

Inspiring Great British Manufacturing

Computer Aided Inspection and Quality

MBE Summit 2018 National Institute for Standards and Technology (NIST) Gaithersburg, MD, USA

Toby Maw, David Ross-Pinnock,

James Whicker

02/04/2018 - 06/04/2018

Computer Aided Inspection and Quality

Overview

Introduction

- Project Background
- Digital Measurement Planning Use Cases
- Conclusions
- Future Work

Who are we?

INSPIRING

Great British Manufacturing

HVM CATAPULT

- AFRC Advanced Forming Research Centre

CPI Centre for Process Innovation

NAMRC Nuclear Advanced Manufacturing Research Centre

AMRC Advanced Manufacturing Research Centre

MTC Manufacturing Technology Centre

- WMG Warwick Manufacturing Group

NCC The National Composites Centre

WECD Economic Impact Evaluation study 2015. The next economic impact study is due in 2017.

INDUSTRY CHALLENGES

You want to make something

at a lower cost better quality quicker in higher volume you've never made before

You want to assemble something to

minimise reject rate improve reliability improve consistency reduce waste reduce errors

You want to use data more effectively for

improved design better quality efficient logistics new business models

Digital Measurement Planning Project Background

Project Aim

- To improve the state of current manual measurement planning processes through the use of digital tools, standards and software, paving the way for a Digital Twin for design and metrology;
- To highlight current capabilities and gaps to standards agencies, software vendors and industrial end users.

Project Objectives

- 1. Investigate the standards that enable model based definition (MBD) and digital measurement planning, including QIF and STEP AP242;
- 2. Investigate Product Manufacturing Information (PMI) as a fundamental component of digital measurement planning, focussing on 'difficult to define' dimensional characteristics;
- 3. Develop use cases to test out the capabilities and gaps of the standards and software in this field;
- 4. Scope routes to implementation through work with industrial end users to understand their current systems, with which digital measurement planning must integrate.

Opportunities for innovation identified in site visits

The following opportunities were identified based on the challenges faced by several industrial end users during site visits for further investigation in Digital Measurement Planning:

	(
		Traceability	
nce		Validation of derivative MBD;Traceable statistical process control;	
		Reproducibility	
'oq		 Rule-based automatic measurement program Digital measurement planning with modular fi Reproducible measurement result reporting; 	nming; xturing;
		Communicability	
tY		 Human-readable measurement planning Interactive model-based measurement report 	ing;

Three use cases were selected for demonstration of potential workflows based upon the site visits:

Rule Based Automatic Programming from Model Based Definition

Traceable, Reproducible, and Interactive Measurement Reporting

3

Inspiring Great British Manufacturing

Use Case 1

Model Based Definition - Linked Statistical Process Control for Adaptive Inspection Planning

Model Based Definition-linked Statistical Process Control (SPC) for Adaptive Inspection Planning

- Volume of data generated in production is vast, but underutilised.
- There is a **desire to use SPC to improve quality.**
- Model Based Definition (MBD) with semantically linked features can provide traceability of useful information throughout production.
- SPC can result in higher conformance, but could potentially reduce the overall time for inspection.

Could knowledge of process capability drive the digital measurement plan through required demand?

Current State Workflow Using QIF

Addition of measurement data to MBD - MBDVidia

- MBDVidia can display measurement data of features on the CAD.
- Inspection report templates can be generated (in Microsoft Excel format), and entered data is interactively linked to the model.
- **Cpk and Ppk** can be calculated without the need for additional statistical software.
- Moving range charts allowing visualisation of the part variation across production runs can be generated.

Addition of measurement data to MBD - MBDVidia

Demonstration of measurement data addition to MBD

Demonstration of the addition of measurement data to an MBD and calculation of Cpk.

Adaptive Inspection Planning – QIF Rules Potential

• **QIF Rules** can **alter inspection parameters** using Boolean IF rules:

- Number of measurement points
- Measurement point density
- Point sampling strategy (taken from ISO-14406:2010)
- Feature fitting algorithm to use.
- Rules can be called within **QIF Plan**.
- Rules currently only take arguments related to the model itself taking measurement data as arguments not currently supported by QIF Rules.
- Extending the scope of QIF Rules to include results may allow process-lead measurement plans.

