
Mention of commercial products does not imply NIST endorsement.

U.S. Government work not protected by U.S. copyright.

Evaluating Predictors of Congestion Collapse in

Communication Networks

Christopher Dabrowski

NIST

Gaithersburg, MD, USA

cdabrowski@nist.gov

Kevin Mills

NIST

Gaithersburg, MD, USA

kmills@nist.gov

Abstract—Congestion in communication networks can be

modeled as a percolation process, where congestion spreads

minimally before a critical load and expands rapidly afterwards.

Some studies identify precursor signals arising near critical load,

but none attempt to predict congestion collapse. This paper

investigates whether precursor signals, arising from changes in

time series of router queue lengths, can predict onset of rapidly

expanding congestion in time to alert network managers to take

mitigating actions to avoid congestion collapse. The paper

specifies five predictors: autocorrelation, variance, threshold,

growth persistence, and growth rate. Predictor performance is

measured for three simulated network models, under two traffic

scenarios: increasing and steady load. Predictors are compared

on implementation cost, accuracy, warning time, and persistence.

The rates and types of prediction errors are also characterized.

Results showed that: (1) predictor performance is influenced by

network-model realism; (2) the autocorrelation and variance

predictors performed poorly in some situations; (3) the threshold

predictor yielded best overall accuracy, with mean warning time

exceeding seven minutes for the most realistic network model.

The paper also suggests a necessary condition to control false

positives.

Keywords—network congestion, monitoring, and prediction

I. INTRODUCTION

Work to characterize and evaluate run-time predictors of
congestion collapse in communication networks is timely and
valuable, because simulation studies in several domains have
found precursor signals arise around a critical point, marking a
phase-transition boundary, e.g., between free-flowing traffic
and widespread congestion. These developments appear
promising as a theoretical basis for network monitoring
methods that could be deployed to warn of impending
congestion collapse.

Despite these foundational studies, no prior published work
has evaluated the use of precursor signals to inform run-time
predictors of incipient disasters in communication networks;
such disasters include congestion collapse [1], considered in
this paper, and cascading failures [15], not considered here.
Automated, run-time methods to predict network disasters
would enable alerting network managers to take remedial
actions, forestalling total system failure. Effective run-time
methods must be: practical to implement, sufficiently accurate,
reliable, and timely. This paper evaluates those traits for five
predictors, conceived to exploit measurable signals that could
foreshadow congestion collapse.

Whereas previous studies of precursor signals use abstract
network models, the current study adds two variants of a
realistic network model, motivated by prior research [16],
which found congestion spread in realistic models (e.g.,
bounded packet queues, tiered routers with properly engineered
packet-forwarding rates, and congestion-control mechanisms)
differs significantly from congestion spread in abstract models
(e.g., unbounded packet queues, flat router topologies with
uniform forwarding rates, and no congestion-control). These
previous findings suggest signals near a critical point in an
abstract network model might differ from signals in realistic
models.

In the current study, an instance of each evaluated predictor
runs independently in each of 218 routers. Each predictor
instance analyzes time series of queue lengths in its own router
and raises an alert whenever router overload is predicted.
Predictors are evaluated in three network models under two
traffic scenarios: increasing load and steady load. For each
scenario, performance measures include proportion of routers
where each predictor is consistent, i.e., signals onset of
congestion before overload or raises no signal absent overload.
Performance measures also include proportion of routers where
each predictor is erroneous. Errors include: signaling incipient
congestion absent overload, failing to signal when overload
occurs, or signaling too late. Measures of consistent and
erroneous predictions are combined to compute overall
accuracy for each predictor. When predictors successfully
forecast overload, additional performance measures are
computed, including average warning time between first alert
and overload, and average extent of signal persistence.

The paper makes four main contributions. First, the paper
proposes five specific run-time predictors, and shows how to
implement them in routers. Second, the paper defines an
evaluation method to characterize and compare predictor
performance. Third, the paper applies the evaluation method to
characterize and assess the predictors. Finally, the paper shows
that network-model realism influences predictor performance.

The remainder of the paper has five sections. Sec. II
discusses related work. Sec. III outlines procedures needed to
implement any predictor in a router; details each predictor;
quantifies predictor implementation costs; and defines
evaluation measures used to compare predictors in an
experiment. As explained in Sec. IV, the experiment uses two
realistic network model variants, described in Sec. IV.A, and
one abstract network model, described in Sec. IV.B. Sec. IV.C

details experiment traffic scenarios. Results are shown and
discussed in Sec. V. Conclusions and future work appear in
Sec. VI.

II. RELATED WORK

In some engineering and scientific domains, researchers
attempt to predict onset of catastrophic events by detecting
precursor signals arising around critical points preceding phase
transitions. For example, Carreras et al. [4] defined thresholds
based on relationships between power output and powerline
capacity in an electrical grid. The risk of large-scale, cascading
blackouts increased as the grid neared the thresholds. Similar
work by Hines et al. [10] also found such thresholds, along
with increased autocorrelation, but concluded that realistic grid
models exhibited different threshold values than more abstract
models. Climate scientists [9, 21] identified precursor signals
when studying how autocorrelation and variance evolve in time
series of climate-related measures. Such climate studies found
that increases in autocorrelation and variance could be used as
predictors of significant climate shifts.

