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Abstract—Congestion in communication networks can be 

modeled as a percolation process, where congestion spreads 

minimally before a critical load and expands rapidly afterwards. 

Some studies identify precursor signals arising near critical load, 

but none attempt to predict congestion collapse. This paper 

investigates whether precursor signals, arising from changes in 

time series of router queue lengths, can predict onset of rapidly 

expanding congestion in time to alert network managers to take 

mitigating actions to avoid congestion collapse. The paper 

specifies five predictors: autocorrelation, variance, threshold, 

growth persistence, and growth rate. Predictor performance is 

measured for three simulated network models, under two traffic 

scenarios: increasing and steady load. Predictors are compared 

on implementation cost, accuracy, warning time, and persistence. 

The rates and types of prediction errors are also characterized. 

Results showed that: (1) predictor performance is influenced by 

network-model realism; (2) the autocorrelation and variance 

predictors performed poorly in some situations; (3) the threshold 

predictor yielded best overall accuracy, with mean warning time 

exceeding seven minutes for the most realistic network model. 

The paper also suggests a necessary condition to control false 

positives. 

Keywords—network congestion, monitoring, and prediction 

I. INTRODUCTION 

Work to characterize and evaluate run-time predictors of 
congestion collapse in communication networks is timely and 
valuable, because simulation studies in several domains have 
found precursor signals arise around a critical point, marking a 
phase-transition boundary, e.g., between free-flowing traffic 
and widespread congestion. These developments appear 
promising as a theoretical basis for network monitoring 
methods that could be deployed to warn of impending 
congestion collapse. 

Despite these foundational studies, no prior published work 
has evaluated the use of precursor signals to inform run-time 
predictors of incipient disasters in communication networks; 
such disasters include congestion collapse [1], considered in 
this paper, and cascading failures [15], not considered here. 
Automated, run-time methods to predict network disasters 
would enable alerting network managers to take remedial 
actions, forestalling total system failure. Effective run-time 
methods must be: practical to implement, sufficiently accurate, 
reliable, and timely. This paper evaluates those traits for five 
predictors, conceived to exploit measurable signals that could 
foreshadow congestion collapse. 

Whereas previous studies of precursor signals use abstract 
network models, the current study adds two variants of a 
realistic network model, motivated by prior research [16], 
which found congestion spread in realistic models (e.g., 
bounded packet queues, tiered routers with properly engineered 
packet-forwarding rates, and congestion-control mechanisms) 
differs significantly from congestion spread in abstract models 
(e.g., unbounded packet queues, flat router topologies with 
uniform forwarding rates, and no congestion-control). These 
previous findings suggest signals near a critical point in an 
abstract network model might differ from signals in realistic 
models. 

In the current study, an instance of each evaluated predictor 
runs independently in each of 218 routers. Each predictor 
instance analyzes time series of queue lengths in its own router 
and raises an alert whenever router overload is predicted. 
Predictors are evaluated in three network models under two 
traffic scenarios: increasing load and steady load. For each 
scenario, performance measures include proportion of routers 
where each predictor is consistent, i.e., signals onset of 
congestion before overload or raises no signal absent overload. 
Performance measures also include proportion of routers where 
each predictor is erroneous. Errors include: signaling incipient 
congestion absent overload, failing to signal when overload 
occurs, or signaling too late. Measures of consistent and 
erroneous predictions are combined to compute overall 
accuracy for each predictor. When predictors successfully 
forecast overload, additional performance measures are 
computed, including average warning time between first alert 
and overload, and average extent of signal persistence. 

The paper makes four main contributions. First, the paper 
proposes five specific run-time predictors, and shows how to 
implement them in routers. Second, the paper defines an 
evaluation method to characterize and compare predictor 
performance. Third, the paper applies the evaluation method to 
characterize and assess the predictors. Finally, the paper shows 
that network-model realism influences predictor performance. 

The remainder of the paper has five sections. Sec. II 
discusses related work. Sec. III outlines procedures needed to 
implement any predictor in a router; details each predictor; 
quantifies predictor implementation costs; and defines 
evaluation measures used to compare predictors in an 
experiment. As explained in Sec. IV, the experiment uses two 
realistic network model variants, described in Sec. IV.A, and 
one abstract network model, described in Sec. IV.B. Sec. IV.C 



details experiment traffic scenarios. Results are shown and 
discussed in Sec. V. Conclusions and future work appear in 
Sec. VI. 

II. RELATED WORK 

In some engineering and scientific domains, researchers 
attempt to predict onset of catastrophic events by detecting 
precursor signals arising around critical points preceding phase 
transitions. For example, Carreras et al. [4] defined thresholds 
based on relationships between power output and powerline 
capacity in an electrical grid. The risk of large-scale, cascading 
blackouts increased as the grid neared the thresholds. Similar 
work by Hines et al. [10] also found such thresholds, along 
with increased autocorrelation, but concluded that realistic grid 
models exhibited different threshold values than more abstract 
models. Climate scientists [9, 21] identified precursor signals 
when studying how autocorrelation and variance evolve in time 
series of climate-related measures. Such climate studies found 
that increases in autocorrelation and variance could be used as 
predictors of significant climate shifts. 