Examples include:

- More rigorous inspection for more variable features.
- **Removal of measurement instructions** when process confidence is high.

Inspiring Great British Manufacturing

Use Case 2

Rule Based Automatic Programming from Model Based Definition

Rule based automatic CMM programming from MBD

- In the development and new product introduction (NPI) phase, new inspection programs have to be produced frequently.
- Programmers draw on **knowledge and experience** to assign measurement strategies with similar characteristics to **previously qualified** parts and features.
- Programs are often written online, from scratch, when the first component is produced.
- MBD allows for the automatic generation of the bill of characteristics (BOC).
- For simple components it has been demonstrated that it is possible to automate inspection programming, resulting in dramatic process time savings.
- Measurement strategies employed for these components are held in templates and routines can be called according to simple **rules related to feature characteristics**.

Rule based automatic CMM programming from MBD

The following workflow was used for this use case:

Key Points MBD Assisted Programming

- Rules architectures exist to support strategy selection based on single feature characteristics.
- Automation of programming, point cloud evaluation or strategy validation can be achieved.
- Capvidia Pundit CMM, Origin Checkmate, Siemens NX CMM and Kotem SmartProfile were all trialed in this project - each supported aspects of this.
- No automatic rule based strategy selection exists to combine multiple constructed features.
- This project workflow has shown that tools are available to assist this multi-feature strategy selection process.
- Once defined, PMI can be created to assist CMM programmers to implement strategies containing, gauge points; constructed features and iterative alignments, whilst retaining traceability to the model. However, this does reduce the level of automation in the process.

Summary of the Siemens workflow for model based quality

Inspiring Great British Manufacturing

Use Case 3

Traceable, Reproducible, and Interactive Measurement Reporting

Traceable, Reproducible, and Interactive Measurement Reporting

- Ad-hoc measurement requires documentation of the measurement setup;
- A measurement report prefaced by a **retrospective measurement plan** is produced;
- Users of the report often have to spend time making sure they understand the procedure, and have enough **evidence** upon which to **sentence parts** appropriately.
- Static representations of results can be **unclear downstream**.
- 3D PDF is one example in which 3D objects can be viewed without the need for CAD software.

Can we use 3D PDF to visualise measurement result data, to extend and augment the Human Readable Measurement Plan?

Workflow

Traceable, Reproducible, and Interactive Measurement Reporting

Traceable, Reproducible, and Interactive Measurement Reporting Key Points

- Measurement plan and report generation can be achieved using a familiar, straightforward workflow.
- Report templates can be created using readily available software.
- 3D PDFs requires only Adobe Acrobat Reader, meaning that expensive CAD software not required.
- Interactive elements can complement existing documentation.
- Traceability can be further improved with increased support for use of QIF in 3D PDF tools.

Summary

- The Digital Measurement Planning project has investigated a wide range of technologies, tools and standards to highlight to industry the current capabilities and challenges when moving towards digitalisation.
- Potential **benefits demonstrated** to the end users through use cases include:
 - Reduction of manual processes in measurement planning;
 - Shorter inspection lead times;
 - Standardisation of measurement planning;
 - Traceability of results and reports.
- End user demand for data standards would increase support amongst software vendors.
- The benefits to traceability and interoperability need to continue to be demonstrated to drive this demand.

End Users

Standards Agencies

Thank You

Consortium Members	Collaborators		
AWE	GKN Aerospace	Parker Aerospace	NIST
BAE Systems	Hexagon MI	Renishaw	DMSC
Capvidia	IPI Solutions	Rolls-Royce	NCC
CDS	Kotem	Sandvik	
Doncasters	Origin	Siemens PLM	

Thank you for your attention – any questions?

DISCLAIMER:

The data contained in this document contains proprietary information. It may not be copied or communicated to a third party, or used for any purpose other than that for which it was supplied, without the MTC's prior written consent ©MTC

Version Control					
Version	Date	Author	Status	Change Description	
1.0		David Ross-Pinnock	Issued		
Koy Project Contacto					
Key Project Contacts					
Customer					

Principal	Customer	Contact

Principal MTC Contact

MTC Endorsement				
Reviewed By	Signature	Date		
Andrew Clough	A.OSC	02/03/2018		