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Basic equilibrium properties of lattice Boltzmann �LB� fluid mixtures �coexistence curve, surface tension,
interfacial profile, correlation length� are calculated to characterize the critical phenomena occurring in these
model liquids and to establish a reduced variable description allowing a comparison with real fluid mixtures.
We observe mean-field critical exponents and amplitudes so that the LB model may be useful for modeling
high molecular weight polymer blends and other fluid mixtures approximated over a wide temperature range by
mean-field theory. We also briefly consider phase separation under quiescent and shearing conditions and point
out the strong influence of interacting boundaries on the qualitative form of the late-stage phase-separation
morphology.
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I. INTRODUCTION

In many applications involving materials processing and
development, it is necessary to understand and control the
morphology of multiphase fluid mixtures and particulate dis-
persions subject to a complex flow history. These applica-
tions often involve free liquid-air boundaries that can re-
spond to flow and phase-separation processes, solid
boundaries that can be preferentially wet by certain liquid
components, thin-film geometries, complex solid substrate
geometries, and high Reynolds number flows in which fluid
inertia is important. The development of computational
methods of sufficient flexibility and generality to treat such
realistic fluid dynamics problems is a basic theoretical chal-
lenge.

The lattice Boltzmann �LB� method and other related
computational methods based on cellular-automata ideas
�e.g., lattice gas� �1� have emerged as powerful tools for
modeling complex fluid dynamics problems. These methods
are developing rapidly in response to recent theoretical ad-
vances and the availability of resources for large-scale com-
putation. Applications of LB to modeling high Reynolds
flow �1�, the dynamics of fluid phase separation �2,3�, and
multicomponent fluid flow in porous media �4–6� have
proven the potential of LB as a general purpose computa-
tional scheme for modeling complex fluid dynamics prob-
lems. Many of these exploratory studies have emphasized the
development of the LB methodology and have not consid-
ered a direct comparison to the properties of real liquids.
Therefore, basic characteristics of these computational mod-
els of liquids are still largely unknown. In this paper, we
characterize the type of critical phenomena observed in two
LB models of multicomponent liquids. The first model, due
to Shan and Chen �2�, modifies the Boltzmann equilibrium
distribution to account for fluid-fluid interactions. The sec-
ond approach, considered in the present paper, incorporates
the forcing between two fluids directly into the body-forcing
term of the Boltzmann equation �7�. In Appendix A, we
show how the second method is related to a density-gradient

expansion of a BBGKY collision operator �8–10�, which
should facilitate comparison with the Cahn-Hilliard theory of
phase separation �11–16� and the Ginzburg-Landau theory of
critical phenomena �17,18�.

We calculate basic equilibrium properties �coexistence
curve, interfacial width and correlation length, surface ten-
sion� and express our results in terms of a reduced variables
description that allows comparison with real fluid measure-
ments. Asymmetry in the mass and volume of the fluid com-
ponents is considered in this comparison since this property
is characteristic of real liquids. The effect of flow and inter-
acting boundaries on the phase separation process is briefly
explored to identify some basic phenomena of experimental
interest.

II. BRIEF REVIEW OF LATTICE BOLTZMANN MODEL
OF FLUID PHASE SEPARATION

The LB method of modeling fluid dynamics is actually a
family of models with varying degrees of faithfulness to the
properties of real liquids. These methods are currently in a
state of evolution as the models become better understood
and corrected for various deficiencies. In the present work,
we utilize two LB models of complex fluids. The first and
primarily studied method in this paper was proposed by Shan
and Chen �2,5�. It is particularly simple in form and adapt-
able to complex flow conditions such as the presence of
solid-fluid and air-fluid boundaries. For comparison, a sec-
ond approach is studied �7� that directly incorporates the
fluid/fluid interaction into a body-force term. This approach
removes second-order contributions with respect to the forc-
ing �see below�. The physical basis of such an approach is
further described in Appendix A. A third approach, not stud-
ied in this paper, is due to Yeomans et al. �3,16� and is
strongly rooted in the Cahn-Hilliard model of binary mix-
tures �12–16�. A major criticism of this approach is the lack
of Galilean invariance, but recent work suggests that the er-
rors involved can be controlled in the description of the
phase separation of fluids in the absence of shear �16�. It
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remains to be seen whether these higher-order effects cause
problems under conditions of fluid flow. All of these models,
however, are not strictly energy conserving, which should be
important under conditions of deep quenches and high rates
of flow. Recent work �10� has introduced a framework for
overcoming this technical problem and allows for systematic
improvements of the LB calculation of fluid properties. In
the present paper, we focus on isothermal flows and will
examine the effect of energy conservation on the two-phase
region of LB fluid mixtures in a future work.

We now present a brief description of the LB methods
used in this study. A considerable computational advantage
in modeling the fluid is obtained by restricting the particle
positions to the sites of a lattice. The LB method extends the
standard ‘‘quasicrystalline’’ fluid model �19–22� of classical
statistical mechanics by specifying the particle velocity dis-
tribution at each particle position so that both equilibrium
and dynamical properties of the fluid can be calculated. Mac-
roscopic variables such as density and fluid velocity are ob-
tained by taking suitable moments of the velocity distribu-
tion function. The velocity distribution function, na

i (x,t),
where the superscript i labels the fluid component and the
subscript a indicates the velocity direction, is the number
density of particles at node x, time t with velocity ea , where
a�1, . . . ,b . In this study, the particle velocities are repre-
sented in terms of a basis set defined on a cubic lattice. The
velocity vectors are directed towards points that are nearest
and next-nearest neighbors about a central lattice site and are
in units of the lattice spacing divided by the time step. In the
literature, this lattice is called a D3Q19 lattice, where the 19
corresponds to the basis set size, b�19 �23�. Time is counted
in discrete time steps, and the fluid particles can collide with
each other as they move under applied forces �surface ten-
sion, applied shear, etc.�. The directions of the particle ve-
locities are discretized in such a way that the isotropy of the
pressure tensor and other properties are preserved �1�. The
discretization of the time and spatial coordinates greatly re-
duces the information required to specify the fluid dynamics,
thus extending the scale of the system that can be modeled
by a given computational resource. This is the computational
virtue of a lattice formulation. The price is that care must be
taken to avoid artifacts that arise from the lattice model.

Macroscopic quantities such as density, � i(x,t), and fluid
velocity, ui, of each fluid component, i, are obtained by the
following moment sums:

� i�x,t ��mini�x,t ��mi�
a

na
i �x,t � �1�

and

ui�x,t ��

�
a

na
i �x,t �ea

ni�x,t �
, �2�

where mi is the molecular mass of the ith component. While
the distribution function is defined only over a discrete set of
velocities, the actual macroscopic velocity field of the fluid is
nearly continuous.

The time evolution of the particle velocity distribution
function satisfies the following LB equation:

na
i �x�ea ,t�1 ��na

i �x,t ���a
i �x,t �, �3�

where �a
i is the collision operator representing the rate of

change of the particle distribution due to collisions. The col-
lision operator is greatly simplified by use of the single time
relaxation approximation �23,24�,

�a
i �x,t ���

1

� i�na
i �x,t ��na

i(eq)�x,t �� , �4�

where na
i(eq)(x,t) is the equilibrium distribution at (x,t) and

� i is the relaxation time that controls the rate of approach to
equilibrium. The equilibrium distribution can be represented
in the following form for particles of each type �23�:

na
i(eq)�x��tani�x�� 3

2 �1�do
i ��3ea•v� 3

2 �3eaea :vv�v2�� ,
�5�

n19
i(eq)�x��t19n

i�x��3do� 3
2 v2� , �6�

where

v�

�
i

S

mi�
a

na
i ea /� i

�
i

S

mini�x�/� i

, �7�

and the weights are ta� 1
36 for 1	a	12, ta� 1

36 for 13	a
	18, and t19�

1
3 . The parameter do

i can be related by self-
consistency to an effective temperature, T, by the following
moment of the equilibrium distribution:

T�x,t ��

�
i

mi�
a

na
i(eq)�x,t ��ea�v�2

3�
i

ni�x,t �

. �8�

In order that both fluid components have the same tempera-
ture, do

i may be defined by the relation do
i �1�2(T/mi),

where we choose units here such that Boltzmann’s constant
kB equals 1.

