

Using Unstructured Work Order Data to Improve Maintenance Procedures in Manufacturing

Michael P. Brundage

Systems Integration Division, Engineering Laboratory National Institute of Standards and Technology

May 9, 2018

National Institute of Standards and Technology U.S. Department of Commerce

- 1. Current Paradigm with Maintenance Work Orders (MWOs)
- 2. Transforming the MWO Data
- 3. Investigatory Analysis with MWO Data
- 4. Future Work

engineering abora

Maintenance Work Order Data

"Hydraulic return line replaced" "Turret removed, cleaned, reinstalled, and aligned"

"Marine door seal leaking / Leak from seal on basket shaft"

"Head removed and cleaned thoroughly. Found cam action spring binding on one tool station. Removed spring and cleaned up burring on spring; Reset and reinstalled"

"Bearings bad; removed spindle and replaced bearings" "Retrieved motor from spare automation and installed"

Standards and Tech

U.S. Department of Commerce

"At 27bar; Charged to 30bar No issue"

Current Maintenance Paradigm

- Expertise Driven
- Sensors not always present
- Often unstructured MWOs
 natural language; domain-specific abr. and jargon
 - "tribal" knowledge
- Proprietary maintenance software

I.S. Department of

National Institute of Standards and Technology U.S. Department of Commerce

Interactive Case Study

engineering aborato

https://www.youtube.com/watch?v=jHbI_B2sPA0&feature=youtu.be&t=1m35s

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot." "All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before making that move if he/she wanted to keep that depth of cut."

"Too large of an engagement at tool high of a feed."

engineering aboratory

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before

Tool is broken

e if he/she wanted to depth of cut."

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot."

"Too large of an engagement at tool high of a feed."

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before

e if he/she wanted to depth of cut."

Depth of cut too large

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot."

"Too large of an engagement at tool high of a feed."

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before

Feed rate too high

e if he/she wanted to depth of cut."

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot."

"Too large of an engagement at <mark>tool high of"</mark> <mark>a feed.</mark>"

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before

Bad process plan

ve if he/she wanted to t depth of cut."

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot."

"Too large of an engagement at tool high of a feed."

"The cutting tool snapped off. Need to replace tool and inspect spindle for damage. Looks like they were cutting too deep in one pass for the strength of the tool"

"All-around operator error. Looks to be too high a depth of cut at too high a feedrate. Also looks like the move at the end put too high a stress on the tool. Operator should have retracted the tool before

Operator error

e if he/she wanted to depth of cut."

"The DOC is too large and the feed too high for the slot such that the forces increase until tool breakage as the tool approaches the vice. It probably wasn't smart either to machine towards the vice as they have anyway. A typical approach to avoid this problem is to ramp into the slot."

"Too large of an engagement at tool high of a feed."

Maintenance Work Order Data

Raw Data

Effect	Average of Time to Complete (hrs)	Number of Instances	Total Time to Complete (hrs)
Accumulator check requested	1.4590	14	16.05
Vogel lube faults	1.5875	7	6.35
Base cleaning requested	13.575	4	27.15
Table index O/T faults	2.7	3	2.7
lemca will not load in Auto	313.2	3	939.6
Chip conveyor INOP	1.075	3	2.15
Chip conveyor jammed	3.725	3	7.45
St#2 drill detector INOP	0.15	2	0.15
Table drifting at 1/2 table setting	47	2	94
Motor thermal overload fault -Hyd	Iraulic 24	2	24
Machine will not run in Auto		2	
Part not loading into collet		2	N
St#8 Hyd flange not repeating	0.15	2	0.15
Power pack leak		2	N.
Table index O/T at 1/2 table -Turni Hydraulics	ing off	2	
		Effect	

Clean Data

National

Standards and Technology

U.S. Department of Commerce

stitute o

Effect	Average of Time to Complete (hrs)	Number of Instances	Total Time to Complete (hrs)
Hydraulic Leak	40.8775	39	817.55
Accumulator check requested	1.690	26	35.5
Coolant Leak	122.47	17	1347.2
Bearings check	16.835	16	168.35
Chip conveyor INOP	5.8	15	63.8 <i> </i>
Broken screw	3.8722	14	34.85
Table index faults	24.08	13	120.4
Brush unit stuck forward	4.744	10	42.7
Vogel lube fault	2.27	9	11.35
Coolant Pressure Low	3.26	9	16.3
Oil leak	39.2375	8	156.95
Base cleaning requested	13.575	4	27.15
Iemca will not load in Auto	235.9	4	943,6
Bearings noise	79	4	7 <mark>9</mark>
Inverter failing to return	0.3	4	Q .3

	Total Time to	Complete (hrs)
Effect	Raw	Clean
Accumulator check requested	16.05	35.5