 Many researchers have explored evolution of congestion in
simulations of communication networks. Some researchers [2,
8, 16] viewed evolving congestion to resemble a percolation
process [24], where congestion spreads minimally prior to a
critical load, and afterward spreads rapidly. Other researchers
[13, 18-20, 22, 24-27] envisioned spreading congestion to
exhibit a phase transition at critical load. Both types of studies
identified precursor signals that arise around critical load. On
the other hand, the studies used an array of abstract network
topologies, generated by various random processes. The studies
also considered many different packet-queue disciplines and
routing strategies. The studies employed diverse measures of
network congestion: one-way packet latency [18, 22, 25, 27];
packets delivered (i.e., aggregate throughput) [2, 18, 22]; queue
lengths [2, 22, 25]; packets in transit [8, 13, 19, 26]; and packet
drop rate [19]. Various studies analyzed the measures as time
series, proportions, or variances. All these studies focused on
characterizing how congestion measures evolve as a network
model moves from an uncongested (free-flowing) state to a
congested (overload) state.

No studies investigated explicitly the use of congestion
measures as signals to predict network collapse. No studies
assessed whether some signals were more reliable than others.
No studies reported latency between first appearance of signals
and transition to overload. No studies characterized how well
congestion signals persist. Most studies used abstract network
models, bearing little similarity to today’s internet [5, 16].

This paper expands on previous studies by investigating
whether congestion measures exhibit precursor signals that can
be used to predict onset of congestion collapse. The paper
considers the influence of realistic and abstract network
models. The paper characterizes predictor implementation cost,
accuracy, warning time, and persistence.

III. METHODS

This section describes procedures that can be implemented
in routers to: generate, condition, and analyze time series;

apply predictors; and raise alerts. The section then details five
predictors, and their implementation costs. Finally, the section
explains performance metrics used in subsequent sections to
evaluate the predictors.

A. Router Procedures

Each router generates a time series of queue lengths within
a sliding window, uses some predictor to analyze the time
series, and raises an alert whenever the predictor exceeds a
designated limit. Routers could timestamp and forward such
alerts to a network control center, which can integrate and
analyze alerts from all routers, giving a network-wide picture
of spreading congestion. The goal of any predictor is to issue
alerts that precede router overload, thus providing warning
time for network managers to take remedial actions.

To generate a time series of queue lengths, each router
periodically samples the count of queued packets and computes
some statistic within a fixed time slot. The sampling period
should be chosen to yield reasonable resolution without unduly
burdening routers. In this paper, samples are taken every 200
ms in a 10-s time slot, so each data point in a time series is the
average (or variance in) queue length over 50 samples (i.e., 5
samples/s). Fig. 1 gives an example raw time series (jagged
curve) of averaged queue lengths over 3300 s, sampled from a
router in a simulated network under increasing load.

Fig. 1. Example raw (jagged curve) and smoothed time series

Raw samples are smoothed to reduce time-series noise, and
create a more slowly changing curve. Among many possible
methods, this paper uses Nadaraya-Watson smoothing [9], also
used by other researchers [7] to remove noise from historical
measurements of Earth’s climate history. The resulting curve is
detrended to remove the effects of normal traffic, allowing
predictors to focus on any changes in queue lengths due to
atypical traffic. This paper implements detrending by
subtracting an appropriate queue-length statistic (i.e., mean or
variance), as measured for each router under normal traffic.
Actual networks may include more complex trends than were
present in these simulations, thus additional detrending may be

required in such situations. Fig. 1 shows results (smooth curve)
from smoothing and detrending a time series (jagged curve) for
one router in a simulation experiment from this paper.

Predictors analyze a sliding window over a detrended and
smoothed time series of sampled queue-length statistics. This
paper uses a 300-s window, i.e., each window contains 30 10-s
time slots looking back in time and slides forward every 10 s.
The 300-s window provides a reasonable span of history to
consider, and a 10-s advance provides for timely generation of
alerts. Of course, other choices for window size and advance
increment are possible, and could yield results that differ from
those reported here. (Ongoing work is exploring the influence
of varying values for all possible system parameters.)

While each predictor operates differently in several details
(explained below), all predictors use an identical procedure,
shown in eq. 1, which is implemented in each router. Given a
window of W time slots, a router counts the number of slots
where a predictor metric is ≥ a threshold, and then raises an
alert if that count is ≥ a limit within the window. Specifically,

 (1)

where W is sliding window size in slots, P denotes a predictor
function, Qi is the detrended and smoothed queue-length
statistic for the ith slot in a window, PThreshold is a predictor’s
threshold, and PAlertLimit is a predictor’s alert limit within a
sliding window. Note the use of Iverson’s brackets [11] within
the summation, which evaluates to 1 if the proposition is true,
but 0 otherwise. As explained next, each predictor may differ
in implementation of P, PThreshold, and PAlertLimit. While only five
predictors were implemented and evaluated for this paper, the
general framework permits predictors to be added easily.

B. Predictor Specifications

This paper investigates five predictors: autocorrelation,
variance, threshold, growth persistence, and growth rate. As
explained below, for each predictor, specific values were
selected for PThreshold and PAlertLimit. The values chosen appeared
pragmatic for the network models simulated here. Different
values might be needed to yield effective results for other
network models. Each predictor is denoted as a triple, (P,
PThreshold, PAlertLimit), and described in turn.

Autocorrelation (α(1), 0.7, 21). This predictor is motivated
by research [5, 10, 20] in several domains that suggests
autocorrelation increases near a critical point around a phase
transition. Here, α(1) is a predictor function that computes lag-
1 autocorrelation for average (detrended and smoothed) queue
lengths, Q, in each sliding window. Signal strength diminished
for greater lags.

Positive autocorrelation might be judged significant within
the range of 0.5-1.0. Here, PThreshold is assigned as 0.7 because
that value is moderately significant, and should provide for
earlier signals than larger values. Regarding PAlertLimit, several
values were considered, including 1, 10, and 21 slots in the
sliding window. The lower values, while signaling earlier,
caused excessive false alerts, thus PAlertLimit was set to 21. The
autocorrelation predictor alerts whenever α(1) ≥ 0.7 for 21 (or
more) of the 30 slots in a sliding window.