 Many researchers have explored evolution of congestion in 
simulations of communication networks. Some researchers [2, 
8, 16] viewed evolving congestion to resemble a percolation 
process [24], where congestion spreads minimally prior to a 
critical load, and afterward spreads rapidly. Other researchers 
[13, 18-20, 22, 24-27] envisioned spreading congestion to 
exhibit a phase transition at critical load. Both types of studies 
identified precursor signals that arise around critical load. On 
the other hand, the studies used an array of abstract network 
topologies, generated by various random processes. The studies 
also considered many different packet-queue disciplines and 
routing strategies. The studies employed diverse measures of 
network congestion: one-way packet latency [18, 22, 25, 27]; 
packets delivered (i.e., aggregate throughput) [2, 18, 22]; queue 
lengths [2, 22, 25]; packets in transit [8, 13, 19, 26]; and packet 
drop rate [19]. Various studies analyzed the measures as time 
series, proportions, or variances. All these studies focused on 
characterizing how congestion measures evolve as a network 
model moves from an uncongested (free-flowing) state to a 
congested (overload) state. 

No studies investigated explicitly the use of congestion 
measures as signals to predict network collapse. No studies 
assessed whether some signals were more reliable than others. 
No studies reported latency between first appearance of signals 
and transition to overload. No studies characterized how well 
congestion signals persist. Most studies used abstract network 
models, bearing little similarity to today’s internet [5, 16].  

This paper expands on previous studies by investigating 
whether congestion measures exhibit precursor signals that can 
be used to predict onset of congestion collapse. The paper 
considers the influence of realistic and abstract network 
models. The paper characterizes predictor implementation cost, 
accuracy, warning time, and persistence. 

III. METHODS 

This section describes procedures that can be implemented 
in routers to: generate, condition, and analyze time series; 

apply predictors; and raise alerts. The section then details five 
predictors, and their implementation costs. Finally, the section 
explains performance metrics used in subsequent sections to 
evaluate the predictors. 

A. Router Procedures 

Each router generates a time series of queue lengths within 
a sliding window, uses some predictor to analyze the time 
series, and raises an alert whenever the predictor exceeds a 
designated limit. Routers could timestamp and forward such 
alerts to a network control center, which can integrate and 
analyze alerts from all routers, giving a network-wide picture 
of spreading congestion. The goal of any predictor is to issue 
alerts that precede router overload, thus providing warning 
time for network managers to take remedial actions. 

To generate a time series of queue lengths, each router 
periodically samples the count of queued packets and computes 
some statistic within a fixed time slot. The sampling period 
should be chosen to yield reasonable resolution without unduly 
burdening routers. In this paper, samples are taken every 200 
ms in a 10-s time slot, so each data point in a time series is the 
average (or variance in) queue length over 50 samples (i.e., 5 
samples/s). Fig. 1 gives an example raw time series (jagged 
curve) of averaged queue lengths over 3300 s, sampled from a 
router in a simulated network under increasing load. 

 

Fig. 1. Example raw (jagged curve) and smoothed time series 

Raw samples are smoothed to reduce time-series noise, and 
create a more slowly changing curve. Among many possible 
methods, this paper uses Nadaraya-Watson smoothing [9], also 
used by other researchers [7] to remove noise from historical 
measurements of Earth’s climate history. The resulting curve is 
detrended to remove the effects of normal traffic, allowing 
predictors to focus on any changes in queue lengths due to 
atypical traffic. This paper implements detrending by 
subtracting an appropriate queue-length statistic (i.e., mean or 
variance), as measured for each router under normal traffic. 
Actual networks may include more complex trends than were 
present in these simulations, thus additional detrending may be 



required in such situations. Fig. 1 shows results (smooth curve) 
from smoothing and detrending a time series (jagged curve) for 
one router in a simulation experiment from this paper. 

Predictors analyze a sliding window over a detrended and 
smoothed time series of sampled queue-length statistics. This 
paper uses a 300-s window, i.e., each window contains 30 10-s 
time slots looking back in time and slides forward every 10 s. 
The 300-s window provides a reasonable span of history to 
consider, and a 10-s advance provides for timely generation of 
alerts. Of course, other choices for window size and advance 
increment are possible, and could yield results that differ from 
those reported here. (Ongoing work is exploring the influence 
of varying values for all possible system parameters.) 

While each predictor operates differently in several details 
(explained below), all predictors use an identical procedure, 
shown in eq. 1, which is implemented in each router. Given a 
window of W time slots, a router counts the number of slots 
where a predictor metric is ≥ a threshold, and then raises an 
alert if that count is ≥ a limit within the window. Specifically,                                                  

                                                                                 (1)  

 
where W is sliding window size in slots, P denotes a predictor 
function, Qi is the detrended and smoothed queue-length 
statistic for the ith slot in a window, PThreshold is a predictor’s 
threshold, and PAlertLimit is a predictor’s alert limit within a 
sliding window. Note the use of Iverson’s brackets [11] within 
the summation, which evaluates to 1 if the proposition is true, 
but 0 otherwise.  As explained next, each predictor may differ 
in implementation of P, PThreshold, and PAlertLimit. While only five 
predictors were implemented and evaluated for this paper, the 
general framework permits predictors to be added easily. 

B. Predictor Specifications 

This paper investigates five predictors: autocorrelation, 
variance, threshold, growth persistence, and growth rate. As 
explained below, for each predictor, specific values were 
selected for PThreshold and PAlertLimit. The values chosen appeared 
pragmatic for the network models simulated here. Different 
values might be needed to yield effective results for other 
network models. Each predictor is denoted as a triple, (P, 
PThreshold, PAlertLimit), and described in turn. 