It has been shown that the above formalism leads to a
velocity field that is a solution of the Navier-Stokes �24�
equation with the kinematic viscosity 
 �2,5�,


�c2

�
i

S

ci� i�
1

2

6
, �9�

where ci is the concentration of each component and the
lattice constant c�& for this model.
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A. Fluid interaction

An interaction force Fi for each fluid is needed to drive
the phase-separation process. We use a simple interaction,
suggested by Shan and Chen �the physical basis of this forc-
ing is given in Appendix A�, that depends on the density of
each fluid:

Fi��ni�x��
i�

S

�
a

Gii�
a ni��x�ea�ea , �10�

where Gii�
a

�2G , G , and 0 for the cases �ea��1, �ea���2,
and, i�i�, respectively. G is a coupling constant controlling
the interaction strength. This term is analogous to a nearest-
neighbor interaction in lattice models of interacting fluids.
The forcing term has been shown to drive the phase separa-
tion and to produce an interfacial surface tension effect con-
sistent with the Laplace law �5�, which states that there is a
pressure drop proportional to the local curvature at the inter-
face boundary between two fluids.

In the LB model of Shan and Chen, phase separation
takes place when the mutual diffusivity of the binary mixture
becomes negative, providing a condition determining the
critical coupling Gc for phase separation. An analytical ex-
pression for the mutual diffusivity has been determined �25�.
For a viscosity matched binary mixture in which the particle
masses are also matched �‘‘symmetric fluid mixture’’�, phase
separation occurs when the critical coupling equals

Gc�
T

48

�c1n1�c2n2���c1n1�c2n2�2�8n1n2

n1n2
.

�11�

It is not ordinarily possible to exactly calculate the critical
coupling for phase separation in three-dimensional liquids,
and this condition for the critical coupling, Gc , is evidently
a clue to the nature of the phase-separation process. Since the
LB method neglects thermal fluctuations that renormalize the
critical coupling constant G, this method is a mean-field
model of fluid mixtures. This observation, which has basic
ramifications for the applicability of the model in compari-
son with real fluid mixtures, is established numerically in the
next section, where the critical properties are examined to
establish the nature of the model.

Once the forcing is described, it must be properly incor-
porated into a LB model. Shan-Chen introduced the forcing
by modifying the equilibrium velocity v �2�:

ni�x�v��x��niv�x��� i

Fi

� i
, �12�

where v� is the new velocity used in Eqs. �5� and �6�. This
approach introduces a momentum transfer between fluids
that preserves momentum globally. The main criticism of the
Shan-Chen model is that when shifting the velocity in the
equilibrium distribution, additional corrections in the pres-
sure tensor will appear that are of order F2.

Instead of shifting the velocity in the equilibrium distri-
bution as in the Shan-Chen model, the forcing between two

fluids can be directly included in the body-force term of the
Boltzmann equation. In the continuum Boltzmann equation,
the body-force term is written Bi�Fi/� i•�eni(x,e), where
Fi/� i is an acceleration field due to a body force. An expres-
sion of this body-force term, to second order in Hermite
polynomials �7�, in the discrete velocity space of the D3Q19
lattice is given by

Ba
i ��3tani�x�� �eaÀv�• Fi

� i
�3�ea"v�� ea• Fi

� i � � . �13�

One can think of this acceleration field as being due to a
‘‘mean field’’ produced by the surrounding molecules �see
Appendix A�. The main difference between this approach
and the Shan-Chen model is that it avoids terms of order F2

that result from the shift of the velocity in the equilibrium
distribution, so that the linearity of the forcing is preserved.
The effect of this modification of the LB model is investi-
gated below.

Finally, Eq. �10� can be modified to mimic an interaction
between the solid surface and fluid �5�. Here ni�(x¿ea) is
given the value 1 or 0 depending on whether x�ea resides
on a point in the solid or fluid, respectively, and the value of
Gii�

a is then set to allow the solid to attract a fluid �wetting�
or to repulse a fluid �nonwetting�.

III. EQUILIBRIUM CRITICAL PHENOMENA
IN A LB FLUID MIXTURE

An understanding of the equilibrium critical phenomena
of fluid mixtures is necessary for modeling the flow of mul-
tiphase materials. This understanding is not only required for
estimating phase stability and the type of phase-separation
process �droplet growth or bicontinuous fluid pattern forma-
tion �12–16��, but also for transport properties �collective
diffusion, self-diffusion, viscosity� that depend sensitively on
the nature of the critical phenomena occurring in the liquid.
This is natural given the existence of order-parameter �fluid
composition� fluctuations that cause a mode coupling be-
tween momentum and mass transport processes �26–32�.
Our first task in developing the LB model for these many
practical applications �involving phase-separating fluid mix-
tures under flow conditions� is to establish the type of equi-
librium critical phenomena exhibited by this model fluid
mixture. While the LB models do have hydrodynamic inter-
actions, they do not treat hydrodynamic couplings associated
with non-mean-field contributions to the mode-coupling be-
tween compositional and velocity fluctuations �26–29�. The
theory is thus a mean-field theory also in the sense of fluid
dynamics, and the implications of this constraint require fur-
ther investigation.

IV. COEXISTENCE CURVE FOR LB MIXTURE

For a sufficiently large fluid interaction coupling, G, the
LB mixtures of components A and B phase-separate into liq-
uids having coexisting compositions �A and �B at equilib-
rium. The composition variables �A and �B denote the rela-
tive volume fractions of the two fluid components. These
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dimensionless concentration units are normalized so that
�A��B�1. Compressibility effects on the fluid mixture can
be treated through the addition of an additional vacancy
component �c such that �A��B��c�1, as in equilibrium
lattice model calculations of compressible mixtures �33�, but
this complication is not considered in the present paper.

