How to Achieve Confidence in Complicated Measurements

Measurement Assurance For Regenerative Medicine and Advanced Therapies

> Anne Plant Biosystems and Biomaterials Division National Institute of Standards and Technology Gaithersburg MD <u>anne.plant@nist.gov</u>

April 2018 NIST Gene Editing Workshop

NIST

Challenges for Regenerative Medicine and Advanced Therapies Products

1. Characterization of product

Quality Attributes

- Identity
- Quantity
- Purity
- Sterility
 - Potency

2. Control of the manufacturing process

assure consistency of product during Scale of Change in personnel, process, location Improved methods, Changes in raw materials

Ground Truth

27

NIST

Ground Truth Hard to find in biology

...it is important to understand your measurements:

.....Compared to what?

- What is the measurand?
- Is your assay measuring what you intend?
- Are there assay variables (personnel, reagents, unknown factors) that are influencing the assay result?
- Can other labs get the same result?
- Is the measurement biologically meaningful?

Ground Truth Hard to find in biology

Understand your measurements:

- Qualify the assay
 - ACCURACY: Orthogonal method
 - PRECISION: Reproducibility: same day replicates, day to day, different technicians
 - ROBUSTNESS: sensitivity to assay parameters
 - SPECIFICITY: sensitivity to matrix effects
 - DYNAMIC RANGE AND RESPONSE FUNCTION: Instrument benchmarking. +/- controls. Calibration curve. Limit of detection

Measurement Qualification

- Are the results the same?
 - Can't tell *precision* without sufficient replicates that demonstrate dispersion in the measurement.

- Are the results accurate?
 - Can't tell *accuracy* without something to **compare** it to.

NIST, Salit/Deuwer

Comparability through reference materials

Easy to imagine for measurement of lead in water

Harder to envision for measuring complex biologicals and biological function

Standards and Technology What is measurement assurance?

Knowing the level of confidence you have in the data that you are using to make a decision.

Having the data that provide credibility of the measurement result.

There are many strategies for achieving measurement assurance

NIST

Assuring comparability: Interlaboratory studies, Design of Experiment for Robust Protocols

Identifying Sources of Uncertainty – Reportable Parameters?

1111111

Identifying sources of measurement uncertainty

Genome in a Bottle Consortium

		Hetero-												Homo-											
	Random zy					gous			Soft					zy	us	St	rar	۱d							
	_	E	rro	r :		SNP		_	Clipping		_	_	SNP		>	Bias			-	_	_	-	_	-	
Reference:	Α	G	G	С	т	G	т	G	С	С	A	Α	Α	т	С	G	G	A	A	G	т	С	С	Α	G
Allele #1:	A	G	G	с	т	G	т	G	С	с	A	A	A	т	т	G	G	A	A	G	т	С	С	A	G
Allele #2:	A	G	G	с	т	A	т	G	с	с	A	A	A	т	т	G	G	A	A	G	т	С	С	A	G
Reads:	A	G	A	с	т	G	т	G	с	с	A	A	A	т	т	G	G	A							
						т	т	т	С	т	A	A	A	т	т	G	G	G	A						
Forward Strand				с	т	G	т	G	С	с	A	A	A	т	т	G	G	G	A	G	т				
				с	т	A	т	G	с	с	A	A	A	т	т	G	G	A	A	G	т	С			
								т	с	т	A	A	A	т	т	G	G	G	A	G	т	С	С	A	
	A	G	G	с	т	A	т	G	с	с	A	A	A	т	т	G	G	G	A	G					
			G	с	т	A	т	G	С	с	A	A	A	т	т	G	G	G	A	G	т				
Reverse Strand	A	G	G	С	т	G	т	G	С	с	A	A	A	т											
			G	с	т	G	т	G	С	с	A	A	A	т	т	G	G	A							
											A	A	A	т	т	G	G	A	A	G	т	С	С	A	G
							т	G	С	С	A	A	A	т	т	G	G	A	A	G	т	С	С	A	G
						т	т	т	С	т	A	A	A	т	т	G	G	A	A	G	т	С			
	A	G	G	с	т	A	т	G	С	С	A	A	A	т	т	G	G	A	A						
									С	т	A	A	A	т	т	G	G	A	A	G	т	С	С	A	G

Zook, et al., Nature Biotechnology 2014

Evaluating the performance of a cell counting method: Experimental design and statistical analysis

Assuring comparability in instrumentation: traceability to a reference material

NIST SRM 1934/ Calibrated fluorimeter

Fluorescein Nile Red Allophycocyanin (APC) Coumarin 30

Different Manufacturers' calibration beads Equivalent Reference Fluorophore (ERF) Number

Light obscuration flow instrument For accurate bead concentration

Lili Wang

Flow Cytometry Quantitation Consortium 81 Federal Register 136 (15 July 2016), pp. 46054-46055

ERF Value Assignment to Cytometer Calibration Microbeads Submitted by Consortium Members

3

NL

NL

How well do we have to measure?

Measurement Assurance is Necessary for Confident Decisions

Addressing these challenges will be a community effort:

Tool/methods development

Interlaboratory comparisons

Data sharing

Some tools for achieving measurement assurance:*

- Ishikawa (cause/effect) diagram to identify sources of variability
- Design of Experiment
- Process Controls
- Charting
- Validation specifications
- Interlaboratory comparisons
- Reference Materials for traceability

* There are many different ways of realizing confidence in measurements.