The α(1) function used the MATLAB xcorr() algorithm
[28] to compute cross-correlation between the Q and lag-1 Q
time series. This approach is consistent with computing
statistical lag-1 autocorrelation using

 (2)

where E[] is expected value, µ(Q) is queue length averaged
across the sliding window, σ2(Q) is the variance in queue
length across the sliding window, Qi is average queue length in
the ith slot, and Qi-1 is average queue length for the prior slot.

While the results in Sec. V were obtained using xcorr(),
which converts time-series data using Fast-Fourier transforms,
results were also computed for two other formulations of α(1):
MATLAB xcov() and statistical autocorrelation, as derived by
a simulation-package function. These alternate formulations
produced results like those obtained with xcorr().

Variance (ν, μ(ν)+|3σ(ν)| : steady load, 21). This predictor
is motivated by research [9, 21] that suggests increases in
variance may foreshadow incipient phase transition. For this
predictor, the sliding window advances over variances (not
averages) in queue length. The variance (ν) in queue length for
each 10-s slot in a sliding window is computed using eq. 3,

 (3)

where N is the number (i.e., 50) of 200-ms samples in a slot, Qi
is queue length for the ith sample, and µ(Q) is the mean queue
length across all samples in the slot. PThreshold is assigned as
µ(ν) + |3σ(ν)|, where µ(ν) is the mean variance and σ(ν) is the
standard deviation in variance under normal traffic (i.e., steady
load). Variance beyond PThreshold under normal traffic should
occur by chance less than 1% of the time. For reasons given
earlier, PAlertLimit is set to 21. The variance predictor alerts
whenever ν ≥ PThreshold for at least 21/30 slots in the sliding
window.

Some prior research [18] in communications networks
suggests that variance in queue lengths decreases as a system
becomes congested. For that reason, an alternate version of the
variance predictor was implemented by reversing the first
inequality in eq. 1 to < and changing PThreshold to μ(ν)+|σ(ν)|.
Those results, not reported here, showed that decreases in
variance did fall below PThreshold (and approached zero) as
router buffers filled, but the decreases occurred close to (or
after) router queues reached overload, and so provided little (or
no) warning. In other words, variance did decrease as routers
congested, but the decrease occurred too late for prediction.

Threshold (Qi, 0.25(C - µ(Q) : steady load), 1). This
predictor, motivated by simplicity, generates an alert whenever
the average queue length, Qi, ≥ PThreshold. PThreshold is set to a
fraction (0.25) of the number of normally empty packet
buffers, as computed by subtracting the mean queue length,
µ(Q), under normal traffic (i.e., steady load) from buffer
capacity, C. PThreshold was set to 0.25, which is about 2/3 below
overload (set to 0.7, as explained in Sec. III.D), and represents
a significant increase (about 1/3) in queue length towards
overload, yet allows for ample warning times. The threshold

predictor alerts whenever queued packets consume 25% or
more of normally empty buffers.

Growth Persistence (Qi | Qi > Qi-1, 0.25(C - µ(Q) : steady
load), 21). This predictor is motivated by the possibility that
the threshold predictor might be too crisp, leading to false
alerts. The growth-persistence predictor introduces two
refinements. First, the function returns average queue length,
Qi, to compare with PThreshold only when Qi > Qi-1; otherwise, 0
is returned. This ensures that average queue length surpasses
PThreshold, chosen as before, and grows over time. Second,
PAlertLimit = 21, chosen as explained previously, ensures that
queue-length increases persist in time. These refinements mean
that the growth-persistence predictor alerts only when queue
length ≥ PThreshold, while also increasing over time, i.e., for at
least 21/30 slots in a sliding window.

Growth Rate ((estimated Qj-1 + sj-1) + sj, 0.25(C - µ(Q) :
steady load), 21). This predictor stems from an idea that
estimating queue length based on the growth rate of the real
queue might lead to quicker and more persistent alerts. The
predictor computes an estimated queue length for each window
j by adding a slope, sj, to the sum of the estimated queue length
and slope from the previous window j-1. Slope, s, is computed
using a least-squares method, as given in eq. 4,

 (4)

where W is window size, Qi is queue length of the ith slot in the
current window and µ(Q) is the mean queue length across the
current window. The values for PThreshold and PAlertLimit were
chosen as explained previously. The growth-rate predictor
alerts only when estimated queue length ≥ PThreshold for at least
21/30 slots in the sliding window.

C. Predictor Implementation Costs

Table I gives total cost to implement each predictor in units
of thousand processor cycles (kilocycles) per sliding window.
Costs are also decomposed by algorithm element: (1) sample
and detrend, (2) smooth, (3) compute predictor, and (4) decide
alert. Executing the predictors on a 3.4 GHz processor takes
from 11.9 us (TH) to 23.3 us (AC) for each sliding window.

TABLE I. PROCESSOR KILOCYCLES/WINDOW (30 10-S SLOTS) FOR EACH

PREDICTOR: AC=AUTOCORRELATION; VR=VARIANCE;
TH=THRESHOLD; GP=GROWTH PERSISTENCE; GR=GROWTH

RATE; =LOWER IS BETTER; BEST COSTS IN BOLD

Predictor Sample/
Detrend

Smooth Compute
Predictor

Decide
Alert

 Total

AC 0.98 25.86 51.90 0.41 79.14

VR 36.10 26.58 3.21 0.36 66.26

TH 0.98 25.86 0 13.61 40.45

GP 0.98 25.86 0 13.95 40.78

GR 0.98 25.86 1.19 12.93 40.95

D. Performance Metrics

For experiment purposes, each simulated router raises an
overload exception (O) when a packet queue ≥ 70% of buffer
capacity. This value corresponds roughly to the minimum

utilization in a queuing system beyond which delays could
begin to grow without bound [23]. Any given predictor may
issue an alert (A) of oncoming router overload. When overload
and alert occur, given that the alert appears before overload
(i.e., At < Ot, where t is time), then a predictor is successful.
Consistent predictor outcomes include: true positive (tp: At <
Ot) and true negative (tn: ¬A ˄ ¬O). A predictor is erroneous
under any of three conditions: false positive (fp: A ˄ ¬O), false
negative (fn: ¬A ˄ O), or late positive (lp: At > Ot).