Increasing the LB coupling G makes the coexisting com-
positions more enriched in the pure components and thus has
the same qualitative effect as lowering the temperature in
systems exhibiting an ‘‘upper critical temperature’’ type
phase separation �i.e., phase separation upon cooling�. The
parameter G thus plays a role similar to the binary interac-
tion parameter 
 in the lattice model of fluid mixtures �19–
22,34�,


�
AB��
AA�
BB�/2, �14�

where 
AB and 
AA ,
BB denote the mutual and self-nearest-
neighbor interactions of the fluid components. G is also
analogous to the well depth parameter 
LJ in off-lattice mod-
els of phase separation based on Lenard-Jones or related po-
tentials �35�. In all these models, it is the relative value of the
‘‘interaction strength’’ (G ,
 ,
LJ) to the temperature that is
the dimensionless coupling constant defining the tendency
toward phase separation. For example, the dimensionless in-
teraction in the lattice model of fluid mixtures is convention-
ally defined as �19–22,34�

��q
/kbT , �15�

where q and kbT denote the lattice coordination number and
thermal energy, respectively. The inclusion of the q factor is
made to weight the number of possible nearest-neighbor in-
teractions. In magnetic phase transitions, we have the same
form of dimensionless couplings as Eq. �13�, where 
 is
replaced by the ‘‘exchange interaction’’ J modeling the
short-range magnetic interparticle interaction �18,36�. From
these measures of interaction, we see that lowering the tem-
perature has basically the same effect as increasing the inter-
action coupling (
 ,
LJ) for the usual case where ordering
occurs upon cooling. Phase separation in the LB liquid also
occurs when the temperature is lowered with G fixed, and we
similarly define a dimensionless coupling constant,

�G�G/kbT . �16�

A reduced variable temperature � may then be defined from
the interaction coupling constant, �G ,

�G�
�T/G�T/Gc�

T/Gc
�17�

for our simulation performed at fixed temperature T and vari-
able G. For a particular fluid mixture it is natural to fix G and
to vary T so that the reduced temperature variable is defined
as

�G� �
�T/G�Tc /G�

Tc /G
, �18�

where Tc is the critical temperature for a fixed value of G.
The absolute value definition in Eqs. �17� and �18� ensures
that the reduced temperature variable is positive for nota-
tional simplicity, but this requires that we must carefully
distinguish between the one-phase and two-phase regions.
All of the computations of the present paper are performed in
the two-phase region.

In Fig. 1, we present our results for the coexistence curve
of a symmetric LB fluid mixture �both mass and viscosity
ratios of fluid components are equal�. The y axis denotes the
ratio of critical dimensionless coupling to the dimensionless
coupling, �Gc

/�G , defined in Eq. �16� and the x axis denotes

the composition �A of the A fluid. We observe that the criti-
cal composition �c ,A of the A component equals �c� 1

2 �a
‘‘symmetric mixture’’�, as required by the symmetry of ex-
change of the fluid components. This exchange symmetry is
well known in lattice models of fluid phase separation �37–
41�. The composition difference ����A

(1)��A
(2) between

the coexisting phases defines an order parameter for the fluid
phase-separation process. The relation of �� to the reduced
temperature is indicative of the type of critical phenomena
�‘‘universality class’’� under discussion. In a mean-field
model of fluid phase separation, �� is described by the gen-
eral relation �17,18,34�

���2B��, ���T�Tc�/Tc , T�Tc, �19�

where the order-parameter exponent � and critical amplitude
B for a symmetric incompressible fluid mixture equal �34�

B��3/2, �� 1
2 . �20�

The dashed line in Fig. 1 is the predicted value. Our data are
consistent with the mean-field prediction as �G→0. Note
that the Shan-Chen model deviates more from the mean-field
prediction than does the simple body-forcing model. In gen-
eral, it was found that the linear body forcing was somewhat

FIG. 1. Phase diagram of LB fluid mixture. Normalized cou-
pling �Gc

/�G versus the composition �A of fluid A. The solid
circles represent data from the Shan-Chen model and the triangles
represent data from the body-forcing model. �Gc

/�G also corre-
sponds to the temperature ratio T/Tc .
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more stable. The mean-field theory prediction �Eq. �19�� is
further examined in Fig. 2, where we plot log10(��) versus
log10(�G) for the lattice data shown in Fig. 1. It is apparent
that a power-law scaling of �� on �G is observed over an
appreciable temperature range. The solid line denotes the
prediction of Eq. �19� with no free parameters, where � is
equated with �G . Note that the critical temperature is not
adjustable in this comparison, in contrast to most simulations
and experiments in which this quantity is not known exactly.
Of course, the solution of the two-dimensional Ising spin
model and its lattice-gas analog is an exception to this gen-
eral situation �17,18�. Sengers gives an excellent review of
the critical properties of fluids and fluid mixtures that pro-
vides much further information about mean-field and non-
mean-field critical properties and the ‘‘crossover’’ between
these property scaling regimes �42�.

Figures 1 and 2 not only verify that the phase-separation
process in LB fluids is described well by mean-field theory,
but they also establish the utility of our definition of reduced
temperature scale, �G , which is required for other applica-
tions involving LB fluid mixtures. For example, we can
quantify the quench depth of our phase-separation measure-
ments by specifying the �G value. These simulations can be
compared to experiments on real fluids at the corresponding
� value. Quantitative agreement with the properties of real
liquids can only be expected for liquids that can be modeled
by mean-field theory over a broad temperature range �see the
discussion below�. This identification between computational
and real fluids is generally restricted to a temperature range
over which mean-field critical behavior is exhibited to a
good approximation. Strictly speaking, no real fluids are de-
scribed by mean-field critical behavior, but for many fluids
the approximation should be reasonable provided � is suffi-
ciently far from the critical point defined by the limit �
→0�. The Ginzburg criterion defines the temperature range
over which mean-field theory is a reasonable approximation
�33,43–50�.

Real fluid mixtures are characterized by differences in the
molecular shapes and volumes of the fluid molecules and
asymmetries in the intermolecular interaction potentials that

destroy the symmetry of exchange between the fluid compo-
nents �38–40�. This symmetry breaking is evident in the
shape of the coexistence curve. The graph of �� versus �
becomes ‘‘skewed’’ so that the critical composition �c no
longer equals 1

2 �38–40�. The molecular asymmetry effect is
particularly evident in polymer fluid mixtures where the ratio
of the molecular weights and the backbone chain structure
can be adjusted to ‘‘tune’’ the asymmetry of the coexistence
curve �21,22,34,51�. The asymmetry becomes extreme in the
case of high molecular weight polymers dissolved in low
molecular weight solvents where �A ,c of the high molecular
weight component approaches zero with increasing molecu-
lar weight �21,52�. It is also possible to modify the molecular
weights of a blend to achieve an almost perfect symmetry as
in Fig. 1 �53�. This symmetry is not usually observed in fluid
mixtures or in single-component fluid phase transitions, al-
though the degree of asymmetry is usually modest in com-
parison with polymer solutions.

The breaking of the particle exchange symmetry arising
from differences in molecular shape, rigidity, mass, and
other molecular parameters is difficult to describe in a me-
soscale fluid model of phase separation. We can obtain a
simple model of this symmetry-breaking phenomenon, how-
ever, by considering the idealized Flory-Huggins �FH� mean-
field model of polymer blend phase separation �21�, which
accounts minimally for the molecular mass asymmetry of the
fluid components �actually, the model accounts for a volume
asymmetry since this incompressible polymer blend model
assumes all lattice sites are occupied and have equal density�.
Notably, the FH model completely ignores polymer topol-
ogy, monomer asymmetry, polydispersity in the size and
monomer-monomer interactions, and other factors that surely
influence polymer blend stability, but the mass ratio in the
FH model does provide a parameter that allows the asymme-
try of the coexistence curve to be ‘‘tuned’’ to fit observations
on real blends. �The recently developed lattice cluster mean-
field theory generalizes the FH model by incorporating
leading-order correlations associated with chemical connec-
tivity and monomer structure �33�.� We first consider the
case in which the particle masses are ‘‘asymmetric’’ in the
LB fluid model in the same spirit of approximation. Figure 3
shows the coexistence curve for a LB fluid mixture having a
mass ratio �M�M A /M B�3, where the concentration differ-
ence �� between the coexisting phases is given in number
density concentration units rather than the volume fraction
units of Fig. 1. We examine the scaling of �� on the quench
depth parameter �G in Fig. 4, where we find a mean-field
scaling exponent 1

2 as in Figs. 1 and 2 and a shift of the
critical coupling to the value Gc�0.0135. The asymmetry of
the coexistence curve is quantified by calculating the depen-
dence of the average composition � Ā�(�A

(1)��A
(2))/2 in the

coexistence curve shown in Fig. 3, where �A
(1) and �A

(2) are
compositions of the coexisting phases. According to the
‘‘law of rectilinear diameter’’ of Cailletet and Mathias �54�,
�̄ is linear function of � . This linearity is found to a good
approximation in the asymmetric fluid phase-separation co-
existence curve shown in Fig. 3. The average composition
�A is shown in Fig. 5, where the line denotes the rectilinear
diameter fit,

FIG. 2. Order parameter �� versus quench depth parameter
�G .
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� Ā��A ,c�A�G , �21�

where A is a constant, A�0.11, and � Ā and �A ,c are given in
number fraction units. This type of plot is an effective way to
determine the critical composition of an asymmetric fluid
mixture �55�. Fluctuation corrections to mean-field theory
can lead to deviations from Eq. �21� in real fluids that are
important near the critical point �56�.