Autocorrelation (α(1), 0.7, 21).  This predictor is motivated 
by research [5, 10, 20] in several domains that suggests 
autocorrelation increases near a critical point around a phase 
transition. Here, α(1) is a predictor function that computes lag-
1 autocorrelation for average (detrended and smoothed) queue 
lengths, Q, in each sliding window. Signal strength diminished 
for greater lags.  

Positive autocorrelation might be judged significant within 
the range of 0.5-1.0. Here, PThreshold is assigned as 0.7 because 
that value is moderately significant, and should provide for 
earlier signals than larger values. Regarding PAlertLimit, several 
values were considered, including 1, 10, and 21 slots in the 
sliding window. The lower values, while signaling earlier, 
caused excessive false alerts, thus PAlertLimit was set to 21. The 
autocorrelation predictor alerts whenever α(1) ≥ 0.7 for 21 (or 
more) of the 30 slots in a sliding window.  

The α(1) function used the MATLAB xcorr() algorithm 
[28] to compute cross-correlation between the Q and lag-1 Q 
time series. This approach is consistent with computing 
statistical lag-1 autocorrelation using 

                                                                                                                                                                                                                                                                                     
                                                                                                  (2)                                                                          

where E[] is expected value, µ(Q) is queue length averaged 
across the sliding window, σ2(Q) is the variance in queue 
length across the sliding window, Qi is average queue length in 
the ith slot, and Qi-1 is average queue length for the prior slot. 

While the results in Sec. V were obtained using xcorr(), 
which converts time-series data using Fast-Fourier transforms, 
results were also computed for two other formulations of α(1): 
MATLAB xcov() and statistical autocorrelation, as derived by 
a simulation-package function. These alternate formulations 
produced results like those obtained with xcorr(). 

Variance (ν, μ(ν)+|3σ(ν)| : steady load, 21).  This predictor 
is motivated by research [9, 21] that suggests increases in 
variance may foreshadow incipient phase transition. For this 
predictor, the sliding window advances over variances (not 
averages) in queue length. The variance (ν) in queue length for 
each 10-s slot in a sliding window is computed using eq. 3,  

                                                                                                  (3) 

 

where N is the number (i.e., 50) of 200-ms samples in a slot, Qi 
is queue length for the ith sample, and µ(Q) is the mean queue 
length across all samples in the slot. PThreshold is assigned as 
µ(ν) + |3σ(ν)|, where µ(ν) is the mean variance and σ(ν) is the 
standard deviation in variance under normal traffic (i.e., steady 
load). Variance beyond PThreshold under normal traffic should 
occur by chance less than 1% of the time.  For reasons given 
earlier, PAlertLimit is set to 21. The variance predictor alerts 
whenever ν ≥ PThreshold for at least 21/30 slots in the sliding 
window. 

Some prior research [18] in communications networks 
suggests that variance in queue lengths decreases as a system 
becomes congested. For that reason, an alternate version of the 
variance predictor was implemented by reversing the first 
inequality in eq. 1 to < and changing PThreshold to μ(ν)+|σ(ν)|. 
Those results, not reported here, showed that decreases in 
variance did fall below PThreshold (and approached zero) as 
router buffers filled, but the decreases occurred close to (or 
after) router queues reached overload, and so provided little (or 
no) warning. In other words, variance did decrease as routers 
congested, but the decrease occurred too late for prediction. 

Threshold (Qi, 0.25(C - µ(Q) : steady load), 1). This 
predictor, motivated by simplicity, generates an alert whenever 
the average queue length, Qi, ≥ PThreshold. PThreshold is set to a 
fraction (0.25) of the number of normally empty packet 
buffers, as computed by subtracting the mean queue length, 
µ(Q), under normal traffic (i.e., steady load) from buffer 
capacity, C. PThreshold was set to 0.25, which is about 2/3 below 
overload (set to 0.7, as explained in Sec. III.D), and represents 
a significant increase (about 1/3) in queue length towards 
overload, yet allows for ample warning times. The threshold 



predictor alerts whenever queued packets consume 25% or 
more of normally empty buffers. 

Growth Persistence (Qi | Qi > Qi-1, 0.25(C - µ(Q) : steady 
load), 21). This predictor is motivated by the possibility that 
the threshold predictor might be too crisp, leading to false 
alerts. The growth-persistence predictor introduces two 
refinements. First, the function returns average queue length, 
Qi, to compare with PThreshold only when Qi > Qi-1; otherwise, 0 
is returned. This ensures that average queue length surpasses 
PThreshold, chosen as before, and grows over time. Second, 
PAlertLimit = 21, chosen as explained previously, ensures that 
queue-length increases persist in time. These refinements mean 
that the growth-persistence predictor alerts only when queue 
length ≥ PThreshold, while also increasing over time, i.e., for at 
least 21/30 slots in a sliding window.  

