Erratum: Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa [J. Phys. Chem. Ref. Data 41, 023104 (2012)]

M. J. Assael, I. A. Koini, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins

Citation: Journal of Physical and Chemical Reference Data **43**, 039901 (2014); doi: 10.1063/1.4885454 View online: https://doi.org/10.1063/1.4885454 View Table of Contents: http://aip.scitation.org/toc/jpr/43/3 Published by the American Institute of Physics

Articles you may be interested in

Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa Journal of Physical and Chemical Reference Data **41**, 023104 (2012); 10.1063/1.4708620

Reference Correlation of the Viscosity of n-Heptane from the Triple Point to 600 K and up to 248 MPa Journal of Physical and Chemical Reference Data **43**, 023103 (2014); 10.1063/1.4875930

Reference Correlations of the Thermal Conductivity of o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene from the Triple Point to 700 K and Moderate Pressures Journal of Physical and Chemical Reference Data **43**, 043104 (2014); 10.1063/1.4901166

Correlation for the Viscosity of Sulfur Hexafluoride (SF₆) from the Triple Point to 1000 K and Pressures to 50 MPa Journal of Physical and Chemical Reference Data **41**, 023102 (2012); 10.1063/1.3702441

Reference Correlation of the Thermal Conductivity of Carbon Dioxide from the Triple Point to 1100 K and up to 200 MPa

Journal of Physical and Chemical Reference Data 45, 013102 (2016); 10.1063/1.4940892

CODATA Recommended Values of the Fundamental Physical Constants: 2014 Journal of Physical and Chemical Reference Data **45**, 043102 (2016); 10.1063/1.4954402

Erratum: Reference Correlation of the Thermal Conductivity of Sulfur Hexafluoride from the Triple Point to 1000 K and up to 150 MPa [J. Phys. Chem. Ref. Data 41, 023104 (2012)]

M. J. Assael,^{a)} I. A. Koini, and K. D. Antoniadis

Laboratory of Thermophysical Properties and Environmental Processes, Chemical Engineering Department, Aristotle University, Thessaloniki 54124, Greece

M. L. Huber, I. M. Abdulagatov, and R. A. Perkins

Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA

(Received 16 June 2014; accepted 16 June 2014; published online 14 July 2014)

[http://dx.doi.org/10.1063/1.4885454]

Two corrections are required to the original article,¹ as detailed below.

- 1. In the text below Eq. (11), the reference temperature $T_{\rm ref}$ should be 478.08 K instead of 717.12 K.
- 2. Table 5 should be replaced by the table below.

TABLE 5. Sample points for computer verification of the correlating equations.

T (K)	$ ho (\mathrm{kg} \mathrm{m}^{-3})$	$\lambda~(mWm^{-1}K^{-1})$
298.15	0.00	12.95
298.15	100.00	14.13
298.15	1600.00	69.73
310.00	0.00	13.83
310.00	1200.00	48.70 ^a
310.00	1200.00	48.95 ^b
480.00	100.00	28.85

^aComputed with modified Olchowy-Sengers critical enhancement; the viscosity at this point for use in Eq. (8) was taken (Ref. 8) as $\eta = 89.590 \,\mu\text{Pa}\,\text{s}$ and all other properties required for the enhancement term are from Guder and Wagner (Ref. 6).

^bComputed with empirical critical enhancement, Eq. (12).

A software implementation of this correlation in a format compatible with REFPROP (Ref. 2) is available from the authors.

Acknowledgments

The authors are grateful to Dr. Ian Bell (University of Liège, Belgium) for pointing out these errors.

References

 ¹M. J. Assael, I. A. Kioni, K. D. Antoniadis, M. L. Huber, I. M. Abdulagatov, and R. A. Perkins, J. Phys. Chem. Ref. Data 41, 023104 (2012).
 ²E. W. Lemmon, M. L. Huber, and M. O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties – REFPROP, version 9.1 (Standard Reference Data Program; National Institute of Standards and Technology, Gaithersburg, MD, 2013).

^{a)}Electronic mail: assael@auth.gr

^{© 2014} by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.