We can also break the symmetry of interparticle exchange
and thus distort the shape of the phase boundary by varying
the relative volumes of the fluid particles �see Appendix B�.
In Fig. 6, we show the phase boundary calculated for a range
of values of � , the ratio of the volumes of components A and
B, ��VA /VB . We assume spherically shaped particles so
that � scales as the cube of the ratio of the particle radii, �
�(RA /RB)3. By convention, we take the A fluid component
to have the largest molecular volume. Increasing the particle
size asymmetry strongly increases the asymmetry of the
phase boundary, in qualitative agreement with the Flory-
Huggins theory of polymer phase separation �21,22,34�.
Note that the data in Fig. 6 are given in volume fraction
units. The simple Flory mean-field treatment of the Flory-
Huggins lattice model indicates that �c�1/�1��1/2� , where
� is the relative chain molecular volume �see below�. The
true critical composition seems to be approximated reason-
ably well by a similar expression, �c�1/�1��� , and the
arrows in the figure show the result in comparison with the
data. We note that the phase diagrams of micelle and protein
solutions, where there is a large asymmetry in the size of the
phase-separating species, tend to be asymmetric as in Fig. 6
�57�.

In applications of the LB model to real measurements, we
can phenomenologically adjust the relative mass �and thus
the critical composition in Figs. 3 and 4� or relative particle
volume � and identify the LB order-parameter variable ��A
�number density� or volume fraction units, respectively� with
the experimentally determined order-parameter concentra-
tion unit. While this is generally an approximation, we ex-
pect it to provide a reasonable mimic of the critical proper-
ties of asymmetric fluid mixtures as in previous experience
with the FH model �58�.

A. Interfacial composition profile and correlation length

The interface between phase-separated liquids becomes
diffuse near a critical point where the interfacial tension be-
comes relatively low. The width of this interface can be
quantified through the determination of the composition in-
terfacial profile �A(z), which measures the local composi-
tion along a coordinate, z, normal to an interface between the
coexisting phases.

An interface in near-critical fluid mixtures can be probed
by optical reflectivity �59–61� or ellipsometry �62–64� to
determine its width, but accurate measurements of composi-
tion gradients across the interface are difficult. Direct mea-
surement of �A(z) has recently become possible in thin films
by neutron reflection �65,66�, but the broadening of these
profiles by capillary waves and surface wetting effects com-
plicates the interpretation of those measurements so that

it is hard to quantitatively evaluate theory in this important
area �67–70�. The LB model allows the determination of
�A(z) for an ideal mean-field theory fluid. Some insight into
the fluctuation contribution to �A(z) can be obtained by
comparing these calculations to Monte Carlo calculations of
�A(z) �69,70�. An important property that derives from the
determination of �A(z) is the correlation length �� in the
two-phase region, which governs the average width of the
interface �see below�. This definition of the correlation
length is more involved in asymmetric fluid mixtures since
the composition profile, �A(z), is asymmetric about the cen-
ter (z�0) of the fluid interface.

Figure 7 shows an equilibrium interfacial composition
profile �A(z) for a symmetric LB mixture having a quench
depth in the two-phase region, �G�0.1. The numerically de-
termined profile �A(z) is fit well by the mean-field theory
prediction �11,63,70–72�,

�A�z ���̄����/2�tanh�z/w � �22�

for all �G considered in our paper. The dependence of the
interfacial width w on reduced temperature �G is indicated in
Fig. 8. The mean-field correlation length �� of the fluid mix-
ture in the two-phase mixture is related to w by �64,70,72�

2���w �23�

so that the determination �A(z) affords a means of determin-
ing the basic property ��. A fit to the w data nearest the
critical point in Fig. 8 gives

����0.96�0.05��G
�
 , �24�

where the mean-field value of the critical exponent 
� 1
2 is

assumed. Far away from the critical point, where �G
�O(1), the correlation length becomes comparable to the
lattice spacing, as in Monte Carlo simulation of phase sepa-
ration in small molecule liquids �70�. The lattice spacing in
the LB model should be interpreted as being comparable to
the average range of the interparticle interaction potential.
This scale is typically comparable to the average molecular
dimensions of the molecule involved �73�, and for polymers
this scale can be fairly large �74�. Particle clustering can also
increase the magnitude of this scale in small molecule liquids
�75�.

In a mean-field model of phase separation, the correlation
length � has the same singular dependence on reduced tem-
perature, �G , in the one- and two-phase regions (�� and ��,
respectively� �76�,

���o
��G

�1/2 , ���o
��G

�1/2 , �25�

but the correlation length amplitudes �o
� ,�o

� are related by a
constant ratio in mean-field theory �76�,

�o
�/�o

��21/2. �26�

This ‘‘universal’’ ratio is closer to 2 in real fluid mixtures
exhibiting Ising-type criticality �77,78�. The discrepancy be-
tween Eq. �26� and measurement is illustrative of the large
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property changes that critical fluctuations can induce. More-
over, the critical temperature, in three dimensions, can be
shifted from its mean-field value by as much as 25% by
fluctuations, so that the interaction parameters must be
treated as phenomenological parameters in comparison to ex-
periments in order to ‘‘absorb’’ these discrepancies �34�.

The interfacial composition profile �A(z) of asymmetric
fluid mixtures composed of mixtures of dissimilar molecules
is also asymmetric �79�. We briefly illustrate this effect in
Fig. 9 for a fluid having a mass ratio �M�3 and a quench
depth �G�0.1. Again, we present our concentration data for
the asymmetric fluid in terms of number density units to
simply realize the effect of fluid asymmetry �80�. While the
equilibrium profile may appear to be like the tanh profile
�Eq. �22�� found in the symmetric case, we could not obtain
a good fit to this function. A good empirical description of
this profile is found by first taking a derivative of the profile
in Figure 9 to find its inflection point and by then fitting to a
tanh profile on each side of the inflection point �65,81�. Fig.
9 shows a fit to the data where the characteristic widths wL

�5.75 and wR�5.0 correspond to the left and right sides of
the inflection point. The average w̄�(wL�wR)/2 provides a
good measure of the average interfacial width. We plan to
discuss the properties of the LB model with a molecular
volume asymmetry further in a separate publication so that
this case is not discussed here. In all the discussion below,
we restrict ourselves to ��1.