Given these definitions, predictor accuracy is defined as:
(tp + tn) / (tp + tn + fp + fn + lp). For true positives, one can
measure warning time as latency (Ot - At) between first alert
and overload. One can also measure persistence as proportion
of the latency interval over which an alert remains asserted.
Computing persistence is possible because predictors evaluate
conditions for an alert with every advance in a sliding window.

IV. EXPERIMENT

Each of the five predictors described in Sec. III.B was
compared under six situations, paired combinations of three,
simulated network models and two traffic scenarios. This led to
(5 X 3 X 2 =) 30 configurations, where each configuration draws
one element from each column (predictor, network model,
traffic scenario) in Table II.

TABLE II. PREDICTOR TEST CONFIGURATIONS

Predictor

X

Network Model

X

Traffic Scenario

 Autocorrelation
Realistic TCP Increasing Load Variance

 Threshold Realistic UDP
 Growth Persistence

Steady Load
 Growth Rate Abstract

For each configuration, consistent (i.e., tp and tn) and
erroneous (i.e., fp, fn and lp) outcomes were tabulated for each
of 218 routers, at the end of 3000 simulated seconds (covering
300 sliding windows). Subsequently, the measures described in
Sec. III.D were computed across all routers, yielding the results
reported in Sec. V. The remainder of Sec. IV describes the two
realistic (A) and one abstract (B) network models simulated, as
well as the two traffic scenarios (C).

A. Realistic TCP and UDP Network Models

Many studies of network congestion adopt abstract models,
which include unrealistic assumptions. While using such an
abstract model, this study also uses two realistic network
model variants: transmission-control protocol (TCP) and user-
datagram protocol (UDP). Both variants share common
features: topology, node-speed assignments, buffer-sizing
algorithm, and flow-injection and management procedures.
The two variants differ only in packet-injection procedures.
First, the common features are explained, followed by the
distinct packet-injection procedures.

Topology. The realistic network models, drawn from
previous work (see [16-17] for further details), use a four-tier

topology adapted from an internet-service provider network.
The topology, illustrated in Fig. 2, contains 218 routers
organized as three tiers: (1) 16 core (A-P), (2) 32 point-of-
presence, or PoP (A1-P2), and (3) 170 edge (A1a-P2g). The
topology also includes a fourth tier (not shown) that contains
51.588 source nodes and 206.352 receiver nodes, spread evenly
below the edge routers, which brings the number of network
nodes to just over a quarter million (258.158).

Fig. 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP (A1-P2) and

 170 edge (A1a-P2g)

In the model, routers forward each outgoing packet to a
next router chosen based on a fixed, shortest path toward the
destination. Shortest path is determined by the minimum count
of links to a given destination.

Node-Speed Assignments. Router tiers in the topology
were assigned fixed relationships among forwarding speeds, as
shown in Table III, to reflect sound network-engineering
principles. Forwarding speeds of all routers can be adjusted
with a single parameter, S, while maintaining fixed speed
relationships. For this study, S was set to 40 packets/ms, which
determined all router forwarding speeds.

TABLE III. DEFINED RELATIONSHIPS AMONG TIERED ROUTER

FORWARDING SPEEDS

Tier Speed

Core 2S

PoP S/4

Edge: Normal S/4/10

Edge: Fast 2S/4/10

Edge: Very Fast S/4

Fig. 2 denotes forwarding speeds for the 170 edge routers
with three colors/shapes: gray/circle (122 normal),
green/square (40 fast), and red/triangle (eight very fast). Setting
S to 40 assigned forwarding speeds as: 80 packets/ms for core
routers; 10 packets/ms for PoP and very fast edge routers; 2
packets/ms for fast edge routers; and 1 packet/ms for normal
edge routers. Speeds were also assigned to source and receiver
nodes, where half (randomly selected, uniform) operate at 2

packets/ms and half at 0.2 packets/ms. While edge routers may
become overloaded due to traffic injected by sources and
receivers, the defined speed relationships among router tiers
assure that forwarding speeds for core and PoP routers are
congruent with the maximum possible incoming traffic from
connected routers.

Buffer-Sizing Algorithm. Each router is assigned a finite
buffer capacity, computed as ceil [250 ms × router speed]
packets, following the Bush-Meyer guidelines [3], as suggested
for the internet. Core routers forward packets from a single
buffer, while PoP and edge routers have two (half-sized)
buffers, one heading “in” toward the core and one heading
“out” toward the edge. For PoP and edge routers, packet
forwarding alternates between “in” and “out” buffers. Packets
arriving at a buffer are queued first-in-first-out for forwarding.
Packets arriving at a full buffer are discarded.

Flow-Injection and Management Procedures. At
randomly selected times, varying with traffic load, sources
inject correlated flows of packets at their parent edge router. To
simulate heavy-tailed flows often seen in internet traffic, flow
sizes were chosen from a Pareto distribution with a mean of
350 packets and shape of 1.5. Traffic load varies inversely with
mean time between flow arrivals, which is controlled by
packet-injection rate, p. At any given time, any idle source
injects a flow with probability p/s × f, where s is the number of
sources and f is mean flow size.