Growth Rate ((estimated Qj-1 + sj-1) + sj, 0.25(C - µ(Q) : 
steady load), 21). This predictor stems from an idea that 
estimating queue length based on the growth rate of the real 
queue might lead to quicker and more persistent alerts. The 
predictor computes an estimated queue length for each window 
j by adding a slope, sj, to the sum of the estimated queue length 
and slope from the previous window j-1. Slope, s, is computed 
using a least-squares method, as given in eq. 4, 

 

                                                                                                  (4) 

   

where W is window size, Qi is queue length of the ith slot in the 
current window and µ(Q) is the mean queue length across the 
current window. The values for PThreshold and PAlertLimit were 
chosen as explained previously. The growth-rate predictor 
alerts only when estimated queue length ≥ PThreshold for at least 
21/30 slots in the sliding window. 

C. Predictor Implementation Costs 

Table I gives total cost to implement each predictor in units 
of thousand processor cycles (kilocycles) per sliding window. 
Costs are also decomposed by algorithm element: (1) sample 
and detrend, (2) smooth, (3) compute predictor, and (4) decide 
alert. Executing the predictors on a 3.4 GHz processor takes 
from 11.9 us (TH) to 23.3 us (AC) for each sliding window. 

TABLE I.  PROCESSOR KILOCYCLES/WINDOW (30 10-S SLOTS) FOR EACH 

PREDICTOR: AC=AUTOCORRELATION; VR=VARIANCE; 
TH=THRESHOLD; GP=GROWTH PERSISTENCE; GR=GROWTH 

RATE; =LOWER IS BETTER; BEST COSTS IN BOLD 

Predictor Sample/  
Detrend 

Smooth Compute 
Predictor 

Decide 
Alert  

   Total 

AC 0.98 25.86 51.90 0.41 79.14 

VR 36.10 26.58 3.21 0.36 66.26 

TH 0.98 25.86 0 13.61 40.45 

GP 0.98 25.86 0 13.95 40.78 

GR 0.98 25.86 1.19 12.93 40.95 

D. Performance Metrics 

For experiment purposes, each simulated router raises an 
overload exception (O) when a packet queue ≥ 70% of buffer 
capacity. This value corresponds roughly to the minimum 

utilization in a queuing system beyond which delays could 
begin to grow without bound [23]. Any given predictor may 
issue an alert (A) of oncoming router overload. When overload 
and alert occur, given that the alert appears before overload 
(i.e., At < Ot, where t is time), then a predictor is successful. 
Consistent predictor outcomes include: true positive (tp: At < 
Ot) and true negative (tn: ¬A ˄ ¬O). A predictor is erroneous 
under any of three conditions: false positive (fp: A ˄ ¬O), false 
negative (fn: ¬A ˄ O), or late positive (lp: At > Ot). 

Given these definitions, predictor accuracy is defined as: 
(tp + tn) / (tp + tn + fp + fn + lp). For true positives, one can 
measure warning time as latency (Ot  - At) between first alert 
and overload. One can also measure persistence as proportion 
of the latency interval over which an alert remains asserted. 
Computing persistence is possible because predictors evaluate 
conditions for an alert with every advance in a sliding window. 

IV. EXPERIMENT 

Each of the five predictors described in Sec. III.B was 
compared under six situations, paired combinations of three, 
simulated network models and two traffic scenarios. This led to 
(5 X 3 X 2 =) 30 configurations, where each configuration draws 
one element from each column (predictor, network model, 
traffic scenario) in Table II.  

TABLE II.  PREDICTOR TEST CONFIGURATIONS 

Predictor 

 

X 
 

Network Model 

 

X 
 

Traffic Scenario 

 Autocorrelation 
Realistic TCP Increasing Load  Variance 

 

 

 Threshold Realistic UDP 
 Growth Persistence 

Steady Load  
 Growth Rate Abstract 

For each configuration, consistent (i.e., tp and tn) and 
erroneous (i.e., fp, fn and lp) outcomes were tabulated for each 
of 218 routers, at the end of 3000 simulated seconds (covering 
300 sliding windows). Subsequently, the measures described in 
Sec. III.D were computed across all routers, yielding the results 
reported in Sec. V. The remainder of Sec. IV describes the two 
realistic (A) and one abstract (B) network models simulated, as 
well as the two traffic scenarios (C).  

A. Realistic TCP and UDP Network Models 

Many studies of network congestion adopt abstract models, 
which include unrealistic assumptions. While using such an 
abstract model, this study also uses two realistic network 
model variants: transmission-control protocol (TCP) and user-
datagram protocol (UDP). Both variants share common 
features: topology, node-speed assignments, buffer-sizing 
algorithm, and flow-injection and management procedures. 
The two variants differ only in packet-injection procedures. 
First, the common features are explained, followed by the 
distinct packet-injection procedures. 

Topology. The realistic network models, drawn from 
previous work (see [16-17] for further details), use a four-tier 



topology adapted from an internet-service provider network. 
The topology, illustrated in Fig. 2, contains 218 routers 
organized as three tiers: (1) 16 core (A-P), (2) 32 point-of-
presence, or PoP (A1-P2), and (3) 170 edge (A1a-P2g). The 
topology also includes a fourth tier (not shown) that contains 
51.588 source nodes and 206.352 receiver nodes, spread evenly 
below the edge routers, which brings the number of network 
nodes to just over a quarter million (258.158).  

 

Fig. 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP (A1-P2) and  

             170 edge (A1a-P2g) 

In the model, routers forward each outgoing packet to a 
next router chosen based on a fixed, shortest path toward the 
destination. Shortest path is determined by the minimum count 
of links to a given destination. 