It has sometimes been reported that two correlation
lengths exist in the two-phase region of fluid mixtures having
asymmetric coexistence curves �75�. These measurements
are made by performing light or neutron scattering on coex-
isting phases in macroscopically phase-separated samples.
The scale of the composition fluctuations appears to occur at
different scales in the �A-rich and �A-poor coexisting phases
�75�. Apparently, the measurement process can give rise to
unequal weighting in the different phases to the two sides of
the �A(z) profile, leading to different �� estimates. Al-
though such measurements provide some insight into the

FIG. 3. Phase diagram of an asymmetric LB fluid mixture.

FIG. 4. Order parameter �� vs quench depth parameter �G for
an asymmetric LB mixture.

FIG. 5. Rectilinear diameter ��(�A��B)/2 versus quench
depth �G .

FIG. 6. Influence of particle size on phase boundary asymmetry.
��1.0 �filled circles�, 4.63 �filled squares�, and 125.0 �open
circles�. Dashed lines are included to help guide the eye.
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asymmetry of the �A(z) profile, they should not be inter-
preted as implying the existence of two distinct correlation
lengths in the two-phase region.

B. Interfacial tension

Interfacial tension measurements provide a direct means
of probing the interaction between fluids. This property is
crucial in an industrial context for controlling the size and
phase stability of mechanically dispersed droplets and other
transient structures formed in the course of phase separation.
In principle, the interfacial tension, � , provides a conceptu-
ally simple means of determining the reduced temperature
variable ��(T�Tc)/Tc needed to characterize the phase sta-
bility of fluid mixtures, but experimental complications
�82,83� �e.g., high viscosity in polymeric systems� have lim-
ited somewhat the application of this method to the critical
phenomena of fluid mixtures. Part of the difficulty is the
need for a more predictive theory of interfacial tension on

which reliable thermodynamic interaction (� or G) measure-
ments can be based. Recently, there has been great effort in
modeling the interfacial tension of polymeric blends by
Monte Carlo simulation methods as a guide to improving
analytic theory in this important area of technological appli-
cation �69,70�.

We calculate the LB interfacial tension � through an in-
tegration of the interfacial composition profile,

��� �Pzz�
1
2 �Pxx�Pyy� �dz , �27�

where Pzz and 1
2 �Pxx�Pyy� are the normal and tangential

parts of the pressure tensor, respectively. The numerical val-
ues of the interfacial tension for the symmetric LB fluid mix-
ture, shown in Fig. 10, are consistent with a power law,

���o�G
1.5 , �0�4.2 �28�

over a broad temperature range. The exponent 1.5 is an es-
tablished result for the interfacial tension in mean-field

FIG. 7. Interface composition profile �A for a quench depth
�G�0.08. z is in the direction normal to the center of the fluid
interface. Solid line is fit to Eq. �22�.

FIG. 8. Interfacial width w as a function of the reduced interac-
tion �G .

FIG. 9. The interfacial composition �number density� profile
�A(z) of an asymmetric fluid mixture having a mass ratio �M�3
and quench depth �G�0.08.

FIG. 10. Interfacial tension versus quench depth, �G .
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theory �12,70�, and is found to agree reasonably well with
observations outside the critical region �84–86�. Fluctuation
effects modify the exponent to a value �1.25 �87�. This
fluctuation-modified exponent is often found to be quite ac-
curate near the critical point for phase separation �77,78�.
The amplitude of the interfacial tension, �0, is a nonuniver-
sal quantity that depends on the interparticle potential range,
interparticle spacing, and molar volume of the liquid. Further
discussion of the origin of interfacial tension in the LB
model is given in Appendix A.

V. COMPARISON OF THE LB FLUID MIXTURE MODEL
TO POLYMER BLENDS

It is apparent from the examination of the LB mixture
model above that the critical properties of this fluid are de-
scribed by mean-field theory and that the critical exponents
predicted by this model are inconsistent with those measured
for many real mixtures. This limits, of course, the compari-
son of LB model calculations to certain qualitative trends in
the equilibrium properties of near-critical fluid mixtures.
�The theory should become more reliable, however, away
from the critical point.� Such inconsistencies can also be ex-
pected for certain dynamic properties near the critical point.
For example, the shear viscosity of a near critical Ising-type
fluid mixture diverges near the critical point while no diver-
gence occurs in a model mean-field mixture �88�. Mode-
coupling effects due to compositional flucuations have an
even larger effect on the collective diffusion coefficient
�30,31�. Although mean-field models of fluid mixtures are
idealized, there is a class of real liquids whose behavior ap-
proaches this ideal type critical behavior. The phase separa-
tion of polymer blends in the theoretical limit of infinite
molecular weight of the homopolymer components has been
argued �45,46� to be described by mean-field theory, so that
the phase separation of high molecular weight blends should
be reasonably approximated by this idealized model. Monte
Carlo calculations support these theoretical arguments, al-
though the chain length must generally be rather high for this
approximation to apply �89,90�. There have also been recent
reports of apparent mean-field critical behavior in fluid mix-
tures with salts �90� and in ionic fluid mixtures �91�.

It is common practice in polymer science to fit the critical
properties of polymer blends to the Flory-Huggins �FH�
mean-field lattice model of phase separation where all inac-
curacies of the modeling �monomer structure, chain architec-
ture, compressibility, . . . � are absorbed into the phenomeno-
logical ‘‘� parameter’’ in Eq. �16� �92�. A virtue of the FH
lattice model is that it often allows the prediction of qualita-
tive trends in the scattering properties of polymer blends. We
can retain this advantage and avoid the conceptual pitfalls of
interpreting � too literally as a ‘‘molecular’’ parameter by
establishing a formal correspondence between the parameters
of this model and the LB fluid mixture model.

In the FH model of polymer blend phase separation, the
reduced temperature variable is �46,92�

�FH�����c�/���Tc�T�/Tc , �29�

where the critical interaction �c is defined by the condition

�c��2NA�c��1��2NB�1��c���1 �30�

and NA and NB are homopolymer polymerization indices.
Symmetric blends are defined by the idealized condition NA
�NB�N so that �c� 1

2 and �c�2/N . The critical composi-
tion �c of the blend no longer equals 1

2 when the blends are
not symmetric (NA�NB) �21,46,74�,

�c�
NB

1/2

NA
1/2�NB

1/2
. �31�

As mentioned above, the incorporation of asymmetry into
the LB model requires adjusting the mass asymmetry or vol-
ume asymmetry to give a variation in the critical composi-
tion. We can then mimic the asymmetric phase of the phase
boundary of polymer blends by varying the mass asymmetry
�M or � and formally replacing �G by �FH .

The correlation length � of the FH model in conjunction
with the random-phase approximation �46,74� yields a scal-
ing relation for � in the two-phase region for a symmetric
blend

����0
��FH

�1/2, �0
��Rg /�6, �32�

where Rg is the chain radius of gyration. We see from a
comparison of Eqs. �32� to the LB expression Eq. �23� that
the lattice spacing in a coarse-grained model of polymer
blends must be large since the lattice spacing is on the order
of Rg . This implies that the lattice spacing must be taken to
depend on chain molecular weight in comparison with mea-
surements. Moreover, the predictions of the LB model must
be considered with caution when physically relevant scales
in physical problems become smaller than this coarse-
graining scale �lattice spacing� of the LB lattice model. This
limitation is natural since the LB model is a mesoscopic
description of a fluid rather than a microscopic model.

There are a number of points to be drawn from our dis-
cussion of polymer blend critical properties in comparison
with the LB model of fluid phase separation.

�i� Polymer blends are reasonable candidates for compari-
son with the LB mixture model.

