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Abstract—Much recent research has been devoted to 
investigating algorithms for allocating virtual machines (VMs) 
to physical machines (PMs) in infrastructure clouds. Many 
such algorithms address distinct problems, such as initial 
placement, consolidation, or tradeoffs between honoring 
service-level agreements and constraining provider operating 
costs. Even where similar problems are addressed, each 
individual research team evaluates proposed algorithms under 
distinct conditions, using various techniques, often targeted to 
a small collection of VMs and PMs. In this paper, we describe 
an objective method that can be used to compare VM-
placement algorithms in large clouds, covering tens of 
thousands of PMs and hundreds of thousands of VMs. We 
demonstrate our method by comparing 18 algorithms for 
initial VM placement in on-demand infrastructure clouds. We 
compare algorithms inspired by open-source code for 
infrastructure clouds, and by the online bin-packing literature. 
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I. INTRODUCTION

Paxson and Floyd [1] describe many difficult problems 
impeding simulation of large data communication networks, 
which typically require hundreds of parameters that can each 
take on millions of values and that can also record hundreds 
of response variables, which might represent aspects of 
fewer significant underlying behaviors. The same can be said 
for most simulations of large distributed systems, such as on-
demand infrastructure clouds. 

We have developed an objective method to compare 
resource-allocation algorithms in simulations of large 
distributed systems. Our method involves several steps: (1) 
developing a reduced-parameter model for a large distributed 
system of interest, (2) conducting a sensitivity analysis to 
determine the most significant model behaviors and the 
parameters that most influence those behaviors, (3) applying 
two-level orthogonal fractional factorial experiment design 
[2] to construct a set of parameter combinations under which 
resource-allocation algorithms should be compared and (4) 
using multidimensional data analysis techniques to find 
patterns revealing significant similarities and differences 
among the algorithms being compared. In previous work [3-
4], we applied our method to compare proposed congestion-
control algorithms for the Internet. Also in previous work 
[5], we demonstrated the first two steps in our method, when 
applied to on-demand infrastructure clouds. We constructed 
a reduced-parameter model (explained below in Sec. III) and 
we conducted a sensitivity analysis that revealed eight 
behavioral dimensions and six influential parameters. 

In this paper, we demonstrate steps three and four in our 
method, using the results from our sensitivity analysis to 
construct 32 parameter combinations under which we 
compare the macroscopic behavior of 18 possible algorithms 
for initially placing virtual machines (VMs) on physical 
machines (PMs). Our comparative conditions encompasses 
cases with up to O(104) PMs and O(105) VMs. While there 
are many possible algorithms to investigate (as explained 
below in Sec. II), we elected to focus on algorithms inspired 
by a combination of the Eucalyptus open-source code [6] and 
the online bin-packing literature [7-8]. Eucalyptus inspired 
us to evaluate two-level algorithms that first choose a cluster 
for VMs in a related request and then choose nodes within 
the selected cluster. The literature for online bin-packing 
inspired us to adopt algorithms based on well-known 
heuristics that can provide good (not optimal) results without 
infeasible computation. 

Our paper makes three main contributions. First, we 
demonstrate an objective method for comparing possible 
VM-placement algorithms through simulation of large, on-
demand infrastructure clouds. While we restrict our 
comparison to 18 selected algorithms, the approach we use 
should be applicable to compare any set of competing 
algorithms. Second, we generate some insights regarding 
two-level VM-placement algorithms, showing that choice of 
cluster has larger influence, than choice of nodes, on 
macroscopic behavior in an infrastructure cloud. We also 
provide observations about specific pairs of algorithms, 
where each pair combines a criterion for choosing a cluster 
with a heuristic for choosing PMs within a cluster. We also 
discuss some tradeoffs among algorithms. Third, we provide 
evidence showing that, on average, different algorithms for 
initial VM placement in on-demand infrastructure clouds 
yield only small quantitative differences in many of the 42 
responses we measured (as explained below in Sec. IV). On 
the other hand, we show that selection of the algorithm for 
choosing a cluster can lead to very large difference in 
provider revenue, when aggregated over time. 

The remainder of this paper is organized as follows. In 
Sec. II we describe the general area of VM-placement 
research in infrastructure clouds, setting our study within this 
larger context. In Sec. III we describe our model and identify 
both fixed and varied parameters used in our study. We give 
values for fixed parameters, but postpone defining values for 
variable parameters until Sec. IV, where we describe our 
experiment design. In Sec. V we present our results and 
related analysis methods. In Sec. VI we discuss our findings. 
We close in Sec. VII with conclusions and future work. 
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II. RELATED WORK

The literature identifies that VM-placement decisions can 
be made under any of at least three different regimes [9]: (1) 
reservations [10-11], (2) on-demand access [11] and (3) spot 
markets [10-12]. In one reservation regime [11], a user pays 
a fee per instance per VM type for a period (e.g., one year) 
during which the specified VMs may be acquired at a 
discount from published usage charges. In on-demand access 
regimes, a user simply requests a specified number of one or 
more VM types needed immediately, and pays for VM usage 
according to a fixed schedule of fees. In spot markets, a 
provider’s prices fluctuate over time and a user specifies the 
usage rates they are willing to pay for requested VMs. When 
the provider price falls to or below the user’s willingness to 
pay, then the user’s requested VMs are launched. Should the 
provider price subsequently rise above the user’s willingness 
to pay, then the user’s VMs are terminated, and can only be 
restarted when the price falls to the level the user is willing 
to pay. In the grand scheme of resource-allocation decision 
making, one can envision PMs migrating back and forth 
among three pools, each assigned to one of the three regimes, 
as demand for VMs varies. Consideration of how best to 
allocate PMs to each pool would seem a ripe area for 
research [9]. We restrict our study to consider only on-
demand access. 

