0, b − a) → CH variant.

3Timetag analysis (NIST 2013), Kurzynski&Kaszlikowsi(2013) [6]



Bell Functions

Assumptions and context:

RCI must hold for each trial. RCI:
Remote context independence with control over settings dist. p(s).

µ(oX |s) = µ(oX |sX ), µ(o, s) = µ(o|s)p(s).

If LRI, then abandon ship. LRI:
LR with independent full-support settings distribution.

µ(o, s) = µ(f : for all X ,fX ,sx = ox)p(s), p(s) > 0.

If not LRI, invoke loopholes or bug?

Bell function: A function B : (o, s) 7→ B(o, s) ∈ R satisfying

bB,p
.

= sup
µ∈LRI(p)

〈B(O,S)〉µ < sup
µ∈RCI(p)

〈B(O,S)〉µ
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Measuring Bell-Functions

Given: Trial results (o1, s1), . . . , (oN , sN).

Optimistic assumption: Every trial is independent and identical.
Tradition: Empirically estimate 〈B(O, S)〉:

1. Compute the sample mean b̄ =
∑

i B(oi , si )/N.

2. Compute the sample variance s2.

3. Report B = b̄ ± s and nominal SNR s/(b̄ − bB,p).

Conservative assumption: Trials depend on history, states vary.
Emulate tradition: Empirically estimate

∑
i 〈B(Oi ,Si )|pasti 〉/N:

1. Compute the sample mean b̄ =
∑

i B(oi , si )/N.

2. Empirically upper bound the “martingale variance” s2.

3. Report B = b̄ ± s and nominal SNR s/(b̄ − bB,p).

Interpretation:
Average Bell-values of trial states with confidence intervals.
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2. Compute the sample variance s2.

3. Report B = b̄ ± s and nominal SNR s/(b̄ − bB,p).

Conservative assumption: Trials depend on history, states vary.
Emulate tradition: Empirically estimate

∑
i 〈B(Oi ,Si )|pasti 〉/N:
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Interpreting Bell Values

Given: Trial results (o1, s1), . . . , (oN , sN).
...

3. Report B = b̄ ± s and nominal SNR s/(b̄ − bB,p).

Specific to this experimental run:

b ∈ [b̄ − s, b̄ + s] at confidence level 68 %.

Nominal SNR: Qualitative strength of exceeding LRI bound.
. . . central limit theorem does not apply.

Comparative:

Different runs of the same experiment.

Results from different experiments w. identical config., state.

Not addressed:

Fair comparison of experiments w. different configurations, Bell
functions, assumptions.

Fair comparison of implemented trials.

Quantify ability of LRI to yield observed effects.
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Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy,
but quantified reassurance needed.

Bonus: Solve issues with nominal SNRs.

Solution: Construct and use positive, mean ≤ 1 Bell functions. 4

1. Choose Bell fn. B(O,S) with B(O,S) ≥ lB , 〈B(O,S)〉LRI,p ≤ bB,p.
2. Shift and scale P(O,S)

.
= (B(O,S)− lB)/(bB,p − lB) so

P(O,S) ≥ 0, 〈P(O,S)〉LRI,p ≤ 1, and hence〈
SN

.
=

N∏
i=1

P(Oi ,Si |pasti )

〉
LRI,p

≤ 1.

3. Get trial data . . . (oi , si ) . . ., compute sN , note:

Prob(SN ≥ sN |LRI, p) ≤ 1/sN . (Markov’s inequality)

4. Cert. c
.

= log2(sN), gain-rate/trial/set.-bit g
.

= log2(sN)/(H(p)N).

4Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]
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Interpretation of Anti-LRI Certificates

P(O, S) ≥ 0, 〈P(O, S)〉LRI,p ≤ 1,
〈
SN

.
=
∏N

i=1 P(Oi ,Si |pasti )
〉

LRI,p
≤ 1.

Prob(SN ≥ sN |LRI, p) ≤ 1/sN .
...

4. Cert. c
.

= log2(sN), gain-rate/trial/set.-bit g
.

= log2(sN)/(H(p)N).

Statistical:

LRI(p)⇒ prob. of certifying at ≥ c is less then 2−c .

Equivalent to a p-value bound. . .

Bayes-factor-like. E.g. stop any time.

Comparative:

Certificate: Comparable overall strength.

Gain rate: Comparable device/configuration strength.

Independent of experimental details or Bell function, given model
assumptions.

5

5Antecedents: Gill (2003) [4], van Dam et al. (2005) [10]
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Recent Experiments

Pironio et al. (2010) [7]:
Entangled atoms in two iontraps at 1 m.
Aim: Certified random number expansion.
Average CHSH value: 2 < 2.41(6) per trial for 3016 trials.
Nominal SNR: 6.8.
Certificate (log2-p): 10 [7], 33 ≡ 6.3 g.SNR [12, 11].

Giustina et al. (2013) [5]:

Entangled photons, continuously emitted, timetagged detections.
Aim: Bell violation without postselection.
Average Bell function value: 0 < 5.24(8)10−3 per photon-pair [5].
Nominal SNR: 66.
Timetag function value: 1.083(19 | 35)105, nominal SNR 59 or 31.
Justify coverage probability, certificate?

Christensen et al. (2013) [2]:
Entangled photons, pulsed emission, timetagged detections.
Aim: Bell violation without postselection.
Average Bell function value: 0 < 5.4(7)10−5 per trial, n.SNR 7.7.
PBR certificate (log2-p): TBD
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Recommendations

Commit to deterministic trials. (W.o.l.g!)

Change settings for each trial. (Make trials last longer if needed.)

Any randomization helps avoid auxilliary assumptions.

Blind the trials: Automated settings choices, no tweaking when
settings are “visible”.

Plan for generation of training data and confirmatory experiments.

Compute certificates and gain rate per setting bit.

Report: Certificate values, gain rates and model assumptions.
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PBRs: Optimizing Certificate Algorithms

P(O, S) ≥ 0, 〈P(O, S)〉LRI,p ≤ 1,
〈
SN

.
=
∏N

i=1 P(Oi ,Si |pasti )
〉

LRI,p
≤ 1.

Prob(SN ≥ sN |LRI, p) ≤ 1/sN .
...

4. Cert. c
.

= log2(sN), gain-rate/trial/set.-bit g
.

= log2(sN)/(H(p)N).

Flexible function choice:

Optimize convex combination of PBR functions.
(Use theory or training set.) PBR: Probability Based Ratio.

LRI tests: Include “trivial” and no-signalling constraints.

Adaptive PBR functions:

P → Pi , chosen optimally before i ’th trial.

Features:

Adapts to changing states, experimental drifts; stop anytime.
Matches or improves other approaches (e.g. Hoeffding bounds).
Asymptotically optimal when trials are i.i.d.
Can automatically optimize equivalent Gaussian SNR.
Adaptable to unbounded triangle-inequality Bell functions.
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Simulation: Quantum Timetag Trials

Specs: Poisson pairs, efficiency 80 %, square jitter.
1 detector/party, CHSH optimized.

jitter width/photon rate
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Simulation: LRI Timetag Trials

Specs: Match 1st and 2nd-order q. counting statistics
at high apparent jitter.
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