To inject a flow, a source: (1) selects a random (uniformly
distributed) receiver from under a core router different from the
source’s core, (2) sends (and resends if necessary) a connection
request until receiving connection acceptance from the chosen
receiver, (3) selects a flow size, and (4) follows one of the
packet-injection procedures, explained next. After completing
the packet-injection procedures, a source becomes idle until its
next chosen flow-injection time.

TCP Packet-Injection Procedures. In the TCP variant of
the realistic network model, sources inject the packets of a flow
at a controlled rate determined by congestion-control and
reliable-transmission procedures: (1) slow-start, (2)
congestion-avoidance, (3) retransmission, and (4) timeouts.
These TCP procedures determine when a source may send
packets toward a receiver. At any given time, a source may
send a prescribed number of packets (known as congestion
window, or cwnd) prior to receiving feedback from the
receiver. Thus, cwnd controls the rate of packet transmission
on a flow.

Using TCP slow-start procedures, a source increases a
flow’s cwnd exponentially from a small initial value (two
packets, here) until a lost packet is detected or cwnd reaches a
threshold, known as logarithmic slow-start threshold, or log-sst
(set to 100 packets, here). If cwnd passes log-sst without packet
loss, then a source increases cwnd logarithmically until
reaching another slow-start threshold, or sst (set to 230/2
packets, here). If cwnd reaches sst, a source enters congestion-
avoidance, subsequently increasing cwnd more slowly, at a
linear rate. If a packet is lost, cwnd is reduced in half and then
increased linearly until another packet is lost, after which cwnd
is reduced in half again, and so on. This algorithm leads to a

saw-tooth pattern in cwnd, inducing a corresponding variation
in a flow’s transmission rate.

For every data packet sent by a source, receiver feedback is
expected: either an ack (acknowledgment) or nak (negative
ack). Any packet, whether data, ack, or nak, may be discarded
at routers with full buffers. A receiver sends a nak whenever a
data packet fails to arrive in the expected sequence from the
source. For every nak received by a source, a data packet must
be retransmitted. When a source fails to receive any ack or nak
for a prolonged period, i.e., a timeout, then sst is reset to the
current cwnd and the source reenters slow-start. These
procedures continue until every data packet (including any
retransmissions) sent by a source is confirmed by the receiver.

UDP Packet-Injection Procedures. In the UDP variant of
the realistic network model, sources inject the packets of a flow
at an assigned rate (2 or 0.2 packets/ms). Once all packets are
injected, the flow becomes idle. No congestion-control or
reliable-transmission procedures are used.

B. Abstract Network Model

The abstract network model is taken from previous work
(see [8, 16] for details). The topology shown in Fig. 2 is
flattened by removing router tiers so that all 218 routers are
peers. The fourth tier of sources and receivers is removed.
Each router is provisioned with a single, infinite buffer. Traffic
is injected as individual packets at rate p, which is varied to
modulate load. Each injected packet is added to the end of the
forwarding queue of a randomly (uniform) chosen source
router, and assigned a randomly (uniform) chosen destination
router, other than the source. All routers are assigned the same
forwarding speed (9 packets/ms), computed as the weighted
average speed across all routers in the realistic models. Queued
packets are forwarded to a next router based on the minimum
count of links to the destination. The abstract model uses no
congestion-control procedures.

C. Traffic Scenarios

This study simulated two distinct traffic scenarios: steady
load and increasing load. Both scenarios begin with a warmup
period where p = 10 packets/s for 300 s. Subsequently, a
measurement period of 3000 s is simulated. For the steady-load
scenario, p = 10 for the entire period. For the increasing-load
scenario, p is increased by 10 packets/s every 10 s, reaching p
= 300 packets/s by the end of the 3000-s measurement period.

Experiment simulations encompassed six situations: each a
paired combination of network model and traffic scenario.
During the 3000-s measurement period, each simulation
produced a queue-length time series (200-ms samples) for each
router. Each simulation was repeated for 10 repetitions, with
different random-number seeds, and the resulting queue-length
time series were averaged over the repetitions to produce a
time series per router for each of the six situations. This means
that a set of six, queue-length time series, one per combination
of network model and traffic scenario, were averaged over ten
simulations to create the time series seen by each router.

For each time series, a predictor-appropriate statistic (mean
or variance) was computed from 200-ms samples for each 10-s

slot, and the time series was detrended and smoothed. Each
router applied five predictors to the set of time series covering
the six situations, each representing a paired combination of
network model and traffic scenario. Taking these steps created
a fair test, eliminating the possibility for random variation in
time series to influence predictor performance.

V. RESULTS AND DISCUSSION

Table IV reports consistent (true positive and true negative)
outcomes for the five predictors, under the increasing load
scenario, in each of the three simulated network models.
Before discussing the results, a measurement detail must be
resolved, regarding alerts issued by PoP and core routers in the
realistic network models. Recall that PoP and core routers are
engineered to handle maximum expected load, and thus do not
experience overload. Even so, predictors in PoP and core
routers can issue alerts. How should such alerts be classified?
One could declare those alerts erroneous, or could exclude PoP
and core routers from the results. On the other hand, if
subordinate routers alerted successfully, there would be
justification for the parent (PoP or core) router also alerting.
The results in Table IV include PoP-router alerts in true
positives when all subordinate edge routers also issued
successful alerts (At < Ot). Similarly, core-router alerts are
included in true positives when both subordinate PoP routers
also issued true-positive alerts.

