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Introduction

 Machine tools are difficult to operate
– Significant experience required for effective use

 Control
– Decades old G-Code
– Geometric primitives
– Unidirectional data transfer

 Feedback
– MTConnect
– OPC UA

 How can we use the digital twin concept to enable CNC machine tools 
to be operated as easily as 3D printers?
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<Samples>
<Load dataItemId="cl" timestamp="2017-01-31T22:16:39.623784Z" 

name="Cload" sequence="1510344">0</Load>
<Angle dataItemId="cpos" timestamp="2017-01-31T22:14:40.170085Z" 

name="Cdeg" sequence="1509772" subType="ACTUAL">0</Angle>
<RotaryVelocity dataItemId="cs" timestamp="2017-01 31T22:16:08.982719Z" 

name="Cfrt" sequence="1510223" subType="ACTUAL">0</RotaryVelocity>
</Samples>
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Current Industrial Practice: CAM to G-Code to CNC

 CAM systems create G-Code using post processors
– Machine specific instructions

 G-Code: text-based NC programming language, originally 
standardized in 1960s, still dominant today
– Serial execution
– Lines, arcs, and splines (primitives)
– Maximum traversal velocity

 Industrial CNC systems
– Proprietary architecture
– Lack of interoperability
– Options available – at a cost

3Photo Credits: Okuma America, Mazak Corporation
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Digital Volumetric Processing (DVP) Using High-
Performance Computing

 Reformulation of the traditional toolpath planning problem
 Discrete Geometry

– Part surface comprised of many small cubes called voxels
– Voxel size s determines resolution of part surface
– STLs, scans, point clouds

 High Performance Computing (HPC) using graphics processing units (GPUs)

4
[1] R. Lynn, M. Dinar, N. Huang, J. Yu, J. Collins, C. Greer, T. Tucker, T. Kurfess. Direct Digital Subtractive Manufacturing of Functional Assemblies Using Voxel-Based Models. ASME Journal of Manufacturing 
Science and Engineering, 2017.
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5-Axis Voxel-Based Path Planning:
Contact Volume Generation

 Constraints on tool center position
– Axial cutting depth
– Final part geometry

 A sequence of volumetric offsets
– Positive offset (expansion) of model by tool radius and cutting allowance
– Negative offset (shrinkage) of stock volume by DoC
– Union
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[2] R. Lynn, D. Contis, M. Hossain, N. Huang, T. Tucker, T. Kurfess. Voxel Model Surface Offsetting for Computer-Aided Manufacturing Using Virtualized High-Performance Computing. SME Journal of Manufacturing 
Systems, 2016.
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5-Axis Voxel-Based Path Planning:
Accessibility Analysis

 Constraints on tool axis orientation
– Collisions, travel constraints, surface normals

 Stack of binary bitmaps of unique orientations which are checked for 
collisions with workpiece and fixture
– Access path through white regions on maps

 Result: toolpath consisting of small, discrete, 5-axis movements
between voxels 6
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Process Intelligence: Material Removal Rate Analysis 
and Control Using Voxel-Based CAM

 Volume removed Vi is the sum of voxels of side length s swept by cutter 
envelope C over a step i

 Average MRR for the step i is the volume removed divided by the time 
taken to complete the step, Δt

7

= × ∈∑ 3 |i i
i

d s dv v CV

=
∆

i
i

i

MRR
t

V
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Traditional Method: DVP to G-Code

 Typical 5-axis block: G1XxYyZzAaBbFf
– x, y, z, a, and b are endpoints
– f is maximum speed
– Velocity constrained so all axes arrive at the same time

 For sufficiently small voxel sizes, a toolpath 
can consist of millions of linear movements
(G1s) between voxel centers
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Traditional Method: Obfuscated Trajectory Planning

9

Machine Status

RT Machine Control System

Motion 
Primitives

Program 
Support 

Commands

Program 
Interpreter

HMI
Machine 
Operator

G-Code

Non-RT 
Subsystem

I/O System

Trajectory 
Planner Interpolators

TTP TInterpolator

TServo

Axis Servo 
Loop

Axis Servo 
Loop

Axis Servo 
Loop

Axis Servo 
Loop

Axis Servo 
Loop

P
os

iti
on

 S
et

po
in

ts

Velocity 
Profiles

Data 
Collection PC

MTConnect XML

Offline CAM & 
Postprocessor

CAM 
Programmer

CNC System



/ 18

Direct Control Method: DVP to Servo Commands

 High speed communication of servo 
setpoints instead of geometric primitives

 Time-optimal path planning
– Position constraints from CAM
– Machine kinematic constraints
– Spline fit to axis position commands
– Multiple solutions of robotic path planning strategy
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DVP to Servo Commands: Mathematical Formulation
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Direct Servo Control Method: Requirements and 
Capabilities

 Generalizable methodology for complete control of 
motion profiles directly from a CAM system
– Pre-interpolated data with already-planned, optimized trajectories
– Creation of joint space profiles at the servo rate with inverse 

kinematic transformation (IKT)
– Use of open-source tools

 Dense feedback to CAM system to enable toolpath 
analysis and optimization
– As-executed motion profile using forward kinematic transformation 

(FKT)
– Positional derivatives along toolpath

12



/ 18

Direct Servo Control from Voxel-Based CAM: 
Concept
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Direct Servo Control from Voxel-Based CAM: 
Hardware Implementation

 Current Platform: PocketNC
– $4000 5-axis desktop machine tool
– Beaglebone Black, Machinekit
– Desktop-sized open CNC research 

platform

 WIP: Mori Seiki Retrofit

 Additional Capabilities
– Enhanced control of tool trajectory 

and MRR
– Richer feedback information
– Improved usability for complex 

machines, similar to AM

14Photo Credit: Power Automation GmbH
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Direct Servo Control from Voxel-Based CAM: The 
Machine Tool Digital Twin
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Integration into Complete Shop Floor Digital Twin

16

DATABASE

WEB SERVICES

NEW INFORMATION

PHYSICAL FACTORY

FACTORY DIGITAL TWIN

• ENGINEERING
• CAM
• ANALYSIS

MOBILE DEVICE
APPDIRECT FEEDBACK

PEOPLEPRODUCTSMATERIALSTOOLSMACHINES
BOARDS AND 

SENSORS

HYPERTEXT TRANSFER PROTOCOL (HTTP)



/ 18

Implications & Conclusions

 Voxel-based CAM system
– Intricate simulation, MRR analysis

 Time parameterization of 5-axis toolpaths using position samples from 
voxel models
– Minimum time path planning, kinematic and MRR limits

 New strategy for control and monitoring of a 5-axis machine tool directly 
from CAM
– Enables usability similar to typical 3D printers
– Allow for tighter integration into shop floor digital twin

17
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Questions?
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DVP to Final Part
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DVP to Servo Commands: Mathematical Formulation
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DVP to Servo Commands: Mathematical Formulation
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Direct Servo Control from Voxel-Based CAM: 
Software
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