In on-demand clouds, there are potentially two types of 
VM-placement decisions to be made: (1) initial placement 
[13-23] and (2) migration (and/or resizing) of VMs over time 
[24-30], as PM availability changes, as consolidation is 
needed to conserve power and in response to the degree to 
which service-level agreements (SLAs) are being achieved. 
Most previous research on initial VM placement considered 
only PMs within a single cloud, but in one case [22] 
placement decisions considered which of several clouds to 
choose. In the existing literature, initial placement and VM 
migration are usually considered as separate topics, though 
in some cases similar algorithms may be adopted. Future 
research might consider interaction between initial placement 
and migration decisions, especially under situations where 
tradeoffs are needed among power conservation, SLAs, 
revenue maximization and reliability. We restrict our study 
to consider only initial VM placement. 

One could consider initial VM placement in on-demand 
clouds at two levels: (1) cluster and (2) node (i.e., PM). 
When VMs communicate, placing them on the same cluster 
makes good sense because communication among the VMs 
will be local to a cluster switch. Most existing research [13-
23] considers PMs as an unstructured pool, where restricting 
VMs to a shared cluster would be accomplished by 
designating a Boolean attribute, one of potentially many 
attributes over which some optimization algorithm or bin-
packing heuristic would be executed. In our study, guided by 
the open-source code in Eucalyptus (v1.6) [6], we adopt 
explicit use of two distinct decisions levels: (1) choosing a 
cluster for all VMs in a given request and then (2) choosing 
specific PMs within the selected cluster. Taking this course 
is the same as assuming that all VMs within a single request 

will communicate. VMs that need not communicate would 
then be included in separate requests. 

In most VM placement algorithms, PMs are partitioned 
into two sets: (1) those that meet some criteria and (2) those 
that do not. Subsequently, the set of PMs that meet the 
criteria are ordered, and VM placement attempts are made 
starting with the first PM on the list, and continuing until all 
VMs have been placed or until the set of qualified PMs is 
exhausted. Various criteria have been used to order qualified 
PMs. For example, many researchers [13, 16, 18, 23, 27] 
adopt ordering heuristics based on the literature associated 
with online bin packing [7-8]. Other schemes extend those 
heuristics by adding specific attributes (e.g., CPU usage, 
network and disk controller usage, and memory usage), 
summarized into a weighted value used to order PMs or to 
assign categories (e.g., star ratings [15]) that can be used to 
order PMs. In some schemes, attributes used to order PMs 
are determined by individual VM users [23, 30, 31], while in 
other schemes attributes are determined by the provider [13, 
14, 19, 27], or user and provider attributes are combined [21, 
22, 23, 26]. To limit our study, we elected to use heuristics 
based on those found in online bin-packing literature. The 
method we use to compare placement heuristics should be 
applicable to any specific set of VM-placement algorithms 
that one wishes to compare. 

III. MODEL

We based our study on Koala, a discrete-event simulator 
inspired by the Amazon Elastic Compute Cloud (EC2)1 [32] 
and by the Eucalyptus open-source software [6]. Using 
published information describing the EC2 application 
programming interface (API) [33] and available virtual 
machine (VM) types [34], Koala models essential features of 
the interface between users and EC2. Intended to study 
algorithms for initial VM placement, Koala models only four 
EC2 commands: RunInstances, DescribeInstances, Reboot 
Instances and TerminateInstances. The internal structure of 
Koala is based on the Eucalyptus (v1.6) open-source cloud 
software. Specifically, Koala models three Eucalyptus 
components: cloud controller, cluster controller and node 
controller. As in Eucalyptus, Koala’s simulated cloud, 
cluster and node controllers communicate using Web 
Services [35], which Koala also simulates. 

Koala modifies the design of Eucalyptus in three ways. 
First, Koala extends the Eucalyptus RunInstances command 
to allow multiple VM types within a single request, which 
appears possible in EC2. Second, Koala avoids centralization 
of node information at the cloud controller, permitting 
simulation of clouds up to O(105) nodes. Third, Koala allows 
competing RunInstances to proceed partially in parallel 
(serializing only the commitment phase), which prevents 
long queuing delays during periods of intense user requests. 
In lieu of simulating details of a hypervisor and guest VMs, 
Koala includes an optional sub-model based on analytical 
equations representing VM behavior with or without tasks. 

                                                           
1 Any mention of commercial products is for information only; it does not 
imply recommendation or endorsement by NIST. 
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FIGURE & TABLE ENLARGEMENTS

Enlargements of all figures and tables in this paper may be 
downloaded from  
http://www.nist.gov/itl/antd/upload/LargerTablesPaper36.pdf
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