TABLE IV. SUCCESSFUL OUTCOMES UNDER INCREASING LOAD:
TPR=TRUE-POSITIVE RATE; TNR=TRUE-NEGATIVE RATE;
=HIGHER IS BETTER; CON=CONSISTENCY; TCP=REALISTIC

TCP MODEL; UDP=REALISTIC UDP; ABS=ABSTRACT MODEL

TPR TNR Con (TPR+TNR)

TCP UDP ABS TCP UDP ABS TCP UDP ABS

AC 0.913 0.963 0.131 0 0 0.805 0.913 0.963 0.936

VR 0.862 0.963 0.133 0 0 0 0.862 0.963 0.133

TH 0.723 0.75 0.128 0.254 0.25 0.859 0.977 1 0.986

GP 0.634 0.74 0 0.259 0.26 0.853 0.894 1 0.853

GR 0.686 0.75 0 0.254 0.25 0.853 0.94 1 0.853

The last column (Con) in Table IV reports the proportions
of (218) routers for which predictors exhibited consistent alert
behavior under increasing load for each network model.

Consistent behavior sums true positives (TPR column) and

true negatives (TPN column). Results for all predictors,
except variance, are reasonably good. Causes for erroneous
predictions are shown below in Table VI.

In Table IV true negatives ranged between 81-86% in the
abstract network sub-column (ABS) for all but variance. (Note
that the variance predictor does not report these true negatives
for the abstract network model, but instead raises erroneous
false positives, as discussed below when considering Table
VI.) The high rate of true negatives in the abstract network
model implies that about 85% of routers fail to reach overload.
This occurs due to a combination of three main factors: load is
diffused among all routers, router forwarding speeds are
homogeneous within a flat topology, and some routers have
high centrality.

Diffused load arises as individual packets are injected
uniformly across all routers. But every injected packet must
travel on some route from source to destination. Visualization
[6] of spreading congestion in the abstract model showed the
overloaded 15% of routers exhibit high centrality, i.e., many
shortest-path routes transit them, and thus transit packets are
forwarded through them. Given that topology is flat in the
abstract network model and that all routers have identical
forwarding speeds, high-centrality routers have insufficient
forwarding capacity to cope with the increased transit traffic.
The uncongested 85% of routers exhibit low centrality,
receiving mainly injected packets. In the realistic network
models with a tiered topology, core routers have high centrality
but are assigned higher forwarding speeds to compensate for
increased transit traffic, and thus those routers do not congest
so easily.

For each predictor, Table V reports mean warning time
(i.e., latency) for true-positive alerts under each network
model. The distribution (not given here) of latencies for the
TCP model showed warning times exceeded 15 min under
each predictor for a significant proportion of true-positive
routers: 22% (AC), 23% (VR), 16% (TH), 12% (GP), and 15%
(GR). Those proportions were even higher for the UDP model.
For the abstract network model, only autocorrelation (61%)
and variance (65%) gave warning times exceeding 15 min.
Alerts persisted well for all predictors.

TABLE V. MEAN WARNING TIME (LATENCY) AND ALERT PERSISTENCE

FOR TRUE POSITIVES (TPR COLUMN) FROM TABLE IV

Mean Latency (min) Mean Persistence

TCP UDP ABS TCP UDP ABS

AC 10.73 22.89 17.52 1 1 0.992

VR 10.48 21.72 24.33 0.994 1 0.991

TH 7.67 15.77 0.58 1 1 1

GP 4.61 11.86 — 0.972 0.99 —

GR 5.63 13.53 — 1 1 —

Autocorrelation and variance gave most warning time
because the other predictors transitioned more slowly to alerts,
especially under realistic UDP and abstract network models.
Slower transition occurs because the other predictors must wait
for packets to occupy at least 25% of normally empty packet
buffers, while autocorrelation and variance do not include this
requirement in PThreshold. Among the other predictors, threshold
raises an alert after a single crossing of PThreshold, thus the
predictor gives more warning time than growth persistence and
growth rate, which require crossing PThreshold in 21/30 slots.

The realistic TCP network model yields lower warning
times overall across the predictors because TCP congestion-
control procedures slow the rate of congestion increase, which
causes predictor measures to transition more slowly toward an
alert state. In other words, gradual increase in congestion limits
the warning time that can be achieved by any predictor.

For each predictor and network model under increasing
load, Table VI gives the error rate for the residual proportions
(i.e., 1 – Con) of routers not represented in Table IV. Across all
network models, the threshold predictor had lowest mean error
rate of 1.2%. Somewhat higher mean error rates occurred for

autocorrelation (6%), growth persistence (8.4%), and growth
rate (6.9%). The variance predictor had an unacceptably high
mean error rate (34.7%), dominated by an 86.7% error rate
under the abstract network model (mainly false positives). The
variance predictor signaled false alerts in the abstract network
model because variance in queue lengths under normal traffic
was quite low, so with increasing load the variance predictor
could exceed PThreshold even when the absolute number of
queued packets was small. For this reason, the variance
predictor is unreliable.

TABLE VI. ERROR RATE (1-CON) UNDER INCREASING LOAD –ERROR RATE

IS DECOMPOSED BY ERROR TYPE IN TABLE VII

Error Rate (1 – Con) Mean

 Error Rate TCP UDP ABS

AC 0.087 0.037 0.074 0.06

VR 0.138 0.037 0.867 0.347

TH 0.023 0 0.014 0.012

GP 0.106 0 0.147 0.084

GR 0.06 0 0.147 0.069

Table VII decomposes the error rates from Table VI by
type: alerting absent overload (fp: A ˄ ¬O); failing to alert in
presence of overload (fn: ¬A ˄ O); alerting too late (lp: At >
Ot). No predictors made false-negative errors. For all models,
the autocorrelation and variance predictors made mainly false-
positive errors. The growth-persistence and growth-rate
predictors erred mainly by alerting too late for the abstract and
TCP network models. The threshold predictor, which made
few errors, sometimes alerted too late in the abstract network
model. For the realistic UDP model, the threshold, growth-
persistence, and growth-rate predictors made no errors.