�ii� The mean-field model gives rise to universal scaling
relationships that should allow fixing the parameters of the
LB model according to the blend molecular characteristics.
This gives some insight into the qualitative variation of the
LB parameters with the variation of molecular structure.

�iii� Comparison of the LB model with parameters fixed
by the FH model with Monte Carlo calculations of the lattice
model of polymer blends should provide some insight into
the mean-field approximation in the case of properties not
tractable using analytic mean-field theory. For example, we
can compare LB calculations of the interfacial tension to
Monte Carlo calculations for polymer blends that avoid the
mean-field approximation.

�iv� Fixing the LB model parameters through ‘‘matching’’
to the FH model then allows a comparison with dynamical
properties �transport coefficients� and processes �phase sepa-
ration, wetting, dewetting� of blends calculated using the
mean-field approximation.
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�v� The expression of the results of measurements in
terms of general and universal scaling relations �when they
exist� offers advantages to representations involving the phe-
nomenological � interaction parameter. Expressions between
large-scale observable properties deduced from mean-field
theory often have greater applicability than expressions be-
tween observables and temperature-like variables such as �
and � .

VI. SOME ILLUSTRATIVE CALCULATIONS OF PHASE
SEPARATION WITH AND WITHOUT SHEAR AND

THE INFLUENCE OF INTERACTION BOUNDARIES ON
PHASE SEPARATION

Now that we have established the type of critical phenom-
ena exhibited by the LB model of fluid mixtures and a re-
duced variable description for some of the basic thermody-
namic properties of this model fluid mixture, we can apply
the LB model to the description of phase separation under a
wide range of conditions. In this section, we will illustrate
some phenomena we have investigated in connection with
recent measurements.

The comparison of nonequilibrium phenomena such as
fluid phase separation to LB model calculations requires the
introduction of a dimensionless time unit that is common
between the experimental and computational fluids. For fluid
phase separation, it is conventional to express reduced time
in terms of the mutual diffusion coefficient Dm and the cor-
relation length, �� �93–95�. We thus divide our computa-
tional time t by the average initial rate of phase separation,
tps�2(��)2/�Dm�, deduced from Cahn-Hilliard theory
�11,93–95�. The mutual diffusion coefficient obtained for the
Shan-Chen model studied in this paper for a viscosity
matched binary mixture is given by

Dm��T � 1�G�2n1n2

1�G��c1n2�c2n1�
�

1

2� , �33�

where G��12G/T . All times below are reported in the di-
mensionless time t̄ �t/tps in our discussion of the LB model
of fluid phase separation. Results are presented from simula-
tions corresponding to a sytem size of 803 in units of lattice
spacing cubed.

A. Phase separation without shear

In Fig. 11, we illustrate the case of a critical composition
(�A� 1

2 ,mA�mB). The value of the ‘‘quench depth’’ equals
�G�0.537 and the reduced time, t̄ �3.6. Periodic boundary
conditions are employed in this LB calculation to minimize
wall effects. Figure 12 shows separation after a later time,
t̄ �17.8. The pattern is similar in geometric form to Fig. 11,
but the characteristic scale of the pattern is larger after longer

FIG. 11. ‘‘Spinodal’’ phase separation morphology in critical
composition �50-50 relative composition� fluid mixture. The quench

depth equals �G�0.537 and t̄ �3.6.

FIG. 12. Spinodal phase separation in critical composition fluid
mixture. Note the similarity of the structure in Fig. 12 to Fig. 11,
apart from scale. This observation reflects the existence of dynamic
scaling in the mixture coarsening. The quench depth equals �G

�0.537 and t̄ �17.8.

FIG. 13. Off-critical �10-90 relative composition� phase separa-
tion showing droplet formation and coarsening. The quench depth

�G�0.133 and t̄ �8.4.
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times, geometrically illustrating the notion of dynamic simi-
larity in the phase-separation coarsening process. A study of
the time dependence of the growth of the phase separation
shows that the pattern scale grows slowly in the early stage
of the phase-separation process, as the local composition
builds up to its coexisting composition value �one of the

coexisting phases, �B , has been rendered transparent in Fig.
11�. At a later stage of phase separation, the pattern scale
growth is roughly linear in time �96,97�. Other LB studies
have recently focused on modeling the kinetics of phase
separation, so we do not dwell on this well known phenom-

FIG. 14. �Color� Sheared critical composition blend. The
‘‘string’’ structures are observed along shearing planes where the
strings are oriented in the direction of the fluid flow. The quench

depth �G�0.537, t̄ �8.5, and �̇tp�0.18.

FIG. 15. �Color� Early-stage off-critical �15-85� phase separa-
tion under shear. For Figs. 15–17, orange represents the regions of
high localized phase fraction of fluid A (�A�0.15). The green
regions represent the transition to a high localized phase fraction of
fluid B, �B�0.85. Note the incipient Taylor-Tomitaka instability in

some of the fluid ‘‘strings.’’ The quench depth �G�0.287, t̄

�16.4, and the dimensionless shear rate �̇tp�0.56.

FIG. 16. �Color� Intermediate stage off-critical �15-85� phase

separation ( t̄ �27.6). Droplets form after the fluid threads in Fig.
15 break up by the Taylor-Tomotika instability.

FIG. 17. �Color� Late-stage off-critical �15-85� phase separation

( t̄ �56.8). Droplets shown in Fig. 15 reconnect into stringlike
structures that appear to persist and coarsen in cross-sectional di-
mension with time. The strings in Fig. 17 are contrasted with the
‘‘stringslike’’ structures near the mixture surface in Fig. 14, repre-
sentative of a critical composition fluid mixture.
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FIG. 18. �Color� Initial density of three phase systems to un-
dergo surface-driven phase separation. The blue and green regions
correspond to the location of the two-phase mixture. A third phase,
lying above, is rendered as the translucent red region. The quench
depth �G�0.7.

FIG. 19. �Color� ‘‘Surface-directed’’ phase separation. Phase
separation of a fluid mixture between interacting solid and air
boundaries. The layered morphology corresponds to ‘‘surface-
directed spinodal decomposition.’’ This stage of the phase separa-

tion corresponds to t̄ �1.0.

FIG. 20. �Color� Phase separation of a fluid mixture between
interacting solid and air boundaries. This image indicates the devel-
opment of an instability that disrupts the layers in late-stage phase

separation. The reduced time equals t̄ �1.6.

FIG. 21. �Color� ‘‘Disrupted’’ surface-directed phase separa-
tion. The disruption effect of ‘‘pinching’’ of the layers allows for
further coarsening and leads to a collapse of the layered structure

shown in Figs. 19 and 20. The reduced time equals t̄ �4.0.
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enon in the present paper �11,97–100�. We next illustrate the
qualitative change in the phase-separation morphology that
occurs under off-critical conditions. Figure 13 shows the
phase-separation morphology for a quench depth, �G

�0.133. The rendered composition �A is taken to have the
off-critical value �A�0.1. The phase separation then occurs
through droplet formation rather than the formation of a bi-
continuous ‘‘spinodal’’ phase-separation pattern. At a later
time, we observe the droplets to coarsen by coalescence in a
normal manner for off-critical fluids �101�. In future work,
we plan to explore the conditions �e.g., quench depth, vis-
cosity mismatch, etc.� that determine the crossover between
the droplet and bicontinuous phase-separation patterns ob-
served in the early stages of phase separation. Even this basic
aspect of fluid phase separation remains poorly understood
so that materials scientists must rely on engineering correla-
tions �102�.