Node-Speed Assignments. Router tiers in the topology 
were assigned fixed relationships among forwarding speeds, as 
shown in Table III, to reflect sound network-engineering 
principles. Forwarding speeds of all routers can be adjusted 
with a single parameter, S, while maintaining fixed speed 
relationships. For this study, S was set to 40 packets/ms, which 
determined all router forwarding speeds. 

TABLE III.  DEFINED RELATIONSHIPS AMONG TIERED  ROUTER 

FORWARDING SPEEDS 

Tier Speed 

Core 2S 

PoP S/4 

Edge: Normal S/4/10 

Edge: Fast  2S/4/10 

Edge: Very Fast  S/4 

Fig. 2 denotes forwarding speeds for the 170 edge routers 
with three colors/shapes: gray/circle (122 normal), 
green/square (40 fast), and red/triangle (eight very fast). Setting 
S to 40 assigned forwarding speeds as: 80 packets/ms for core 
routers; 10 packets/ms for PoP and very fast edge routers; 2 
packets/ms for fast edge routers; and 1 packet/ms for normal 
edge routers. Speeds were also assigned to source and receiver 
nodes, where half (randomly selected, uniform) operate at 2 

packets/ms and half at 0.2 packets/ms. While edge routers may 
become overloaded due to traffic injected by sources and 
receivers, the defined speed relationships among router tiers 
assure that forwarding speeds for core and PoP routers are 
congruent with the maximum possible incoming traffic from 
connected routers. 

Buffer-Sizing Algorithm. Each router is assigned a finite 
buffer capacity, computed as ceil [250 ms × router speed] 
packets, following the Bush-Meyer guidelines [3], as suggested 
for the internet. Core routers forward packets from a single 
buffer, while PoP and edge routers have two (half-sized) 
buffers, one heading “in” toward the core and one heading 
“out” toward the edge. For PoP and edge routers, packet 
forwarding alternates between “in” and “out” buffers. Packets 
arriving at a buffer are queued first-in-first-out for forwarding. 
Packets arriving at a full buffer are discarded. 

Flow-Injection and Management Procedures. At 
randomly selected times, varying with traffic load, sources 
inject correlated flows of packets at their parent edge router. To 
simulate heavy-tailed flows often seen in internet traffic, flow 
sizes were chosen from a Pareto distribution with a mean of 
350 packets and shape of 1.5. Traffic load varies inversely with 
mean time between flow arrivals, which is controlled by 
packet-injection rate, p. At any given time, any idle source 
injects a flow with probability p/s × f, where s is the number of 
sources and f is mean flow size. 

To inject a flow, a source: (1) selects a random (uniformly 
distributed) receiver from under a core router different from the 
source’s core, (2) sends (and resends if necessary) a connection 
request until receiving connection acceptance from the chosen 
receiver, (3) selects a flow size, and (4) follows one of the 
packet-injection procedures, explained next. After completing 
the packet-injection procedures, a source becomes idle until its 
next chosen flow-injection time. 

TCP Packet-Injection Procedures. In the TCP variant of 
the realistic network model, sources inject the packets of a flow 
at a controlled rate determined by congestion-control and 
reliable-transmission procedures: (1) slow-start, (2) 
congestion-avoidance, (3) retransmission, and (4) timeouts. 
These TCP procedures determine when a source may send 
packets toward a receiver. At any given time, a source may 
send a prescribed number of packets (known as congestion 
window, or cwnd) prior to receiving feedback from the 
receiver. Thus, cwnd controls the rate of packet transmission 
on a flow. 

Using TCP slow-start procedures, a source increases a 
flow’s cwnd exponentially from a small initial value (two 
packets, here) until a lost packet is detected or cwnd reaches a 
threshold, known as logarithmic slow-start threshold, or log-sst 
(set to 100 packets, here). If cwnd passes log-sst without packet 
loss, then a source increases cwnd logarithmically until 
reaching another slow-start threshold, or sst (set to 230/2 
packets, here). If cwnd reaches sst, a source enters congestion-
avoidance, subsequently increasing cwnd more slowly, at a 
linear rate. If a packet is lost, cwnd is reduced in half and then 
increased linearly until another packet is lost, after which cwnd 
is reduced in half again, and so on. This algorithm leads to a 



saw-tooth pattern in cwnd, inducing a corresponding variation 
in a flow’s transmission rate. 

For every data packet sent by a source, receiver feedback is 
expected: either an ack (acknowledgment) or nak (negative 
ack). Any packet, whether data, ack, or nak, may be discarded 
at routers with full buffers. A receiver sends a nak whenever a 
data packet fails to arrive in the expected sequence from the 
source. For every nak received by a source, a data packet must 
be retransmitted. When a source fails to receive any ack or nak 
for a prolonged period, i.e., a timeout, then sst is reset to the 
current cwnd and the source reenters slow-start. These 
procedures continue until every data packet (including any 
retransmissions) sent by a source is confirmed by the receiver. 

UDP Packet-Injection Procedures. In the UDP variant of 
the realistic network model, sources inject the packets of a flow 
at an assigned rate (2 or 0.2 packets/ms). Once all packets are 
injected, the flow becomes idle. No congestion-control or 
reliable-transmission procedures are used.  