TABLE VII. ERROR RATE UNDER INCREASING LOAD FROM TABLE VI,
DECOMPOSED BY ERROR TYPE: FPR=FALSE-POSITIVE RATE;
FNR=FALSE-NEGATIVE RATE; LPR= LATE-POSITIVE RATE

FPR FNR LPR

TCP UDP ABS TCP UDP ABS TCP UDP ABS

AC 0.087 0.037 0.058 0 0 0 0 0 0.016

VR 0.12 0.037 0.85 0 0 0 0.018 0 0.017

TH 0.023 0 0 0 0 0 0 0 0.014

GP 0.023 0 0 0 0 0 0.083 0 0.147

GR 0.023 0 0 0 0 0 0.037 0 0.147

Three predictors (threshold, growth persistence, and growth
rate) had a 2.3% error rate for the TCP network model, i.e.,
issued false positives for five of 218 routers. These five routers,
comprising the entire 2.3% error rate, were (fast) edge routers
that alerted absent an overload (A ˄ ¬O). In those cases, router
queue lengths had reached at least 64% of buffer capacity, and
would have reached overload given more simulated time.

For the steady-load scenario, Table VIII reports false-
positive (A ˄ ¬O) rates for the predictors by network model.
The threshold, growth-persistence, and growth-rate predictors
issued no false alerts under steady load. For realistic network
models, the autocorrelation predictor issued predominantly
false alerts. This occurs because autocorrelation measures self-
similarity in queue lengths, which were highly self-similar

(autocorrelation just below one) under the realistic models,
where packet injection occurs in correlated streams at edge
routers. The autocorrelation predictor had few false alerts for
the abstract network model because diffuse packet injection led
only to small, sporadic, queues in routers with low centrality,
i.e., most routers. Autocorrelation was set to zero when a router
queue is empty, leading to true negatives in those cases.

TABLE VIII. FALSE-POSITIVE RATES UNDER STEADY LOAD

FPR

TCP UDP ABS

AC 0.995 0.927 0.064

VR 0.362 0.45 0.949

TH 0 0 0

GP 0 0 0

GR 0 0 0

While the variance predictor issued fewer false alerts for
the realistic network models, the false-positive rate was still
quite high (36-45%). The variance predictor had fewer false
alerts for the realistic network models because the standard
deviation in variance was higher under normal traffic for those
models, and thus PThreshold was higher, reducing the number of
false alerts. High false-positive rates under steady load in the
real network models disqualify both the autocorrelation and
variance predictors from further consideration for practical use.

Additional experimentation discovered that false alerts
under steady load could be eliminated for the autocorrelation
and variance predictors by adding a buffer threshold condition,
0.25(C - µ(Q)) : steady load), to the PThreshold values. Under
increasing load for realistic networks, the cost of adding the
condition was diminished alerting accuracy and decreased
warning time. These alternate results (not shown here) suggest
that including a buffer-capacity to queue-length relationship in
PThreshold values is necessary to control false alerts. That is, any
predictor signal should be supported by evidence that router
queue lengths are elevated significantly above levels measured
under normal traffic. The tradeoff, though, is to reduce warning
time, and to increase (slightly) false-negative rate.

TABLE IX. OVERALL PREDICTOR ACCURACY (BEST FOR EACH NETWORK

MODEL IN BOLD)

Accuracy

TCP UDP ABS

AC 0.459 0.518 0.936

VR 0.75 0.757 0.092

TH 0.989 1 0.993

GP 0.947 1 0.927

GR 0.97 1 0.993

Table IX combines consistent and erroneous alert results
across both the increasing-load and steady-load scenarios to
evaluate overall predictor accuracy. While autocorrelation and
variance both performed poorly under the realistic network
models, all predictors, except variance, were reasonably
successful under the abstract model. As discussed elsewhere
[6, 16], abstract network models lack essential, realistic traits
(e.g., tiered forwarding speeds, finite buffers, and congestion-

control protocols), and so congestion spreads outward from
routers with high centrality. In realistic network models,
congestion emerges at (low-centrality) edge routers and has
difficulty spreading inward. For these reasons, abstract network
models should not be used to evaluate congestion predictors.

Table IX also shows that under the realistic UDP model,
threshold, growth-persistence, and growth-rate predictors all
achieved perfect accuracy; however, Table V showed that the
threshold predictor provided 3-4 minutes more warning time
under all network models. While many short internet
transactions use UDP procedures, longer flows are regulated by
TCP congestion-control. Under the realistic TCP network
model, the simplest predictor, threshold, provided highest
accuracy: 98.9%. The residual 1.1% inaccuracy arises from
five (fast) edge routers that alerted absent overload. (Recall,
though, that queue lengths for those five routers would reach
overload given more simulated time.) Among the five
predictors investigated here, threshold seems best suited for
further evaluation in real networks.

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluated five predictors that might be used to
signal onset of congestion collapse. The paper also defined a
method, and related measures, to evaluate predictor
performance. In a series of simulation experiments, the paper
compared predictors along four dimensions: implementation
cost, accuracy, warning time, and reliability. The results,
though obtained for a single network topology, apply generally
because predictors run within individual routers and make
decisions based on local state. Predictor performance does not
depend directly on the size or structure of a network topology.

The experiment results support six, specific conclusions:
(1) executing predictors incurs little router overhead; (2) simple
predictors, e.g., threshold, give good accuracy, warning time,
and persistence, especially under realistic network models; (3)
two predictors, autocorrelation and variance, appear unsuitable
due to many false alerts under steady load in realistic network
models; (4) though including a buffer-capacity to queue-length
relationship in the PThreshold condition reduces false alerts and
could improve accuracy of autocorrelation and variance, but at
the cost of decreased warning times; (5) autocorrelation and
variance gave best average warning times; and (6) realistic
network models should always be used to evaluate congestion
predictors.