B. Phase separation under a steady shearing flow

We next illustrate a nontrivial application of the LB
method to a situation in which fluid flow is crucially impor-
tant. Figure 14 shows the phase separation of a critical com-
position (�A��B , M A�M B) blend for the same quench as
shown in Fig. 11. The upper and lower boundaries in the
figure are energetically ‘‘neutral’’ �neither fluid preferen-
tially wets the surface.� A hydrodynamic ‘‘stick’’ boundary
condition is imposed at the walls. The top and bottom walls
move at velocities uw and �uw such that the dimensionless
shear rate equals �̇tps�(2uw /d)tps�0.18, where d is the
spacing between the walls. The boundary condition is peri-
odic in the direction parallel to the translating planes. We
observe in the top view that the phase-separation pattern ap-
pears to have a ‘‘stringlike’’ form at the boundary, but that
the structure within the film is actually more complicated.
The phase separation in the plane perpendicular to the flow is
remarkably undisturbed by the flow and closely resembles a
two-dimensional phase-separation pattern in the absence of
shear. As time proceeds, the ‘‘penetration depth’’ of the
surface-induced ‘‘stringlike’’ structures in Fig. 14 increases
and the phase-separation morphology ultimately coarsens to
a state where the fluid interface lies perpendicular to the
shearing planes and parallel to the flow direction. The
surface-induced ‘‘structuring’’ of the blend morphology
would be accentuated in the early stages of phase separation
if one of the blend components had a preferential attraction
to the shearing boundaries. This surface interaction evidently
has a symmetry-breaking effect, since the fluid interface was
found to lie parallel to the interface of the shearing bound-
aries at long times, when the boundary interaction was modi-
fied in this fashion. This illustrative calculation shows that
the surface interaction can have a large influence on the ul-
timate alignment of a phase-separated fluid under shear. It is
also apparent that the interpretation of optical and scattering
data on sheared phase-separated fluids is complicated by the
existence of gradients in the composition and structure of the
fluid. Clearly, these observations warrant a thorough investi-
gation of the many parameters that seem relevant to the phe-
nomena �quench depth, surface energy, viscosity, molecular

weight mismatch, roughness of shearing surface, steady and
oscillatory shear, etc.�. We note that many experiments have
recently reported ‘‘stringlike’’ structures in sheared phase-
separating fluids using both light scattering and optical mi-
croscopy techniques �48,103,104�, and ‘‘stringlike’’ struc-
tures have also been reported in two-dimensional LB phase-
separation simulations �105�. The case of two dimensions is
somewhat special, however, since the Taylor-Tomotika
�106� instability is suppressed in two dimensions �107�.

An illustration of phase-separation in an off-critical blend
under steady shear also provides important insights into the
kinds of phase-separation morphologies that can be expected
experimentally. Figure 15 shows an off-critical blend �15-85�

for a dimensionless shear rate, �̇tps�(2uw /d)tps�0.58. Ini-
tially, long narrow filaments formed and eventually they
broke apart into droplets due to the well-known Taylor-
Tomotika instability �106�. The droplets �Fig. 16� then be-
came elongated and tilted at approximately 45° relative to
the shear plane, as predicted in the limit of a low concentra-
tion of dispersed droplets �108�. However, at a later stage of
phase separation �Fig. 17�, the droplets coalesce to form un-
dulating string structures that seem to persist indefinitely in a
‘‘dynamic string state’’ �a video of our simulation can be
found in Ref. �109��. The correlated motions of the strings
suggest that the hydrodynamic interactions between the
strings and/or between the strings and the boundary of the
sheared fluid seem to be playing an important role in the
stabilization and formation of the extended string structures.
Subsequent experiments have indicated a similar string for-
mation phenomenon in an off-critical blend sheared at low
shear rates in a parallel plate geometry having a narrow gap
relative to the droplet size �110�.

C. Surface-directed phase separation

As a final illustrative application of the LB method, we
consider an example of blend phase separation where one
boundary is solid and the other interface is fluid �Figs.
18–21�. Figure 18 shows the initial fluid composition at a
quench depth of �G�0.7. The dark liquid phase has a pref-
erential interaction �111� with both the solid substrate �bot-
tom boundary� and a third fluid �‘‘air’’�. This image illus-
trates the well known phenomena of ‘‘surface-directed
spinodal decomposition,’’ in which the compositional waves
of phase separation are brought into registry with the
symmetry-breaking walls �95,112–116�. The coarsening of
the layer structure at early and intermediate times occurs
much like a bulk blend �see Fig. 12�, but the continued coars-
ening at long times requires the intermittent loss of fluid
layers. At some point, the undulations within the layers grow
sufficiently large �perhaps associated with the rupture of in-
ner layers as required by coarsening� to induce perforations
in the outer surface of the blend film at the polymer-air
boundary �Fig. 20�. This undulation phenomenon then causes
the layered structure to break up into a structure that super-
ficially resembles a spinodal decomposition pattern when
seen from above �Fig. 21�. A number of studies have indi-
cated the presence of a ‘‘fast mode’’ �117� in layered blend
films, corresponding to a rapidly growing length scale con-
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sistent with a hydrodynamic instability. The instability
shown in Figs. 18–21 provides a possible explanation for the
geometrical nature of this transition. Further computational
and experimental studies of the late-stage coarsening insta-
bilities in layered blends would clearly be interesting to
check this novel picture of phase separation in thin quiescent
films in which the surface exerts a strong perturbing influ-
ence on the phase-separating blend film structure.

VII. CONCLUSIONS

The development of the lattice Boltzmann methods of
simulating flows in multiphase liquids has developed rapidly
in recent years. The time has come to evaluate the critical
phenomena that characterize basic thermodynamic and hy-
drodynamic properties of this type of model. We performed
numerical experiments on a LB fluid model to determine the
equilibrium critical properties that are most important for
comparison with real fluids. The results of those simulations
are represented in a reduced variable description that is
largely independent of the particulars of the model facilitat-
ing comparisons with other models of fluid mixtures and
with experiment. This type of representation should also be
advantageous in expressing experimental measurements in a
model-independent form. Our observations indicate that the
critical properties �coexistence curves, correlation length, in-
terfacial profile, surface tension� of the LB fluid correspond
to an ideal mean-field fluid over a broad range of tempera-
tures. This makes comparisons of the model to experiment
particularly appropriate to the high molecular weight poly-
mer blends and other fluid mixtures �perhaps also including
some ionic fluids and fluid mixtures containing dissolved
salts �90,91�� that can be reasonably modeled by mean-field
theory.

Now that we have established the equilibrium critical
properties of LB fluid mixtures, we are in a position to study
much more complicated problems involving fluid flow,
phase separation, and interacting complex boundaries. We
illustrated this type of problem in the case of phase separa-
tion in critical and off-critical fluid mixtures with and with-
out shear. We also considered the perturbing influence of
boundaries on quiescent phase separation and the flow insta-
bilities that can occur in late stages of phase separation.

Our bulk blend phase-separation studies show that the
morphology of the phase-separation process in its early and
intermediate stages depends on the fluid composition. The
early stage of phase separation corresponds to the growth of
the local composition to the value of the coexisting compo-
sition. Coarsening proceeds at a later stage. The phase-
separation morphology had a bicontinuous form under off-
critical conditions and the minority phase had a droplet
morphology in a far off-critical blend. Previous LB calcula-
tions have emphasized the kinetics of phase separation,
which is not the emphasized phenomena here �11,98–100�.
In future work, we plan to study the crossover between the
droplet to bicontinuous phase-separation morphology as a
function of viscosity mismatch, composition, and quench
depth.