B. Abstract Network Model 

The abstract network model is taken from previous work 
(see [8, 16] for details). The topology shown in Fig. 2 is 
flattened by removing router tiers so that all 218 routers are 
peers. The fourth tier of sources and receivers is removed. 
Each router is provisioned with a single, infinite buffer. Traffic 
is injected as individual packets at rate p, which is varied to 
modulate load. Each injected packet is added to the end of the 
forwarding queue of a randomly (uniform) chosen source 
router, and assigned a randomly (uniform) chosen destination 
router, other than the source. All routers are assigned the same 
forwarding speed (9 packets/ms), computed as the weighted 
average speed across all routers in the realistic models. Queued 
packets are forwarded to a next router based on the minimum 
count of links to the destination. The abstract model uses no 
congestion-control procedures. 

C. Traffic Scenarios 

This study simulated two distinct traffic scenarios: steady 
load and increasing load. Both scenarios begin with a warmup 
period where p = 10 packets/s for 300 s. Subsequently, a 
measurement period of 3000 s is simulated. For the steady-load 
scenario, p = 10 for the entire period. For the increasing-load 
scenario, p is increased by 10 packets/s every 10 s, reaching p 
= 300 packets/s by the end of the 3000-s measurement period. 

Experiment simulations encompassed six situations: each a 
paired combination of network model and traffic scenario. 
During the 3000-s measurement period, each simulation 
produced a queue-length time series (200-ms samples) for each 
router. Each simulation was repeated for 10 repetitions, with 
different random-number seeds, and the resulting queue-length 
time series were averaged over the repetitions to produce a 
time series per router for each of the six situations. This means 
that a set of six, queue-length time series, one per combination 
of network model and traffic scenario, were averaged over ten 
simulations to create the time series seen by each router. 

For each time series, a predictor-appropriate statistic (mean 
or variance) was computed from 200-ms samples for each 10-s 

slot, and the time series was detrended and smoothed. Each 
router applied five predictors to the set of time series covering 
the six situations, each representing a paired combination of 
network model and traffic scenario. Taking these steps created 
a fair test, eliminating the possibility for random variation in 
time series to influence predictor performance. 

V. RESULTS AND DISCUSSION 

Table IV reports consistent (true positive and true negative) 
outcomes for the five predictors, under the increasing load 
scenario, in each of the three simulated network models. 
Before discussing the results, a measurement detail must be 
resolved, regarding alerts issued by PoP and core routers in the 
realistic network models. Recall that PoP and core routers are 
engineered to handle maximum expected load, and thus do not 
experience overload. Even so, predictors in PoP and core 
routers can issue alerts. How should such alerts be classified? 
One could declare those alerts erroneous, or could exclude PoP 
and core routers from the results. On the other hand, if 
subordinate routers alerted successfully, there would be 
justification for the parent (PoP or core) router also alerting. 
The results in Table IV include PoP-router alerts in true 
positives when all subordinate edge routers also issued 
successful alerts (At < Ot). Similarly, core-router alerts are 
included in true positives when both subordinate PoP routers 
also issued true-positive alerts. 

TABLE IV.  SUCCESSFUL OUTCOMES UNDER INCREASING LOAD: 
TPR=TRUE-POSITIVE RATE; TNR=TRUE-NEGATIVE RATE; 
=HIGHER IS BETTER; CON=CONSISTENCY; TCP=REALISTIC 

TCP MODEL; UDP=REALISTIC UDP; ABS=ABSTRACT MODEL 

 
TPR  TNR  Con (TPR+TNR) 

TCP UDP ABS TCP UDP ABS TCP UDP ABS 

AC 0.913 0.963 0.131 0 0 0.805 0.913 0.963 0.936 

VR 0.862 0.963 0.133 0 0 0 0.862 0.963 0.133 

TH 0.723 0.75 0.128 0.254 0.25 0.859 0.977 1 0.986 

GP 0.634 0.74 0 0.259 0.26 0.853 0.894 1 0.853 

GR 0.686 0.75 0 0.254 0.25 0.853 0.94 1 0.853 

The last column (Con) in Table IV reports the proportions 
of (218) routers for which predictors exhibited consistent alert 
behavior under increasing load for each network model. 

Consistent behavior sums true positives (TPR column) and 

true negatives (TPN column). Results for all predictors, 
except variance, are reasonably good. Causes for erroneous 
predictions are shown below in Table VI. 

In Table IV true negatives ranged between 81-86% in the 
abstract network sub-column (ABS) for all but variance. (Note 
that the variance predictor does not report these true negatives 
for the abstract network model, but instead raises erroneous 
false positives, as discussed below when considering Table 
VI.) The high rate of true negatives in the abstract network 
model implies that about 85% of routers fail to reach overload. 
This occurs due to a combination of three main factors: load is 
diffused among all routers, router forwarding speeds are 
homogeneous within a flat topology, and some routers have 
high centrality. 



Diffused load arises as individual packets are injected 
uniformly across all routers. But every injected packet must 
travel on some route from source to destination. Visualization 
[6] of spreading congestion in the abstract model showed the 
overloaded 15% of routers exhibit high centrality, i.e., many 
shortest-path routes transit them, and thus transit packets are 
forwarded through them. Given that topology is flat in the 
abstract network model and that all routers have identical 
forwarding speeds, high-centrality routers have insufficient 
forwarding capacity to cope with the increased transit traffic. 
The uncongested 85% of routers exhibit low centrality, 
receiving mainly injected packets. In the realistic network 
models with a tiered topology, core routers have high centrality 
but are assigned higher forwarding speeds to compensate for 
increased transit traffic, and thus those routers do not congest 
so easily.  