Future work remains to verify predictor results in emulated
and real networks. Further, predictors include numerous
parameters for which values must be selected; thus, sensitivity
analysis is needed to determine the relative influence of
parameters, and to select optimal parameter-value settings. An
additional experiment is planned to investigate predictor
performance under more complex traffic scenarios, e.g., cycles
of increasing load followed by decreasing load, where the rate
of increase and decrease varies with each cycle. Additional
predictors will also be defined and evaluated.

REFERENCES

[1] C. Albuquerque, B. Vickers, and T. Suda, “Network border patrol:
preventing congestion collapse and promoting fairness in the Internet,”
IEEE/ACM Trans. on Networking, vol. 12 no. 1, 2004, pp. 173–186.

[2] D. Arrowsmith, R. Mondragón, J. Pitts, and M. Woolf, “Phase
transitions in packet traffic on regular networks,” ISSN 1103-467X,
Institut Mittag-Leffler, 2004.

[3] R. Bush and D. Meyer, “Some Internet Architectural Guidelines and
Philosophy,” RFC 3439, 2002, 28 pages.

[4] B. Carreras, V. Lynch, I. Dobson, and D. Newman, “Critical points and
transitions in an electric power transmission model for cascading
failure blackouts,” Chaos, 2007, vol.. 12 no. 4, pp. 985-994.

[5] C. Dabrowski, “The study of catastrophic event phenomena in
communication networks,” Comp. Sci. Rev., vol. 18, pp. 10−45.

[6] C. Dabrowski and K. Mills, “The Influence of Realism on Congestion
in Network Simulations,” NIST Technical Note 1905, 2016, 62 pages.

[7] V. Dakos, et al., “Slowing down as an early warning signal for abrupt
climate change,” Procs. of the National Academy of Sciences, 2008,
vol. 105 no. 38, pp. 14308–14312.

[8] P. Echenique, J. Gómez-Gardenes, and Y. Moreño, “Dynamics of
jamming transitions in complex networks,” Europhys Lett, vol. 71 no.
2 2005, pp. 325-331.

[9] T. Hastie and R. Tibshirani, “Generalized additive models,”
Monographs on stats. and applied prob., Chapman & Hall, 1990, 352
pages.

[10] P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Topological models
and critical slowing down: two approaches to power system blackout
risk analysis,” Procs. of the Hawaii Conf. on System Sciences, 2011,
pp. 1–10.

[11] K. Iverson, “A programming language,” Wiley & Sons, 1962, 315
pages.

[12] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-range dependence:
ten years of Internet traffic modeling,” IEEE Internet Comp, vol. 8 no.
5, 2004, pp. 57–64.

[13] A. Lawniczak, P. Lioˋ, S. Xie, and J. Xu, “Study of packet traffic
fluctuations near phase transition point from free flow to congestion in
data network model,” in Procs. of the Canadian Conf. on Electrical and
Computer Engineering, 2007, pp. 360-363.

[14] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-
similar nature of Ethernet traffic,” IEEE/ACM Trans. on Networking,
vol. 2 no. 1, 1994, pp. 1–15.

[15] K. Lhaksmana, Y. Murakami, and T. Ishida, “Analysis of large-scale
service network tolerance to cascading failure,” IEEE Internet of
Things Journal, vol. 3 no. 6, 2016, pp. 1159-1170.

[16] K. Mills and C. Dabrowski, “The need for realism when simulating
network congestion,” Procs. of the Spring Simulation Multi-Conf.,
2016, pp. 228-235.

[17] K. Mills, E. Schwartz, and J. Yuan, “How to model a TCP/IP network
using only 20 parameters,” Procs. of Winter Simulation Conf., 2010,
pp. 849-860.

[18] G. Mukherjee and S. Manna, “Phase transition in a directed traffic flow
network,” Phys Rev E, vol. 71 no. 6, 2005, 066108.

[19] Y. Rykalova, L. Levitin, and R. Brower, “Critical phenomena in
discrete-time interconnection networks,” Physica A, vol. 389, 2010,
pp. 5259-5278.

[20] S. Sarkar, K. Mukherjee, A. Ray, A. Srivastav, and T. Wettergren,
“Statistical mechanics-inspired modeling of heterogeneous packet
transmission in communication networks,” IEEE Trans on Syst, Man,
and Cybernetics—Part B: Cybernetics, vol. 42 no. 4, 2012, pp. 1083-
1094.

[21] M. Scheffer, et al., “Early warning signals for critical transitions,”
Nature, vol. 461 no. 3, 2009, pp. 53–59.

[22] R. Solé and S. Valverde, “Information transfer and phase transitions in
a model of internet traffic,” Physica A, vol. 289, 2001, pp. 595-605.

[23] W. Stallings, Queuing Analysis, 2000, 30 pages, see page numbered 4:
http://www.box.net/shared/static/lu626umiib.pdf

[24] D. Stauffer and A. Aharony, “Introduction to percolation theory:
revised second edition,” Taylor & Francis, 1994, 192 pages.

[25] B. Tadić, G. Rodgers, and S. Thurner, “Transport on complex
networks: flow, jamming and optimization,” International Journal of
Bifurcation and Chaos, vol. 17 no. 7, 2007, pp. 2363-2385

[26] D. Wang, N. Cai, Y. Jing, Y. and S. Zhang, “Phase transition in
complex networks,” Procs. Of American Control Conf., 2009, pp.
3310-3313.

[27] M. Woolf, D. Arrowsmith, R. Mondragón, and J. Pitts, “Optimization
and phase transitions in a chaotic model of data traffic,” Phys Rev E,
vol. 66, 2002, 046106.

[28] xcorr, MATLAB v. 2015b, Mathworks, see:

https://www.mathworks.com/help/signal/ref/xcorr.html

http://www.box.net/shared/static/lu626umiib.pdf