Raw Data

Hyd leak at Bar stop pre load position
Major Hydraulic leak at Bottom XD head
Hydraulic leak at cutoff unit
Hyd leak at St#2 chip breaker valve
Hyd leak reported
Hydraulic leak at bar loader -Rubber seal on vacuum
HP Hydraulic line ruptured
Multiple leaks at lemca -25 Gallons in 48 hours
Hydraulic return line leak
Hyd leak from behind collet #6
Hydraulic leak turret 2
Hydraulic leak actuator or horseshoe
Hydraulic leak at chip breaker valve (? Valve station)
Hydraulic leaks -from collets??
Leak at High Pressure pump
Hyd leak St#2 valve
St#6 valve leaking hydraulic
Hydraulic leak
Hyd leak at locking pin assy
Iemca hydraulic pump leaking -Full tank per day
Hydraulic leak on Side A
Hydraulic leak from power pack
St#8 valve leaking Hyd fluid
Hyd leaks -C/O unit, St#11 Valve, Collet #10 (Internal)
Hydr pump? / Power pack leak / CNCs shuddering
Hydraulic leak at inverter st#8
Hyraulic leak at St#4
Hyd leaks at valve below #7 / Lid leaks at loader
St#8 valve spraying hydraulic fluid
Hyd leak at lemca pumps tank
Hyd leak from dressing unit
Hydraulic leak at Cutoff valve
Hydraulic leak at power pack -per PM tix
Hydraulic leak found by Doug -3.1 quill
Hydraulic Leak reported -One tank per day
Hydraulics leaking from dressing unit
Major hydraulic leak
Major Hydraulic leak at rotator -Rotator rack is broken
Hydraulic oil getting into Vogel waste oil

Clean Data Hydraulic Leak

Raw Data

Clean Data

Hydraulic Leak

Major Hydraulic leak at rotator -Rotator rack is broken

engineering

Hydraulic oil getting into Vogel waste oil

Initial Annotation Attempt

<u>Method</u>

- Find useful representations for common problems
- Unify terminology
- Preliminary Cause/Effects/Treatments

	Time Inv.	Result
Initial annotation	12 hours	800 labels

Standards and Technolog

U.S. Department of Commerce

Tagging as Annotation

- "Tags" have many benefits for **users**:
 - No Controlled Vocabulary
 - Naturally reflect the user-base's communication
 - Less ambiguous than strict classification \rightarrow more usage
- Collections of tags on a domain form a "Folksonomy"
 - Relationships are encoded via tag co-occurrence *like Bag of Words!*
 - Can be predicted via Multi-*label* classification

We sacrifice **certainty** about specific labels, and gain annotation quality & ease-of-use

Description

Hydraulic Leak at cutoff unit

Resolution

National Institute of Standards and Technology U.S. Department of Commerce

Missing fitting replaced

engineering abor

engineering

engineering

National

Standards and Technology U.S. Department of Commerce

engineering

	Time Inv.	Result
Previous annotation	12 hours	800 labels
Tagging method	12 hours	1200 tagged

Semi-Automated Tagging

Keyword-based Tagging Tool

Ordered Vocabulary Annotation

Keyword Extractor

Tags Extracted from Work-order "Hydraulic Leak at cutoff unit; Missing fitting replaced"

_

Semi-Automated Tagging

	Time Inv.	Result
Previous annotation	12 hours	800 labels
Tagging method	12 hours	1200 tagged
Ordered Keyword Tagger	0.75 hours	3100 tagged, 99.7% partials

National Institute of Standards and Technology U.S. Department of Commerce

Semi-Automated Tagging

engineering

1 010	am loken	N Gram To	oken R Tag	eport Annotation		Similar Pattern	Property Edi	itor
1 2 3 4 5 6 7 8 9 10	tokens replace bucket repair grease leak oil engine hose broken tooth	NE S I S U P U I I P I	alias replace bucket repair grease leak oil engine hose broken	notes		 ✓ lube ☐ lubing ☐ lubricate ☐ louder ☐ leg ☐ led ☐ lhe ☐ leak ☐ line ☐ left 	Preferred Alias Iube Item Problem Solution Ambiguous (Unkr Stop-word	nown)
11	pump	I	pump					
12	lube				~		L	

Case Studies: Machine Performance

naineerina

National Institute of Standards and Technology

U.S. Department of Commerce

National Institute of Standards and Technology U.S. Department of Commerce

Case Studies: Machine Performance

30

Top Tag occurences, by Machine

- H34 issues with motor, brush_unit
- I19 alarms and/or sensors, potentially coolant-related
- H14 wide array of issues, including operator (!?)

National

Standards and Technology

U.S. Department of Commerce

Institute o

Case Studies: HVAC Hotspot Identification

Case Studies: HVAC Hotspot Identification

National Institute of Standards and Technology

U.S. Department of Commerce

Future Work

- Tagging UI refinement and industry user studies
- Visualization UI
 - Explore alternative visualizations
- Incorporate other data sources
- More use cases
- Automated hierarchy generation and V&V
- Develop standard guidelines through ASME PHM Subcommittee

.S. Department of

Thank you!!

Michael Brundage <u>michael.brundage@nist.gov</u>

Thurston Sexton <u>Thurston.sexton@nist.gov</u>