For each predictor, Table V reports mean warning time 
(i.e., latency) for true-positive alerts under each network 
model. The distribution (not given here) of latencies for the 
TCP model showed warning times exceeded 15 min under 
each predictor for a significant proportion of true-positive 
routers: 22% (AC), 23% (VR), 16% (TH), 12% (GP), and 15% 
(GR). Those proportions were even higher for the UDP model. 
For the abstract network model, only autocorrelation (61%) 
and variance (65%) gave warning times exceeding 15 min. 
Alerts persisted well for all predictors. 

TABLE V.  MEAN WARNING TIME (LATENCY) AND ALERT PERSISTENCE 

FOR TRUE POSITIVES (TPR COLUMN) FROM TABLE IV 

 
Mean Latency (min)  Mean Persistence 

TCP UDP ABS TCP UDP ABS 

AC 10.73 22.89 17.52 1 1 0.992 

VR 10.48 21.72 24.33 0.994 1 0.991 

TH 7.67 15.77 0.58 1 1 1 

GP 4.61 11.86 — 0.972 0.99 — 

GR 5.63 13.53 — 1 1 — 

Autocorrelation and variance gave most warning time 
because the other predictors transitioned more slowly to alerts, 
especially under realistic UDP and abstract network models. 
Slower transition occurs because the other predictors must wait 
for packets to occupy at least 25% of normally empty packet 
buffers, while autocorrelation and variance do not include this 
requirement in PThreshold. Among the other predictors, threshold 
raises an alert after a single crossing of PThreshold, thus the 
predictor gives more warning time than growth persistence and 
growth rate, which require crossing PThreshold in 21/30 slots. 

The realistic TCP network model yields lower warning 
times overall across the predictors because TCP congestion-
control procedures slow the rate of congestion increase, which 
causes predictor measures to transition more slowly toward an 
alert state. In other words, gradual increase in congestion limits 
the warning time that can be achieved by any predictor. 

For each predictor and network model under increasing 
load, Table VI gives the error rate for the residual proportions 
(i.e., 1 – Con) of routers not represented in Table IV. Across all 
network models, the threshold predictor had lowest mean error 
rate of 1.2%. Somewhat higher mean error rates occurred for 

autocorrelation (6%), growth persistence (8.4%), and growth 
rate (6.9%). The variance predictor had an unacceptably high 
mean error rate (34.7%), dominated by an 86.7% error rate 
under the abstract network model (mainly false positives). The 
variance predictor signaled false alerts in the abstract network 
model because variance in queue lengths under normal traffic 
was quite low, so with increasing load the variance predictor 
could exceed PThreshold even when the absolute number of 
queued packets was small. For this reason, the variance 
predictor is unreliable. 

TABLE VI.  ERROR RATE (1-CON) UNDER INCREASING LOAD –ERROR RATE 

IS DECOMPOSED BY ERROR TYPE IN TABLE VII 

 
Error Rate (1 – Con)  Mean 

 Error Rate TCP UDP ABS 

AC 0.087 0.037 0.074 0.06 

VR 0.138 0.037 0.867 0.347 

TH 0.023 0 0.014 0.012 

GP 0.106 0 0.147 0.084 

GR 0.06 0 0.147 0.069 

Table VII decomposes the error rates from Table VI by 
type: alerting absent overload (fp: A ˄ ¬O); failing to alert in 
presence of overload (fn: ¬A ˄ O); alerting too late (lp: At > 
Ot). No predictors made false-negative errors. For all models, 
the autocorrelation and variance predictors made mainly false-
positive errors. The growth-persistence and growth-rate 
predictors erred mainly by alerting too late for the abstract and 
TCP network models. The threshold predictor, which made 
few errors, sometimes alerted too late in the abstract network 
model. For the realistic UDP model, the threshold, growth-
persistence, and growth-rate predictors made no errors.  

TABLE VII.  ERROR RATE UNDER INCREASING LOAD FROM TABLE VI, 
DECOMPOSED BY ERROR TYPE: FPR=FALSE-POSITIVE RATE; 
FNR=FALSE-NEGATIVE RATE; LPR= LATE-POSITIVE RATE 

 
FPR  FNR  LPR 

TCP UDP ABS TCP UDP ABS TCP UDP ABS 

AC 0.087 0.037 0.058 0 0 0 0 0 0.016 

VR 0.12 0.037 0.85 0 0 0 0.018 0 0.017 

TH 0.023 0 0 0 0 0 0 0 0.014 

GP 0.023 0 0 0 0 0 0.083 0 0.147 

GR 0.023 0 0 0 0 0 0.037 0 0.147 

Three predictors (threshold, growth persistence, and growth 
rate) had a 2.3% error rate for the TCP network model, i.e., 
issued false positives for five of 218 routers. These five routers, 
comprising the entire 2.3% error rate, were (fast) edge routers 
that alerted absent an overload (A ˄ ¬O). In those cases, router 
queue lengths had reached at least 64% of buffer capacity, and 
would have reached overload given more simulated time. 