Next, we considered the more challenging problem of

phase separation under steady shear. Again we considered
on- and off-critical blends and found the morphologies to be
qualitatively different. Shear had the effect of causing the
phase-separation morphology to ‘‘streak’’ into a stringlike
morphology near the boundary of the critical composition
phase-separating blend, leading to a complex gradient struc-
ture within the blend. The ‘‘penetration’’ depth of the
surface-induced strings seemed to grow with time in the
course of phase separation. The ultimate configuration of the
phase-separated blend, alignment parallel or perpendicular to
the flow direction, depends on the polymer surface interac-
tion. These observations of fluid heterogeneity on intermedi-
ate time scales clearly raise questions about the proper inter-
pretation of light scattering and optical microscopy studies of
blends under shear, since these methods often involve an
averaging over the gradient structure or are limited to obser-
vations of the near-surface properties of the mixture, respec-
tively. The off-critical sheared blend simulations revealed a
tendency toward droplet distortion and tilted alignment with
respect to the shear flow direction. At a latter stage, we ob-
served droplet alignment and the droplets subsequently coa-
lescenced into a stringlike morphology. These strings seem
to be very stable under shear, which we expect to arise from
the strong hydrodynamic interactions between the strings and
the shearing boundaries in these highly confined phase-
separating fluids �see Fig. 17�. A similar phenomenon in off-
critical blends sheared at low rates in a confined geometry
has recently been observed experimentally �110�.

In our final illustrative example, we considered the per-
turbing influence of solid and air boundaries on the phase
separation of a blend. The existence of a ‘‘free’’ deformable
boundary �polymer-air interface� makes this a particularly
instructive example of some of the advantages of the LB
method. We observe the development of composition waves
in the phase-separating blend, as observed in many previous
experimental and simulation studies with a preferential inter-
action between one of the blend components and the bound-
aries �110,112–116�. The simulation illustrates the process
by which layers are lost in the course of phase coarsening.
These film coarsening processes apparently lead to a desta-
bilization of the layer structure in a late stage of phase sepa-
ration. The fluctuations within the film associated with suc-
cessive film rupture processes cause the layer structure to
collapse like a disturbed ‘‘house of cards,’’ leading to a poly-
mer blend morphology superficially resembling a bicontinu-
ous ‘‘spinodal’’ pattern. These observations emphasize the
importance of time-dependent studies of blend film mor-
phologies in measurements on real blend films to properly
interpret their origin.

Our illustrations of LB calculations of blend phase sepa-
ration were purposely restricted to relatively simple geom-
etries and flows that are under current study for their poten-
tial relevance to processing applications. It is also possible to
incorporate many other fluid properties of interest �shear de-
pendence of fluid viscosity� and other important effects �tem-
perature gradients and time-dependent temperature varia-
tions, density mismatch of fluid components and segregation
with gravitational and centrifugal fields, fluid wetting and
dewetting on heterogeneous substrates, phase separation of
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blend films on patterned substrates, phase separation in elec-
tric fields, phase separation at high rates of flow where iner-
tial effects are important, flow in complex geometries and
with the presence of filler inclusions, etc.�. There are many
possibilities for further application. An important challenge
for future theoretical work is the incorporation of fluctuation
effects to better describe fluid properties near the critical
point for phase separation.
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APPENDIX A: CONTRIBUTION TO PRESSURE TENSOR
FROM FLUIDÕFLUID INTERACTION

Here it is useful to discuss the relation between the LB
model and other mean-field models of phase separation.
First, consider the equation for a single-particle distribution
function P1 based on the continuum BBGKY �8,9� formal-
ism, which is extended to the case of multiple species,

� tP1
i �k� 1•“P1

i �F� •“kP1
i �� i, �A1�

where k� is the microscopic momentum, F is the acceleration
due to a body force, and � is a collision operator. It can be
shown, when making a molecular chaos approximation �9�,
that the collision operator can be written as

� i���
j�1

s �P1
i �r�1 ,k� 1 ,t �

m�k� 1

�� d3r2� j�r�2 ,t �gi j�r�1 ,r�2 ,t �
�Vi j�r12�

�r�1

. �A2�

This approximation of the collision operator is of the form of
a body-force term, F•“kP1. For �r�1�r�2��d , where d is of
order a few ‘‘effective’’ hard-sphere diameters, gi j(r�1 ,r�2)
�1. After expanding � j about r1, the contribution to the
collision operator associated with the attractive intermolecu-
lar interaction, � i can be approximated by � i�� j�1

s “Vm
i j

•“kP1
i , where Vm

i j�2ai j�
j(r�1)�� i j“2� j(r�1) with ai j

� 1
2 �dd3rVi j(r) and � i j�

1
6 �d d3r r2Vi j(r). Vm

i j can be

thought of as a mean-field potential produced by neighboring
particles and �“Vm

i j is the associated mean-field force.
The pressure tensor can be determined for this system,

PJ���a11 �1
2�a22 �2

2�2a12 �1�2

��11�
1
2 �“�1�2��1“2�1���22�

1
2 �“�2�2��2“2�2�

��12�“�1•“�2��1“2�2��2“2�1�� IJ��11“�1“�1

��22“�2“�2�2�12�“�1“�2�“�2“�1�.

This expansion is a counterpart of the Cahn-Hilliard or Lan-
dau free-energy expansion �12,17�. The forcing used in this
paper is for the case in which all terms in the above pressure
tensor are zero except that with the coefficient a12 , which is
proportional to the coupling constant, G, described earlier in
the paper. While there is no explicit inclusion of a surface
tension term in the model studied in this paper, an effective
surface tension force results in the Shan-Chen model due to
how the forcing between fluid components is incorporated.
This can be seen from the leading term in the expansion of F,

F���x��x ����x��x ��
��

�x
, �A3�

where F2 corrections to the pressure tensor, a feature in the
Shan-Chen model �7�, scale with the surface tension as in
standard Cahn-Hilliard models. Higher-order terms, from
Chapman-Enskog analysis, also contribute to the effective
surface tension, along with contributions that arise from
finite-difference approximations of the contiuum equations.
Quantitative predictions of the surface tension require an un-
derstanding of all these terms.

APPENDIX B: HARD-SPHERE CORRECTION
TO INTERACTION TERM

The usual lattice Boltzmann method assumes that the fluid
is composed of point particles. To include a volume exclu-
sion interaction and in effect obtain a relative volume of the
fluid particles, we utilize an Enskog hard-sphere model. The
relative volume fraction can be determined from the sphere
radius and the number density. The application of Enskog
theory to multicomponent fluid mixtures is described by Ló-
pez de Haro et al. �118� and in references cited in this work.
While there are different formulations of hard-sphere mod-
els, such as standard Enskog theory �SET� and revised En-
skog theory �RET�, we will utilize a form of forcing, arising
from hard-sphere interactions that are treated to lowest order
in density. In this case, the two theories are identical. Further
details are described in Ref. �118�. In the isothermal regime,
the additional correction to the forcing due to hard-sphere
collisions, Bi(HS), is
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Ba
i(HS)��

2bi j� i jc

n j
na

i(eq)�ea�v�• �n j

�x
, �B1�

where � i jc is the equilibrium value of the pair correlation
function for spheres of species i and j at contact with the

equilibrium density replaced by the total local equilibrium
density at the point x, bi j�

2
3 �n j� i j

3 /� , with � i j equal to the
distance between sphere centers in contact and � is the local
density. The total forcing on a fluid component i is then Ba

i

�Ba
i(HS) , where Ba

i is defined in Eq. �13�.
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