Realization of the 5-Axis Machine Tool Digital Twin Using Direct Servo Control from CAM Roby Lynn¹, Mukul Sati², Tommy Tucker³, Jarek Rossignac², Christopher Saldana¹, Thomas Kurfess¹ ¹George W. Woodruff School of Mechanical Engineering, Georgia Tech

²School of Interactive Computing, Georgia Tech

³Tucker Innovations, Inc.

NIST Model-Based Enterprise Summit April 4, 2018

Introduction

- Machine tools are *difficult to operate*
 - Significant experience required for effective use
- Control
 - Decades old G-Code
 - Geometric primitives
 - Unidirectional data transfer
- ✤ Feedback
 - MTConnect
 - OPC UA

G0 G17 G20 G40 G49 G64 G80 G90 G98 G54 G54.4 P0
953 G90 G0 Z0.
G53 G90 G0 B80. C90.
G65 P9544 H1
G54.1 P300
G54.4 P1
54800 M3
G43 H#3020 X-3.2923 Y-7.6496 Z8. B80. C90.
24.2575
G05 P2
G61.1 P3
G1 Z3.2575 F.02
G41 D#3020 Y-7.5079 F.006
G3 X-3.7647 Y-7.0354 I4724
52 X-4.6077 Y-6.1924 J.843

<Samples>

<Load dataItemId="cl" timestamp="2017-01-31T22:16:39.623784Z" name="Cload" sequence="1510344">0</Load> <Angle dataItemId="cpos" timestamp="2017-01-31T22:14:40.170085Z" name="Cdeg" sequence="1509772" subType="ACTUAL">0</Angle> <RotaryVelocity dataItemId="cs" timestamp="2017-01 31T22:16:08.982719Z" name="Cfrt" sequence="1510223" subType="ACTUAL">0</RotaryVelocity> </Samples>

How can we use the digital twin concept to enable CNC machine tools to be operated as easily as 3D printers?

Current Industrial Practice: CAM to G-Code to CNC

- CAM systems create G-Code using post processors
 - Machine specific instructions
- <u>G-Code</u>: text-based NC programming language, originally standardized in <u>1960s</u>, still dominant today
 - Serial execution
 - Lines, arcs, and splines (primitives)
 - Maximum traversal velocity
- Industrial CNC systems
 - Proprietary architecture
 - Lack of interoperability
 - Options available at a cost

Digital Volumetric Processing (DVP) Using High-Performance Computing

- Discrete Geometry
 - Part surface comprised of many small cubes called voxels
 - Voxel size s determines resolution of part surface
 - STLs, scans, point clouds
- High Performance Computing (HPC) using graphics processing units (GPUs)

Georgia

Tech

[1] R. Lynn, M. Dinar, N. Huang, J. Yu, J. Collins, C. Greer, T. Tucker, T. Kurfess. Direct Digital Subtractive Manufacturing of Functional Assemblies Using Voxel-Based Models. ASME Journal of Manufacturing Science and Engineering, 2017.

5-Axis Voxel-Based Path Planning: **Contact Volume Generation**

- Constraints on tool center position
 - Axial cutting depth
 - Final part geometry
- A sequence of volumetric offsets
 - Positive offset (expansion) of model by tool radius and cutting allowance
 - Negative offset (shrinkage) of stock volume by DoC
 - Union

Georgia Tech

5-Axis Voxel-Based Path Planning: Accessibility Analysis

- * Constraints on tool axis orientation
 - Collisions, travel constraints, surface normals
- Stack of binary bitmaps of unique orientations which are checked for collisions with workpiece and fixture
 - Access path through white regions on maps
- <u>Result</u>: toolpath consisting of *small, discrete, 5-axis movements* between voxels

Process Intelligence: Material Removal Rate Analysis Georgia and Control Using Voxel-Based CAM

 Volume removed V_i is the sum of voxels of side length s swept by cutter envelope C over a step i

$$\boldsymbol{V}_i = \sum_i d\boldsymbol{v} \times \boldsymbol{s}^3 \mid d\boldsymbol{v} \in \boldsymbol{C}_i$$

• Average MRR for the step *i* is the volume removed divided by the time v_{2}^{2} taken to complete the step, Δt

8/18

Traditional Method: DVP to G-Code

- Typical 5-axis block: G1XxYyZzAaBbFf
 - x, y, z, a, and b are endpoints
 - f is maximum speed
 - Velocity constrained so all axes arrive at the same time
- For sufficiently small voxel sizes, a toolpath can consist of <u>millions of linear movements</u> (G1s) between voxel centers

2.5µm Movement Size

Traditional Method: Obfuscated Trajectory Planning

Direct Control Method: DVP to Servo Commands

 High speed communication of <u>servo</u> setpoints instead of geometric primitives

- P_1 Time-optimal path planning *
 - Position constraints from CAM
 - Machine kinematic constraints
 - Spline fit to axis position commands
 - Multiple solutions of robotic path planning strategy