For the steady-load scenario, Table VIII reports false-
positive (A ˄ ¬O) rates for the predictors by network model. 
The threshold, growth-persistence, and growth-rate predictors 
issued no false alerts under steady load. For realistic network 
models, the autocorrelation predictor issued predominantly 
false alerts. This occurs because autocorrelation measures self-
similarity in queue lengths, which were highly self-similar 



(autocorrelation just below one) under the realistic models, 
where packet injection occurs in correlated streams at edge 
routers. The autocorrelation predictor had few false alerts for 
the abstract network model because diffuse packet injection led 
only to small, sporadic, queues in routers with low centrality, 
i.e., most routers. Autocorrelation was set to zero when a router 
queue is empty, leading to true negatives in those cases. 

TABLE VIII.  FALSE-POSITIVE RATES UNDER STEADY LOAD 

 
FPR  

TCP UDP ABS 

AC 0.995 0.927 0.064 

VR 0.362 0.45 0.949 

TH 0 0 0 

GP 0 0 0 

GR 0 0 0 

While the variance predictor issued fewer false alerts for 
the realistic network models, the false-positive rate was still 
quite high (36-45%). The variance predictor had fewer false 
alerts for the realistic network models because the standard 
deviation in variance was higher under normal traffic for those 
models, and thus PThreshold was higher, reducing the number of 
false alerts. High false-positive rates under steady load in the 
real network models disqualify both the autocorrelation and 
variance predictors from further consideration for practical use. 

Additional experimentation discovered that false alerts 
under steady load could be eliminated for the autocorrelation 
and variance predictors by adding a buffer threshold condition, 
0.25(C - µ(Q)) : steady load), to the PThreshold values. Under 
increasing load for realistic networks, the cost of adding the 
condition was diminished alerting accuracy and decreased 
warning time. These alternate results (not shown here) suggest 
that including a buffer-capacity to queue-length relationship in 
PThreshold values is necessary to control false alerts. That is, any 
predictor signal should be supported by evidence that router 
queue lengths are elevated significantly above levels measured 
under normal traffic. The tradeoff, though, is to reduce warning 
time, and to increase (slightly) false-negative rate. 

TABLE IX.  OVERALL PREDICTOR ACCURACY (BEST FOR EACH NETWORK 

MODEL IN BOLD) 

 
Accuracy  

TCP UDP ABS 

AC 0.459 0.518 0.936 

VR 0.75 0.757 0.092 

TH 0.989 1 0.993 

GP 0.947 1 0.927 

GR 0.97 1 0.993 

Table IX combines consistent and erroneous alert results 
across both the increasing-load and steady-load scenarios to 
evaluate overall predictor accuracy. While autocorrelation and 
variance both performed poorly under the realistic network 
models, all predictors, except variance, were reasonably 
successful under the abstract model. As discussed elsewhere 
[6, 16], abstract network models lack essential, realistic traits 
(e.g., tiered forwarding speeds, finite buffers, and congestion-

control protocols), and so congestion spreads outward from 
routers with high centrality. In realistic network models, 
congestion emerges at (low-centrality) edge routers and has 
difficulty spreading inward. For these reasons, abstract network 
models should not be used to evaluate congestion predictors. 

Table IX also shows that under the realistic UDP model, 
threshold, growth-persistence, and growth-rate predictors all 
achieved perfect accuracy; however, Table V showed that the 
threshold predictor provided 3-4 minutes more warning time 
under all network models. While many short internet 
transactions use UDP procedures, longer flows are regulated by 
TCP congestion-control. Under the realistic TCP network 
model, the simplest predictor, threshold, provided highest 
accuracy: 98.9%. The residual 1.1% inaccuracy arises from 
five (fast) edge routers that alerted absent overload. (Recall, 
though, that queue lengths for those five routers would reach 
overload given more simulated time.) Among the five 
predictors investigated here, threshold seems best suited for 
further evaluation in real networks. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper evaluated five predictors that might be used to 
signal onset of congestion collapse. The paper also defined a 
method, and related measures, to evaluate predictor 
performance. In a series of simulation experiments, the paper 
compared predictors along four dimensions: implementation 
cost, accuracy, warning time, and reliability. The results, 
though obtained for a single network topology, apply generally 
because predictors run within individual routers and make 
decisions based on local state. Predictor performance does not 
depend directly on the size or structure of a network topology. 

The experiment results support six, specific conclusions: 
(1) executing predictors incurs little router overhead; (2) simple 
predictors, e.g., threshold, give good accuracy, warning time, 
and persistence, especially under realistic network models; (3) 
two predictors, autocorrelation and variance, appear unsuitable 
due to many false alerts under steady load in realistic network 
models; (4) though including a buffer-capacity to queue-length 
relationship in the PThreshold condition reduces false alerts and 
could improve accuracy of autocorrelation and variance, but at 
the cost of decreased warning times; (5) autocorrelation and 
variance gave best average warning times; and (6) realistic 
network models should always be used to evaluate congestion 
predictors. 

Future work remains to verify predictor results in emulated 
and real networks. Further, predictors include numerous 
parameters for which values must be selected; thus, sensitivity 
analysis is needed to determine the relative influence of 
parameters, and to select optimal parameter-value settings. An 
additional experiment is planned to investigate predictor 
performance under more complex traffic scenarios, e.g., cycles 
of increasing load followed by decreasing load, where the rate 
of increase and decrease varies with each cycle. Additional 
predictors will also be defined and evaluated. 
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