DVP to Servo Commands: Mathematical Formulation

Direct Servo Control Method: Requirements and Capabilities

- Generalizable methodology for complete <u>control</u> of motion profiles directly from a CAM system
 - Pre-interpolated data with already-planned, optimized trajectories
 - Creation of joint space profiles at the servo rate with inverse kinematic transformation (IKT)
 - Use of open-source tools

Georgia

Tech

- Dense <u>feedback</u> to CAM system to enable toolpath analysis and optimization
 - As-executed motion profile using forward kinematic transformation (FKT)
 - Positional derivatives along toolpath

Direct Servo Control from Voxel-Based CAM: Concept

Realtime Machine Control System

Direct Servo Control from Voxel-Based CAM: Hardware Implementation

- ✤ <u>Current Platform</u>: PocketNC
 - \$4000 5-axis desktop machine tool
 - Beaglebone Black, Machinekit
 - Desktop-sized open CNC research platform
- ✤ <u>WIP</u>: Mori Seiki Retrofit
- * Additional Capabilities
 - Enhanced control of tool trajectory and MRR
 - Richer feedback information
 - Improved usability for complex machines, similar to AM

Direct Servo Control from Voxel-Based CAM: The Machine Tool Digital Twin

Integration into Complete Shop Floor Digital Twin

Implications & Conclusions

- Voxel-based CAM system
 - Intricate simulation, MRR analysis
- Time parameterization of 5-axis toolpaths using position samples from voxel models
 - Minimum time path planning, kinematic and MRR limits
- New strategy for control and monitoring of a 5-axis machine tool directly from CAM
 - Enables usability similar to typical 3D printers
 - Allow for tighter integration into shop floor digital twin

Questions?

- Acknowledgements
 - NSF Grants CMMI-1329742, CMMI-1547093, and IIP-1631083
 - NSF GRFP DGE-1650044

DVP to Final Part

DVP to Servo Commands: Mathematical Formulation

$$P_{T,i} = \begin{bmatrix} X_{T,i} \\ Y_{T,i} \\ Z_{T,i} \\ \theta_i \\ \phi_i \end{bmatrix}$$

$$r^{*} = \operatorname{argmin}_{R} \left\{ \int_{0}^{1} \left(\frac{dr}{dt} \right)^{-1} du \quad \left| \begin{array}{c} \frac{dJ}{dt} \leq V_{\text{Max}} \\ \frac{d^{2}J}{dt^{2}} \leq A_{\text{Max}} \\ \frac{dV}{dt} \leq \text{MRR}_{\text{Max}} \end{array} \right\}$$

$$P_{J,i} = \begin{bmatrix} X_{J,i} \\ Y_{J,i} \\ Z_{J,i} \\ A_i \\ B_i \end{bmatrix}$$

DVP to Servo Commands: Mathematical Formulation

$$P_{T,i} = \begin{bmatrix} X_{T,i} \\ Y_{T,i} \\ Z_{T,i} \\ \theta_i \\ \phi_i \end{bmatrix} \qquad M^{-1} (P_{T,i}) = \begin{bmatrix} \sin \theta_i & -\sin \phi_i \cos \theta_i & \cos \phi_i \cos \theta_i \\ \cos \theta_i & \sin \phi_i \sin \theta_i & -\sin B \cos \phi_i \\ 0 & \cos \phi_i & \sin \phi_i \end{bmatrix}^{-1} \begin{bmatrix} -X_{T,i} - c_1 \cos \phi \cos \theta + c_2 \\ -Y_{T,i} + c_1 \sin \theta \cos \phi \\ -Z_{T,i} - c_1 \sin \phi - c_3 \end{bmatrix} \qquad P_{J,i} = \begin{bmatrix} X_{J,i} \\ Y_{J,i} \\ Z_{J,i} \\ A_i \\ B_i \end{bmatrix}$$

$$u \in [0,1] \qquad r: t \rightarrow u, r^{-1}: u \rightarrow t \qquad R = \{r \mid r \in C^{\dagger}[\Box \rightarrow \Box]\}$$

$$J: \left(\bigcup \rightarrow \bigcup^{5} \\ u \rightarrow J(u) \in P_J \right) \qquad I^* = \operatorname{argmin}_R \left\{ \int_{0}^{1} \left(\frac{dr}{dt} \right)^{-1} du \quad \left| \begin{array}{c} \frac{dJ}{dt} \leq V_{Max} \\ \frac{d^2J}{dt^2} \leq A_{Max} \\ \frac{dV}{dt} \leq MRR_{Max} \end{array} \right\} \qquad T: \left(\bigcup \rightarrow \bigcup^{5} \\ u \rightarrow M(J(u)) \in P_T \right)$$

$$\frac{dJ}{dt} = \frac{dJ}{dt} \frac{dI}{dt} = \frac{dJ}{dt} \frac{dr}{dt} = \frac{dJ}{dt} \frac{d^2r}{dt^2} + \frac{d^2J}{dt^2} \left(\frac{dr}{dt} \right)^2 = \frac{dV}{dt} = \frac{dV}{dt} \frac{dr}{dt} = \frac{dV}{dt} \frac{dr}{dt}$$

21/18

Direct Servo Control from Voxel-Based CAM: Software

22/18